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Abstract

In this paper, fifteen estimators of correlation coefficient available in the
literature have been compared through simulation. We have considered
simulating sampling distribution at bivariate standard normal and its five
contaminated forms with three different correlation coefficients and three
different sample sizes. We also have considered a real population of size
1491.The estimators have been compared with regard to bias, standard er-
ror, mean square error and length of 90% percentile interval. The class of
robust estimators, especially the normal score estimator has been found su-
perior to the class of non-robust estimators over all. To measure correlation
coefficient we have recommend using for normal score estimator especially
when sample is large and contamination is probable.
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1 Introduction

Francis Galton (1822-1911), an English anthropologist and eugenist, is generally re-
garded as the founder of correlation analysis. On February 9, 1877, Galton presented
a lecture at the Royal Institution of Great Britain entitled “Typical Laws of Heredity
in Man” which introduced the concepts of regression (termed “reversion”) and cor-
relation. Galton’s work greatly influenced the career of Karl Pearson (1857-1936),
who systematized the application of correlation and developed present day version
of product moment correlation coefficient r in 1896. The first published work on
rank correlation appeared in 1904 in a psychological study of intelligence by Charles
E. Spreaman (1863-1945). Gini (1914) developed modified footrule correlation from
Spearman correlation coefficient. The next rank correlation was discover by Kendall
(1938). During fifties and sixties of the last century attention was drawn to the fact
that inference procedures based on the use of the product-moment correlation r are
heavily dependent on the assumption of bivariate normality and very much sensitive to
outliers. Various researchers ( Blomqvist, 1950; Sheppard, 1899; Kendall, 1970; Fieller
and Pearson, 1961; Fisher and Yates, 1963; Gnanadesikan and Kettenring, 1972 etc.)
proposed different robust estimators and developed various techniques to assess effect
of outliers on them. Basing on the principle of maximum deviations Gideon et al.
(1987) developed a new rank correlation coefficient resistant to outliers. Rodgers and
Nicewander(1988) provided thirteen ways to look at the product moment correlation
coefficient. Gideon (1998) forwarded a generalized interpretation of Pearson’s r, which
is important as well as different from those found in Rodgers and Nicewander (1988)
as well as formulated three new estimators of correlation coefficient. All these fif-
teen estimators have been yet to be compared simultaneously. In this article we have
considered all the fifteen estimators of correlation coefficient and used Monte Carlo
simulation to compare them.

Section 2 describes our methods and models that are very much similar to those in
Devlin et al. (1975). Section 3 presents all fifteen estimators of correlation coefficient
briefly. Section 4 discuses the results of our study and conclusion is in the last section
5.

2 Methodology and Materials

In this work we have mainly used Monte Carlo simulation. We simulate sampling
distribution at bivariate standard normal and its five contaminated forms with three
different correlation coefficients (0, 0.5, and 0.9) and three different sample sizes (10, 20,
and 50), and a real population of size 1491. The estimators have been compared with
regard to bias, standard error, MSE and length of 90% percentile interval. The ‘null’
model is the bivariate normal and there are five ‘non null’ bivariate distributions to
represent the situation with outliers: Laplace; contaminated normal; Cauchy; Slash
and artificial outlier in minor axis. We have generated 10000 samples in each case
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and calculated values of each estimators for each sample. Hence altogether we have
simulated total 550000 samples. Devlin et al. (1975) considered only 500 values for
each situation and did not use Slash model that is more diverse than Cauchy. Our
target population are as follows:

(a) Standard Bivariate Normal, F=BVSN(0, Γ), Γ is a bivariate correlation matrix
with off-diagonal element ρ (0, 0.5 and 0.9).

(b) The distribution with contaminated normal, 0.9 N(0, Γ) + 0.1N(0, 9Γ).

(c) The distribution with outliers along the minor axes.

(d) The distribution with 90% bivariate normal and 10% bivariate Cauchy.

(e) The distribution with 90% bivariate normal and 10% bivariate Laplace.

