Effect of some chemical compounds on the survivability and physiology of *Channa punctatus* (Bloch) and *Anabas testudineus* (Bloch)

Sabina Sultana, Salwa Prodhan and Selina Parween* Department of Zoology, University of Rajshahi, Rajshahi 6205, Bangladesh

Abstract: *Channa punctatus* and *Anabas testudineus* of different size-groups were exposed to table salt, urea, formalin, clove oil and folic acid for >72 hours to study the percentage survivability, tolerance time and physiological stress. Doses of compounds except table salt and urea were used as same for both the species. *A. testudineus* was more susceptible to table salt and urea compared to *C. punctatus*. All the chemicals affected survivability, tolerance time and produced stress in both species; effect of formalin and clove oil were greater than that of other compounds. Survivability and tolerance time were negatively related with the doses of the compounds, and positively related with the size of fishes. The highest dose (0.5 mg/l) of folic acid showed mortality in both species. The stress characters were secretion of excess mucous, imbalanced movements and respiratory problems were observed in both the species. These experiments were carried in the Aqua Lab (fisheries field lab), Department of Zoology, University of Rajshahi, during a period of three months from February to end of April, 2016.

Key words: Chemical compounds, survivability, tolerance, physiological stress, *C. punctatus*, *A. testudineus*

Introduction

Various chemicals are used in fisheries sector as anaesthetics, analgesics and sedatives to minimize stress in fish due to handling in live condition (Wurts, 1995). The mentioned chemicals are able to calm the excitable fish that might injure themselves during netting, handling and transportation (Berka, 1986; Davis & Griffin, 2004; Wurts, 1995). A number of these chemical anaesthetics or sedatives are used in pisciculture to prevent pathogenic and ectoparasitic diseases (Chinabut et al., 1988; Swan & Fitzierald, 1993 and Francis-Floyd, 1996; Peake, 1998; Woody et al., 2002). Such chemicals play important role in both fisheries research and aquaculture, and being used to facilitate various handling procedures (Summerfelt & Smith, 1990; Kazun & Swicki, 2001).

Fisheries scientists have been using quite a good number of chemical compounds as anaesthetics or sedatives. Among the commonly used effective sedatives or anaesthetics in aquaculture and fish handling,

Corresponding author: selinaparween@yahoo.com

or as therapeutics and prophylactics are the clove oil, formalin, food grade salts (calcium sulfate, sodium chloride, sodium bicarbonate). Use of salts is prescribed by the scientists to maintain osmoregulation in transporting water and to manage a variety of disease in culture water (Burgdorf-Moisuk *et al.*, 2011).

The chemical effect may vary with the fish species, size and weight of the fish, doses of the chemical, and the exposure time (Wurts, 1995). Before introducing an anaesthetic or a sedative, screening test must be run to explore effective doses and exposure time, against the species which are going to be treated. After treatment quick recovery of the fish is vital factor for grading a chemical as effective anaesthetic/sedative agent.

This research was aimed to study the survival percentage, the tolerance time and the stress effects of table salt, urea, formalin, clove oil and folic acid against two freshwater hardy fish, the snake head (*Channa punctatus* Bloch) and the climbing perch (*Anabas testudineus* Bloch).

Materials and Methods

Compounds used: Five compounds such as commercial table salt, urea, formalin, clove oil and folic acid (iron tablet) were used in this experiment. Among these compounds table salt, formalin and clove oil are widely used as anaesthetics in fisheries sector for different purposes. Urea is used as fertilizer in the fish pond. Vitamin like ascorbic acid is provided as supplemental feed to the fish for the development of immune system. In these contexts the above mentioned compounds were chosen to observe their effects on fish.

Preparation of doses: To determine the sublethal doses of the compounds pilot experiments were conducted separately for two species of fish. In case of table salt and urea the doses were different for the two species, as *A. testudineus* was more tolerant to these salts than that of *C. punctatus*. The doses of other three compounds were the same for both the species. Five doses of each compound were used for the experiments, which were:

i) table salt and urea: 5, 10, 15, 20 and 30 mg/l of water (equivalent to 0.1, 1, 1.5, 2 and 3%) for *C. punctatus*; and 10, 20, 30, 40 and 50 mg/l of water (equivalent to 1, 2, 3, 4 and 5%) for *A. testudineus*.

ii) formalin and clove oil: 0.025, 0.05, 0.075, 0.1 and 0.5 ml/l of water for both the species.

iii) folic acid: 1, 2, 3, 4 and 5 mg/l of water (equivalent to 0.02, 0.04, 0.06, 0.08 and 0.1%) for both the species.

Collection and acclimatization of fish: Live *C. punctatus* and *A. testudineus* were collected early in the morning from the fish landing centers of Rajshahi city, when the fish arrived from the harvesting area. Active and healthy live fishes were selected and kept in

plastic buckets containing water. Two species were kept in separate buckets. The fishes were then taken to the Aqua Lab (fisheries field lab), Department of Zoology, University of Rajshahi. The fishes were released in cemented tanks inside the hatchery, keeping two species in two separate tanks. Each tank was filled with pond water keeping the water depth as 30 cm. For the first 2-3 hours air was supplied in the tanks using aerators. The fishes were provided food (balls of wheat flour mixed with fish meal in a ratio of 3:1) twice daily after 24 hours of release. Water of the tanks was changed every day with fresh pond water. Weak or dead fishes if any were discarded. The fishes were thus acclimatized for a weak. Feeding was with held 24h before commencement of the experiment. Air temperature of the hatchery during the whole experimental period was ranged from 20-25°C.

Exposure protocol

Experiment I: For recording the percentage survivability and tolerance time (average time from when mortal effect started) live and healthy fishes of each species were selected. Fishes of both the species were grouped into three categories having total length ranging from 95-110 mm, 111-120 mm and 135-160 mm. Five identical aquaria containing 15 liters of pond water was taken. Required quantities of one compound were mixed with the aquaria water to obtain the selected five doses in five separate aquaria. A single fish of a size-group of one species was released in each aquarium. Feeding was stopped during the experimental period, but aeration was continued. The aquaria were covered by net to inhibit escape of the fish. Three replications were used for each size-group of each species of fish and each dose of each compound.

	Avera	ge Survivabilit	y (%)	Average	Tolerance perio	d (h)		
Doses (g/l)	Siz	Size Groups (mm)			Size Groups (mm)			
	95-110	111-120	135-160	95-110	111-120	135-160		
Table salt								
5	40.00	100	100	70	>72	>72		
10	37.50	100	100	69.42	>72	>72		
15	0	60.00	70.00	8	62	60		
20	0	5.00	50.00	3	20	21.30		
30	0	2.00	15.00	3	8	12		
Urea								
5	95.00	100	100	60	>72	>72		
10	95.00	100	100	58.30	>72	>72		
15	92.00	100	100	58.15	>72	>72		
20	88.50	98.20	100	50	67.30	>72		
30	67.33	90.00	90.00	36	60	61.40		

Table 1. Effect of table salt and urea on survivability and tolerance period in different size groups of *C. punctatus*

Experiment II: To study the physiological stress on the fish produced by the compounds the similar exposure protocol (like experiment I) used, with an exposure period of 72h. In this experiment size-groups of *C. punctatus* were the same as used in Experiment I, but the sizes of *A. testudineus* used were 90-100, 101-110 and 120-130mm because unavailability of larger fishes of this species at that time. This experiment was also replicated for three times.

Study period: All these experiments were carried during a period of three months from February to end of April, 2016.

Results and Discussion

Experiment I: Percentage survivability and tolerance time

Effect of the studied compounds on the survivability of the fish species and the respective tolerance time were recorded (Tables 1-5).