(f) The distribution with 50% bivariate normal and 50% bivariate Slash.

We have also considered a real set of health data of 1491 Japanese adult male students
from various districts of Japan as population. Four head measurements - head length,
head breadth, head height and head circumference were taken by one observer collected
by Fumio Ohtsuki[see Hossain et al. (2005)]. We have considered two variables head
length and head circumference which possess correlation coefficient 0.7052.

3 Estimators of Correlation Coefficient

3.1 Definition of Pearson correlation coefficient

Correlation methods for determining the strength of the linear relationship between
two of more variables are among the most widely applied statistical techniques. Theo-
retically, the concept of correlation has been a starting point of a building block in the
development of a number of areas of statistical research. For discussions of correlation
in situations involving more than two variables, the reader should consult the articles
on general topics, such as canonical analysis, factor analysis, path analysis, and time
series analysis. The correlation between variables X and Y is defined as

ρ = corr(XY ) =
Cov(X, Y )

[var(X)var(Y )]1/2
(1)

where

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]



64 International Journal of Statistical Sciences, Vol. 8, 2008

and for a pair of sample (x1, y1), (x2, y2), . . . (xn, yn), the sample correlation is given
by

r1 =
1
n

∑n
i=1(xi − x̄)(yi − ȳ)

sxsy
(2)

where

x̄ =
∑n

i=1 xi

n
; ȳ =

∑n
i=1 yi

n

and

sx =

√∑n
i=1(xi − x̄)2

n− 1
; sy =

√∑n
i=1(yi − ȳ)2

n− 1

3.2 Definition of other estimators of correlation coefficient

We have considered fifteen estimators of correlation coefficients available in the liter-
ature. Among them four (i-iv) estimators of correlation coefficient (CC) use original
data directly, four (v-viii) take account of rank value of original data and the rest are
robust estimators according to Devlin et al. (1975).

i) The Pearson correlation coefficient, r1 (Pearson, 1896);

ii) An absolute value CC, r2 (Gideon, 1998);

iii) An absolute vale from median CC, r3 (Gideon, 1998);

iv) A median-type CC, r4 (Gideon, 1998);

v) Spearman’s CC, r5 (Spearman, 1904);

vi) Spearman’s Modified Footrule CC, r6 (Gini, 1914);

vii) Kendall’s CC, r7 ( Kandall, 1938 );

viii) The Greatest Deviation CC, r8 ( Gideon et at. 1987);

ix) The quadrant Estimate CC estimate, r9 ( Blomqvist, 1950; Sheppard, 1899);

x) A transformation of Kendall’s CC estimate, r10 ( Kendall, 1970 );

xi) The Normal Scores CC estimate, r11 ( Fielier et al. 1957; Fielier and Pearson,
1961);

xii) The Sum and differences of the standardized observed values CC estimate, r12

(Gnanadesikan and Kettenring, 1972);
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xiii) A Bivariate trimming CC estimate, r13 ( Gnanadesika and Kettenring, 1972);

xiv) A Bivariate Winsorizing CC estimate, r14 (Devlin et al. 1975);

xv) A CC estimate by trimming with respect to the principal components,
r15 ( Devlin et al. 1975);

The Pearson CC and rank corelation estimators are well known. Gideon (1998) for-
warded the other three estimators of CC using original data but he did not compare
them with their competitors. The robust estimators were already discussed in the
work of Devlin et al. (1975). Here we have briefly defined robust estimators r11, r12,
r13, r14, and r15 of CC as we have adopted their definitions with slight change. We
have also discussed newly proposed Gideon’s three estimators mentioned earlier.

Definition 1. The Normal Scores CC estimate, r11. Suppose that there are n pairs
of associated ranking i = u1, u2, . . . un and pi = vi, v2 . . . vn where the integers ui(i =
1, 2, . . . , n) may be taken in ascending order 1, 2, 3, . . . , n and v′is are a permutation of
these integers.