Percentage survivability in table salt and urea: Survivability of *C. punctatus* was more affected by table salt than that of urea, and *A. testudineus* was found to be more tolerant to both the salts compared to *C. punctatus* (Tables 1 and 2). The smaller size-group (95-110 mm) of *C. punctatus* failed to survive in doses higher than 10g/l of table salt (Table 1),

whereas, the same sized of *A. testudineus* was found to survive 100% even at the dose of 30 g/l (Table 2). At 15-30 g/l of table salt, the percentage of survivability of larger sized *C. punctatus* was decreased with the increase of doses. In case of *A. testudineus*, the larger sized fishes were succeeded 100% survival up to doses of 40 g/l.

At 20 and 30 g/l urea, the survival percentages of the small sized *C. punctatus* were 88 and 67.33, and the larger size-group succeeded 100% survivability at the same doses of urea (Table 1). Comparatively higher doses of urea (up to 50 g/l) did not affect survivable rate of any size of *A. testudineus* (Table 2).

Tolerance time against table salt and urea: The tolerance time was decreased with the increase dose levels of table salt at all sizegroups of *C. punctatus*; and the tolerance time was positively related with the size of the fish (Table 1). At 20 g/l of table salt, the tolerance periods were recorded as 3, 20 and 21.30h for 95-110, 111-120 and 135-160 mm size-group respectively. The tolerance time in *A. testudineus* for table salt was more than 72h up to a dose level of 40 g/l, which was about the same for each size-group (Table 2).

135-160

>72 >72

>72

>72

62.10

>72

>72

>72

>72

>72

A. test	udineus						
	Aver	age Survivabi	lity (%)	Average	Tolerance per	riod (h)	
Doses (g/l)	5	Size Groups (m	nm)	Size Groups (mm)			
	95-110	111-120	135-160	95-110	111-120	135-	
Fable salt				•			
10	100	100	100	>72	>72	>7	
20	100	100	100	>72	>72	>7	

100

100

92.00

100

100

100

100

98.00

Table 2. Effect of table salt and urea on survivability and tolerance period in different size groups of

100

100

96.00

100

100

100

100

100

>72

71

55.30

>72

>72

>72

65

61.25

Tolerance period for urea was comparatively longer for both species. In C. punctatus the tolerance time for urea was decreased with the increase of dose levels, and it was increased with the increase of fish size (Table 1). At highest dose of urea (30 g/l) the tolerance periods were recorded as 36, 60 and 61.4h in C. punctatus having respective sizes of 95-110, 111-120 and 135-160 mm respectively. A. testudineus at 50 g/l of urea showed tolerance for 55.30, 61 and 62.10h in the respective size-group of 95-110, 111-120 and 135-160 mm (Table 2).

100

66.12

34.20

100

100

100

96.00

96.00

Percentage of survivability in formalin: The percentage of survivability in formalin was more or less similar in both fish species, A. testudineus being a little bit more susceptible than that of C. punctatus. In both cases the percentage of survivability was increased with the increased dose of formalin, and decreased with the increase size of fish (Table 3). In three size-groups (95-110, 111-120 and 135-160 mm) of C. punctatus, the percentages of survivability were observed as 85, 92.15 amd100% respectively at the highest dose of formalin (0.5 ml/l). In the same dose the percentage of survivability of A. testudineus was 82, 90 and 95% for 95-110, 111-120 and 135-160 mm size-group respectively (Table 3).

Tolerance time in formalin: For both species, the tolerance period was decreased with the increased dose of formalin, and increased with the increase size-groups of fish (Table 3). At 0.5 ml/l the tolerance times were recorded as 54.25, 58.30 and >72h in C. punctatus for the respective size-groups of 95-110, 111-120 and 135-160 mm., in the same size- groups of A. testudineus the tolerance times for the same dose of formalin were 58.30, 65.15 and 60.30h (Table 3).

>72

>72

61

>72

>72

>72

>72

67.35

Percentage of survivability in clove oil: At 0.025 and 0.05 ml/l, the survivability rate of C. punctatus was 100% (Table 4). The lowest survivability rate of C. punctatus was observed in 135-160 mm size-group at 0.5 ml/l dose, but in the size-group 111-120 mm the percentage survivability was 90% at same dose. Whereas A. testudineus was found to be more susceptible to the clove oil treatments with compared to C. punctatus. The survivability rate of A. testudineus was only 40% in 95-110 mm size group at the lowest dose (0.025 ml/l), and the highest survivability rate of this species was recorded as 66.50% in the size-group 135-160 mm at the same dose. In both species the percentage survivability was decreased with the increase of dose of clove oil and size of the treated fish (Table 4).

30 40

50

10 20

30

40

50

Urea

	Aver	age Survivabilit	у (%)	Average	Tolerance pe	riod (h)	
Doses (ml/l)	Size Groups (mm)			Size Groups (mm)			
	95-110	111-120	135-160	95-110	111-120	135-160	
C. punctatus						·	
0.025	100	100	100	>72	>72	>72	
0.05	100	100	100	>72	>72	>72	
0.075	98.00	100	100	64.15	>72	>72	
0.1	97.00	99.20	100	62.50	60.15	>72	
0.5	85.00	92.15	100	54.25	58.30	>72	
A. testudineus						÷	
0.025	100	100	100	>72	>72	>72	
0.05	100	100	100	>72	>72	>72	
0.075	97.50	100	100	69	>72	>72	
0.1	94.00	98.00	100	63.25	67.30	>72	
0.5	82.00	90.00	95.00	58.30	65.15	60.30	

Table 3. Effect of formalin on survivability and tolerance period in different size groups of *C. punctatus* and *A. testudineus*

Tolerance time in clove oil: *C. punctatus* treated in clove oil for 72h up to doses of 0.05 ml/l for 95-110 and 111-120 mm size-groups, and 0.075 ml/l for 135-160 mm size-group (Table 4). Whereas, *A. testudineus* showed minimum tolerance time against clove oil as 8.30 h at 0.5 ml/l dose for 95-110 mm size-group, and the maximum time was recorded as 52.30h at a dose of 0.025 ml/l for 135-160 mm size-group (Table 4).

Percentage of survivability in folic acid: The survivability rate of *C. punctatus* was more than that of *A. testudineus*. The survivability was found as 88 and 90% at 0.5 mg/l of folic acid for the size-groups 95-110 and 111-120 mm (Table 5). In case of *A. testudineus* percentage for survivability was noted in fishes of 95-110 mm as 60-68% at 0.5 and 0.075 mg/l of folic acid; and 100% fish were survived in the largest size-group in 0.25 and 0.05mg/l (Table 5).

 Table 4. Effect of clove oil on survivability and tolerance period in different size groups of *C. punctatus* and *A. testudineus*

	Avera	age Survivabili	ty (%)	Average	Tolerance per	iod (h)	
Doses (ml/l)	Size Groups (mm)			Size Groups (mm)			
	95-110	111-120	135-160	95-110	111-120	135-160	
C. punctatus							
0.025	100	100	100	>72	>72	>72	
0.05	100	100	100	>72	>72	>72	
0.075	96.10	98.00	100	62.15	65.25	>72	
0.1	80.50	98.00	68.00	60.40	65	70	
0.5	68.00	90.00	58.00	58	65	49	
A. testudineu	s						
0.025	40.00	68.00	66.50	39	48.50	52.30	
0.05	32.50	68.00	68.00	39	42.20	52	
0.075	20.00	45.00	38.30	32.15	40	51	
0.1	15.10	38.00	12.15	31	38	39.50	
0.5	00	00	10.50	8.30	18	29	

Tolerance time in folic acid: The smaller sized *C. punctatus* found to tolerate folic acid treatment only for 3h (0.1 and 0.5 mg/l) and 8h (0.075 mg/l), otherwise the larger fishes tolerated the treatment from 67.40h (0.5 mg/l) to >72h (Table 5). The 95-110 mm sized *A. testudineus* tolerated the treatment for 50-60h at 0.5-0.075 mg/l doses. The larger fishes tolerated all doses of folic acid from 70.35 - >72h (Table 5).