Let ξ(i|n) be a so-called normal order statistic i.e. the expected value of the ith
largest standardized deviates in a sample of n observations from a normal population.
Following suggestions by Fisher and Yates (1938), Fieller et al. (1957) forwarded a
measure of rank correlation obtained from the product moment correlation coefficient
of these scores namely.

r11 =
n∑

i=1

ξ(i|n)ξ(vi|n)
/ n∑

i=1

ξ2(i|n) (3)

Convenient tables of the individual ξ(i|n) as well as of
∑

i ξ
2(i|n) are given, for exam-

ple, in Fisher and Yates (1938, Tables XX and XXI). The tables need to be extended
for large n’s.

Definition 2. The sum and differences of the standardized observed values CC esti-
mate, r12.

Let (xi, yi), i = 1, 2, . . . , n be the bivariate data set. Suppose that there are ro-
bust estimator (median ) mx and my of x and y variable respectively. Also we have
median absolute deviation(MAD), MADx = median|xi −median(x)| and MADy =
median|yi − median(y)| as the robust estimators of scale for variables X and Y re-
spectively. Let us consider the robust standardization of the observations x and y
to

x̃i = xi−mx
MADx
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ỹi = yi−mx

MADy

Then the sum and difference are obtained as

zi1 = x̃i + ỹi

zi2 = x̃i − ỹi

Now we have to calculate robust variance estimates, MADz1 and MADz1 of z1 and
z2. By using of this robust variance estimates we obtained

r12 =
MADz1 −MADz2

MADz1 + MADz2

(4)

In practice, MAD generally involves a multiplicatives factors for making it a consis-
tent estimator of the variance in question.The factor is typically a function of both
the presumed distribution of the data and the nature of MAD.

Definition 3. A bivariate trimmed CC estimate, r13.

The steps for computing Bivariate trimming CC estimate are as follow:

we

Step 1 start with an initial robust estimate of mean vector and covariance vector. Let

us consider an initial robust estimate of the mean vector m∗ =
[

mx

my

]

and covariance matrix,V ∗ =
[

MADx MADxy

MADyx MADy

]

Step 2 then use elliptical metric (the square Mahalanobis distance) which is defined as
d2

i = (xi − m∗)′V ∗−1(xi − m∗). and temporarily set aside the [αn] points as
bivariate trimmed.

Step 3 update m∗ and V ∗ by replacing current values with the sample mean and co-
variance matrix of the untrimmed points.

Step 4 repeat step (2) and (3) until reasonable convergence is achieved.

Step 5 at last define a bivariate trimmed CC estimate as

r13 = v∗xy(v
∗
xv∗y)

− 1
2 (5)

using the elements of V ∗.
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Definition 4. A bivariate winsorized CC estimate, r14.

The difference is that the orientation information in the [αn] most extreme points
is preserved and exploited by moving them towards the current m∗ until thir distances
are equal to that for the most distant unadjusted point. The adjusted and unadjusted
points are then all used to form an updated m∗and V ∗.

r14 = v∗xy(v
∗
xv∗y)

− 1
2 (6)

using the elements of V ∗.

Definition 5. A CC estimate by trimming with respect to the principal components,
r15.

The beginning point in deducing internal structure by principal components is
the set of n p-dimensional observations, the columns of p × n matrix X, which are
considered for purposes of the analysis as an unstructured multivariate sample. The
usual sample co-variance matrix S or correlation matrix R may then be computed. In
the case of S,the linear principal components transformation of the data is given by

Z = L(X − X̄) (7)

where the p rows of the orthogonal matrix L are eigenvectors of S customarily chosen
to correspond to its eigenvalues in descending order of magnitude, and X̄ is a p × n
matrix all of whose columns are sample mean vector x̄. Each row, l′i(i = 1, 2, . . . , p)
of L provides a principal component coordinate and each row of z gives the deviations
of the projections of the original sample from the projection of the sample centroid x̄
onto a specific principal components coordinate.