Experiment II: Physiological stress

The experimental compounds produced stress effects on the fish, which were indicated excess mucous secretion, sluggish or rapid movements, respiratory stress, unbalanced movement of fish, discoloured gills, etc. The dose and the time of attaining stress characters in the fish are mentioned in Tables 6-10. Stress started soon after treatment in smaller size-group of both species, and *A. testudineus* was found to be more susceptible than *C, punctatus*.

Among the five compounds used in the present experiments all four except the folic acid are used in different steps of pisciculture, handling and transportation of fry and brood fish. As analgesic and anaesthetic clove oil, formalin and table salt are widely used in different countries including Bangladesh.

Table 5. Effect of folic acid on survivability and tolerance period in different size groups of *C. punctatus* and *A. testudineus*

	Avera	Average Survivability (%)			Tolerance p	eriod (h)	
Doses (mg/l)	Size Groups (mm)			Siz	Size Groups (mm)		
	95-110	111-120	135-160	95-110	111-120	135-160	
C. punctatus							
0.025	100	100	100	>72	>72	>72	
0.05	100	100	100	>72	>72	>72	
0.075	99.00	100	100	8	>72	>72	
0.1	100	100	100	3	>72	>72	
0.5	88.00	95.00	100	3	67.40	>72	
A. testudineus							
0.025	100	100	100	>72	>72	>72	
0.05	100	100	100	>72	>72	>72	
0.075	68.00	100	100	60	>72	>72	
0.1	67.00	95.00	99.00	52	70.50	71	
0.5	60.00	92.00	99.00	50	70.35	71	

Previous works with clove oil, formalin and table salt against *A. testudineus* and *C. punctatus* and some other species, proved these compounds are good anaesthetics fish species (Alam *et al.*, 2012; Ahsan *et al.*, 2014 and Parween *et al.*, 2015). However, the time that the fish species could tolerate these chemicals were not mentioned in those studies. The smaller sizes fish of both the species failed to tolerate the treatments as the larger sized fish could. Moreover, the fishes survived treatments when kept in fresh water and provided with oxygen they recovered soon within 4-6 hours. Which revealed that except folic acid the other

compounds are good anaesthetic to fish. To reduce mortality rate (Murai et al., 1979) and physiological stress in transporting fish (Davis & Griffin, 2004; Chen et al., 2004; Morales et al., 2005), mild sedation were suggested by Radull et al. (2002), Koeypudsa & Jongiareaniai (2011); Wurts (1995) and Davis & Griffin (2004) prescribed the food grade salts as sedatives in the mentioned cases. Wurts (1995) reported that traditionally 0.5 -2.0g/l sodium chloride is used in fish transpotating water to minimize dehydration. The author also mentioned that agricultural gypsum (calcium sulfate) at a rate of 125-250 mg/l is also used in these cases.

C. punctatus					A. testudineus			
Doses (g/l)	Size Groups (mm)	Stress characters	Time after exposure (hr)	Doses (g/l)	Size Groups (mm)	Stress characters	Time after exposure (hr)	
	95-110	Excess mucous	24		90-100			
5	111-120	Excess mucous with sluggish movement	40	10	101-110	Normal with slow movement	>50	
	135-160	Normal	>72		120-130			
	95-110	Stressed	30		90-100	Normal with rapid movement		
10	111-120	Excess mucous, rapid movement	12	20	101-110	Normal but	>50	
	135-160	Normal	>72		120-130	siuggisn		
	95-110	Died in stressed condition	8		90-100	Excess mucous	>32	
15	111-120	Excess mucous, stressed	25-28	30	101-110	with rapid	27 40	
	135-160	Excess mucous, stressed	30		120-130	movement	37-40	
	95-110	Died in stressed condition	3		90-100	Stressed	12	
20	111-120	Excess mucous, stressed	1	40	101-110	Sluggish	27 40	
	135-160	Excess mucous, stressed	4		120-130	movement	37-40	
	95-110	Died in stressed condition	3		90-100	Died in stressed condition	65	
30	111-120	Excess mucous, stressed	1	50	101-110	Stressed +	12	
	135-160	Excess mucous, stressed	4		120-130	unbalanced	40-50	

Table 6. Stress characters observed in *C. punctatus* and *A. testudineus* in table salt treatment, exposed for 72 hrs.

Overdosing of a sedative compound or retaining fish too long in the treatment leads to the fading of ventilation, hypoxia and finally respiratorycardiaccollapse (Tytler & Hawkins, 1981). Again, the optimum dose of such compounds especially salts vary with the intrinsic factors of fish i.e., species, size and weight of fish (Newman & Aplin, 1992; Koeypudsa & Jongjareanjai, 2011; Ahsan et al., 2015) and extrinsic factor like water temperature (Wurts, 1995). So, selection of suitable doses of the chemicals is a very vital point. Before using any additive, analgesic or anaesthetic, screening should be done against the fish that would be treated. Both tolerance time and recovery rate against the treatment should be monitored.

Conclusion: Except clove oil other chemicals used in the study produced little stress at low doses and against the larger size groups of the fish species. Among the two species *A. testudineus* was found to be comparatively susceptible to the chemicals. According to Dabrowski *et al.* (2004) addition of ascorbic acid with supplement food reduced vitamin deficiency in culturing ponds. From the present study it can be suggested that folic acid can also be used as supplement with the food to develop strong immune system of the fish especially in the nursery ponds and where stocking density is high.

Table 7.	Stress characters observed in C. punctatus and A. testudineus due to urea treatment, exp	osed
	for 72 hrs.	

C. punctatus					A. testudineus			
Doses (g/l)	Size Groups (mm)	Stress characters	Time after exposure (hr)	Doses (g/l)	Size Groups (mm)	Stress characters	Time after exposure (hr)	
5	95-110	Normal, slight increase of mucous	48	10	90-100	Normal	>70	
5	111-120	Normal	>72	10	101-110		~12	
	135-160	Normai	~12		120-130			
	95-110	Slightly stressed	37		90-100	Normal		
10	111-120	Normal with mucous	>70	20	101-110		>72	
	135-160	secretion	>12		120-130			
15	95-110	Slightly stressed	32-35	20	90-100	Slight increase of mucous	>50	
15	111-120	Normal with increased	>50	30	101-110	Normal	>72	
	135-160	mucous secretion	>50		120-130		~12	
	95-110		12		90-100	Fully stressed	48	
20	111-120	Stressed	28	40	101-110	Stressed	<u> </u>	
	135-160		36		120-130	55-57		
	95-110	Stressed and unbalanced	12		90-100	Fully stressed	>25	
30	111-120	Fully strossed	30-36	50	101-110	Stressed	>30	
	135-160	Fully Suessed			120-130		~30	

Table 8. Stress characters observed in *C. punctatus* and *A. testudineus* due to formalin treatment, exposed for 72 hrs.

		C. punctatus	A. testudineus			
Doses (ml/l)	Size Groups (mm)	Stress characters	Time after exposure (hr)	Size Groups (mm)	Stress characters	Time after exposure (hr)
0.025	95-110	Respiratory stress with excess mucous	>2	90-100	Normal	>7 2
0.025	111-1520	Stressed movement	>35	101-110	Normai	>12
	135-160	Stress level increased	>40	120-130		
	95-110	Respiratory stress with excess mucous	2-3	90-100	Slightly stressed	36
0.05	111-1520	Stressed movement	32-34	101-110	Normal with	>50
	135-160	Stress level increased	>35	120-130	mucous secretion	>60
	95-110		10	90-100	Clightly	18
0.075	111-1520	Stressed and sluggish	20	101-110	Signuy	40-42
	135-160		20	120-130	Silesseu	>55
	95-110		7-8	90-100	Slightly	>15
0.1	111-1520	Fully stressed	14	101-110	strossod	>40
	135-160		17	120-130	Silesseu	40-41
	95-110		0.30	90-100	Stressed and unbalanced	12-14
0.5	111-1520	Stressed and unbalanced	4	101-110	Stressed with rapid movement	35-52
	135-160		4-5	120-130	Slow and sluggish	35-38