Thus, for instance, with p=2 we can compute a CC estimate by trimming with
respect to the principal components r15. The steps are as follows:

Step 1 at first estimate sample covariance matrix form the original data, S∗ =
[

s11 s12

s21 s22

]

Step 2 then find a matrix of eigenvector of S and arrange in descending order of mag-

nitude, L∗ =
[

l11 l12

l21 l22

]

Step 3 calculate principal components as (7)

Step 4 at last compute univariate trimmed data corresponding to each PC. Hence find
revised covariance matrix, V ∗ from original untrimmed data corresponding to
trimmed data Z and we get

r15 = v∗12(v
∗
11v

∗
22)

− 1
2 (8)
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Definition 6. An absolute value CC, r2.

Let us consider (x∗i , y
∗
i ), i = 1, 2, . . . , n be the n pair of observations deviation from

their mean i.e x∗i = xi − x̄ and y∗i = yi − ȳ.The sum of absolute values about the
mean is denoted by SAx =

∑ |xi − x̄| and SAy =
∑ |yi − ȳ| for x and y variables

respectively.Thus the absolute value CC is defined as

r2 =
{∑

(
x∗i

SAx
+

y∗i
SAy

)2

−
∑

(
x∗i

SAx
− y∗i

SAy
)2

}/
2

(9)

where the denominator is 2 because
∑∣∣∣∣

x∗i
SAx

∣∣∣∣+
∑∣∣∣∣

y∗i
SAy

∣∣∣∣ = 2. It is noticeable that that

the same heuristic motivation for Pearson’s r holds for absolute value CC, r2.

Definition 7. An absolute value from median CC, r3.

Because the median is the value of “a” that minimizes
∑ |xi − a|, r2 in equation

(9) could be modified as follows to give another correlation coefficient.

r3 =
1
2

(∑∣∣∣∣
xi −mx

SAMx
+

yi −my

SAMy

∣∣∣∣

−
∑∣∣∣∣

xi −mx

SAMx
+

yi −my

SAMy

∣∣∣∣
)

(10)

where mx,my are sample medians, and SAMx =
∑ |xi −mx|, SAMy =

∑ |yi −my|.
Unlike r2 this correlation, r3 has not been to be bounded between -1 and +1.

Definition 8. A median-type CC, r4.

A median-type correlation coefficient is defined as

r4 =
1
2
(med|xi −med(x)

MADx
+

yi −med(y)
MADy

|

− med|xi −med(x)
MADx

− yi −med(y)
MADy

|) (11)

It is evidently not true that |r4| ≤ 1,let x∗i = xi−med(x)
MADx

and similarly for y∗i . Now
med|x∗i | = med|y ∗i | = 1. The proof that |r4| ≤ 1, breaks down because the median
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of the sum of two sets of nonnegative numbers is not always less than the sum of the
medians. Simulation studies of rmad show it to behave very much like other correlation
coefficients even with the anomaly of being greater than one.

3.3 Computation of all estimators of CC

In this subsection we have drawn a sample of size 10 (Table 1) from the real population
and have contaminated each with one outlier and calculated all estimator of correlation
coefficient. Using data in Table 1 we have Pearson Correlation Coefficient, r1 =
+0.7738. We have replaced x10th observation by 1850. Hence we have compared
different estimators by using data in Table 1. These results are given in Table 2 for
original data (OD)and contaminated data (CD).