		C. punctatus			A. testudineus			
Doses (ml/l)	Size Groups (mm)	Stress characters	Time after exposure (hr)	Size Groups (mm)	Stress characters	Time after exposure (hr)		
	95-110		40	90-100	Despiratory	4		
0.025	111-1520	Slight respiratory stress	60	101-110	Respiratory	>6		
	135-160		>62	120-130	511655	10-11		
	95-110	Beeniretery stress with	38	90-100	Clightly	38		
0.05	111-1520		>48	101-110	Slightly	>48		
	135-160	excess mucous	48	120-130	Silesseu	48		
	95-110	Boopiratory strong and	20 - >24	90-100	Slightly	8-12		
0.075	111-1520		<24	101-110		>10		
	135-160	unbalanceu	10-30	120-130	Silesseu	45-50		
	95-110	Fully stressed	>2	90-100	Stressed, gills discoloured	>4		
0.1	111-1520		14	101-110	Fully stressed	10-12		
	135-160	Stressed and sluggish	15-16	120-130	Became sluggish	24		
0.5	95-110	Stressed, gills discoloured, excessive mucous	17-18	90-100		3-4		
	111-1520	Fully stressed	1-2	101-110	Stressed	>10		
	135-160		>4	120-130		10		

Table 9. Stress characters observed in *C. punctatus* and *A. testudineus* due to clove oil treatment, exposed for 72 hrs.

Table 10. Stress characters observed in *C. punctatus* and *A. testudineus* due to folic acid treatment, exposed for 72 hrs.

		C. punctatus		A. testudineus			
Doses (mg/l)	Size Groups (mm)	Stress characters	Time after exposure (hr)	Size Groups (mm)	Stress characters	Time after exposure (hr)	
	95-110			90-100	Slightly stressed	>60	
1	111-1520	Normal	>72	101-110	Normal	>72	
	135-160			120-130	Normai	~12	
2	95-110	Normal	>70	90-100	Slightly stressed with quick movement	55-57	
2	111-1520	Normai	>12	101-110	Clightly stressed	>55	
	135-160			120-130	Slightly stressed	>62	
	95-110	Slight uneasiness	>62	90-100	Stressed	45	
3	111-1520	Normal	>70	101-110	Streeged and aluggish	50-52	
	135-160	Normai	>12	120-130	Stressed and sluggish	>60	
4	95-110	Uneasiness with slight mucous	62-65	90-100	Stressed,	>48	
4	111-1520	Normal	>72	101-110	Stropped and aluggish	50-52	
	135-160	Normai	~12	120-130	Stressed and sluggish	>60	
	95-110	Slightly stressed	>52	90-100		30	
5	111-1520	Normal but with mucous	>68	101-110	Stressed and unbalanced	28-29	
	135-160	Normal	>72	120-130		>48	

References

- Ahsan, M.K., Alam, M.M. & Parween, S. 2014. Anaesthetic effect of formalin and changes in morphological characters in *Anabas testudineus* (Bloch) and *Channa punctatus* (Bloch). *Univ. j. zool. Rajshahi univ.* **33:**41-47.
- Alam, M.M, Ahsan, M.K. & Parween, S. 2012. Efficacy of clove oil as fish anaesthetic against four freshwater hardy fishes. DAV Int. J. Sci. 1(1): 58-61.
- Berka, R. 1986. The transport of live fish: A review.EIFAC Technical Paper 48. Food and Agriculturw Organization. UNO, Rome, 51p.
- Burgdrof-Moisuk, A., Mitchell, M.A. & Watson, M. 2011. Clinical and physiologic effects of sodium chloride baths in Gold fisk (*Carassius auratus*). *J. Zoo & Wildlife Medicine* **42**(4): 586-592.
- Chen, C., Wooster, G. A. & Bowser, P. R. 2004. Comparative blood chemistry and histopathology of tilapia infected with *Vibro vulnificus* or *Streptococcus iniae* or exposed to carbon tetrachloride, gentamicin or copper sulfate. *Aquacult.* **239**: 421-443.
- Chinabut, S., Limsuwan, C., Tonguthai, K. & Pungkachonboon, T. 1988. Toxic and sublethal effects of formalin on freshwater fish. FAO-NACA/WP/88/73.
- Dabrowski, K., Lee, K., Guz, L., Verlhoc, V. & Gabandan, J. 2004. Effects of dietary ascorbic acid on oxygen stress (hypoxia or hyperoxia) growth and tissue vitamin concentrations in juvenile rainbow trout (*Onchorhynchus mykiss*). *Aquacult.* **233**: 383-392.
- Davis, K.B. & Griffin, B.R. 2004. Physiological responses of hybrid striped bass under sedation by several anaesthetics. *Aquacult.* **233**: 531-548.
- Francis-Floyd, R. 1996. Use of formalin to control fish parasites. Co-operative Extension Service, Institute of food and Agriculture Sciences, University of Florida, VM series, 77, April 1996, pp.1-3.
- Kajun K. & Siwicki, A.K. 2001. Propiscin-a safe new anaesthetic for fish. Archives of Polish Fisheries 9:183-190.

- Koeypudsa, W. & Jongjareanjai, M. 2011. Impact of water temperature and sodium chloride (NaCl) on stress indicators of hybrid catfish (*Clarias* gariepinus Burchell X C. macrocephalus Gunther). Songklanakarin J. Sci. Technol. 33(4): 369-378.
- Morales, A. E., Cardenete, G., Abellan, E. & Garcia-Rejon, L. 2005. Stress-related physiological responses to handling in commom dentex (*Dentex dentex* Linnaeus, 1758). *Aquacult. Res.* 36: 33-40.
- Murai, T., James, W.A. & James, W. M. 1979. Fingerling American Shad: Effect of Valium, MS-222 and Sodium Chloride on handling mortality. *The Progres. Fish Culturists* **41**(1): 27-29.
- Newman, M. C. & Aplin, M.S. 1992. Enhancing toxicity data interpretation and prediction of ecological risk with survival time modeling: an illustration using sodium-toxicity to mosquitofish (*Gambusia holbrooki*). Aquat. Toxicol. 23(2): 85-96.
- Parween S., Ahsan, M.K. & Alam, M.M. 2015. Anaesthetic effect of table salt on two live fishes *Anabas testudineus* and *Channa punctatus*. *Jahangirnagar Univ. J. Biol.Sci.* **4**(1):41-49.
- Peake, S. 1998. Sodium bicarbonate and clove oil as potential anaesthetics of non-salmonid fishes. North American J. Fisher. Manage. 18: 919-924.
- Radull, J., Kaiser, H. & Hecht, T. 2002. Stressrelated changes in the metabolic rate of juvenile spotted grunter, *Pomadasys commersonnii* (Haemulidae, Pisces). *Marine and Freshwater Res.* 53: 465-469.
- Summerfelt, R.C. & Smith, L.C. 1990. Anaesthesia, surgery and related techniques. In: *Methods for Fishing Biology* (C.B.Schreck and P.B. Moyle eds.), American Fisheries Society, Bethesda, MD, USA.
- Swann, L. & Fitzgerald, S. 1992. Use and application of salt in aquaculture. Aquaculture extension fact sheet AS-458, Illinois-Indiana Sea Grant Program, 2pp.

- Tytler, P. & Hawkins, A.D. 1981. Vivisection, anaesthetics and minor surgery. In: *Aquarium Systems* (A.D. Hawkins ed.), Academic Press, New York, USA.
- Wagner, G.N., Singer, T.D. & McKinley, S.R. 2003. The ability of clove oil and MS-222 to minimizing stress in rainbow trout (*Onchorhynchus mykiss* Walbaum). *Aquacult.* Res. **34:** 1139-1146.
- Woody, C.A., Nelson, J. & Ramstad, K. 2002. Clove oil as an anaesthetic for adult sockey salmon: Field trials. *J. Fish Biol.* **60**: 340-347.
- Wurts, W.A. 1995. Using salt to reduce handling stress in channel catfish. World Aquacult. 26(3): 80-81.

Manuscript accepted on 25.09.16