Table 1: Generated data of real population

Head length(x) 184 177 182 175 175 174 185 174 181 185
Head cumference(y) 55.2 54.6 54.2 55.0 54.2 53.4 56.9 54.2 55.1 56.2

Table 2: Calculation result of original and contaminant data

Nonrobust r1 r2 r3 r4 r5 r6 r7 r8

OD 0.7738 0.6026 0.5769 0.5556 0.2606 0.20000 0.1556 0.0
CD 0.4465 0.3001 0.1921 0.500 0.2606 0.20000 0.1556 0.0

Robust r9 r10 r11 r12 r13 r14 r15

OD 0.809 0.2419 0.613 0.3659 0.7224 0.6369 0.8435
CD 0.8090 0.2419 0.6130 0.3176 0.7197 0.7806 0.5695

4 Results

In this section we have considered simulation results of three different sample sizes
(10, 20, and 50) with three values of ρ (0, 0.5 and 0.9). At first we have regarded
all model individually. IndividuaI results are not given in the table for the sake of
space but major findings are reported below. In order to show the result simply we
have divided all model into two categories (‘null’ and ‘nonnull’ models). The ‘null’
sampling distribution is the bivariate normal and there are five ‘nonnull’ bivariate
distributions to represent the situation with outliers: contaminated normal, artificial
outlier in minor axis, Cauchy, Laplace, and Slash. To construct simple comparison for
‘nonnull’ models, we have caculated averages of bias, standard error and mean square
error of five models for each situation. The results have been represented in different
tables and boxplots. We have repeated the same work with real world population.
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4.1 Summary of results

Summary of results is as follows:

• Table 3 presents the name of the estimators that give the minimum value of dif-
ferent criteria described below the table. We see that the estimators r11, r13, and
r15 have given 53 times, 24 times, and 18 times the minimum value respectively.
On other hand, only 12 times the estimator r1 has given the minimum value.
That is, most of the situation the robust estimators have given the minimum
value.

• In terms of standard error the performances of nonrobust estimators are very
poor. The nonrobust estimator r1 has given the minimum standard error only
6 times (null cases) out of 54 times (6 models, 3 correlation coefficient, ρ and 3
sizes) but the robust estimators r11, r15 and r13, have given 42, 5 and 1 times the
minimum standard error respectively. For simplication when we consider ‘null‘
and ‘nonnull’ model, we see that the estimator r11 has given 14 times out of 18
the minimum standard error where as r1 offers us the minimum value only one
time.With respect to other criteria related to standard error such as minimum
of maximum of standard error, minimum of minimum of standard error etc the
robust estimators, r11 has shown the best performance. In every respect of
standard error, which we consider, undoubtedly r11 is the winner.

• We see that robust estimators has given the smallest bias 38 times out of
54. More over, only the estimator r13 has given 27 times minimum bias but
r1 only 10 times, and r11 3 times. When we look into the Table no 3, we find
that with respect to different criteria related to bias r13 is undoubtedly the
best performer for nonnull models, r11 is better than r1, but for null models r1

is the best. If we consider bias and standard error jointly we find r11 as the
champion estimaotr.The normal score estimator, r11 have given alone 29 times
the minimum mean square error out of 54 times and the robust estimators, in
total, 45 times. On the other hand, Pearson estimator has given only 3 times
the minimum mean square error. When we examine the aggregate performances,
we see that the estimator r1 has given three times minimum MSE, all for null
model. On the contrary, the robust estimators r11 have given, in total, 9 times
the minimum MSE, 7 times for ‘nonnull’ models.

• We have seen that robust estimators have given 48 times out of 54 the minimum
length of 90% percentile interval and the norobust estimator r1 has given only
6 times the minimum length. Only the estimator, r11 has given 39 times the
minimum length of 90% percentile interval and the estimator, r15 9 times. From
Table 3 we find that out of 18 times, 11 times r11 has performed best and r15

for the rest of the cases.
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• We have taken random sample of size 10, 20 and 50 from the Japanese data.
the Table 4 offers us bias, standard error and MSE of each of the estimators for
each sample. We have observed that the robust estimators have given minimum
values 7 times out of 9 times. The estimator, r11 has given the minimum value
of standard error all times (3), the minimum value of MSE for two times out of
three and the rest has been provided by r1. We can infer that r11 has become
the winner for the set of real data also.

 

Figure 1: Boxplot of all estimates for simulation bias and standard error

The Fig 1(a) and 1(b) present the variation of bias in ‘null’ and ‘nonnull’ models and
the Fig 1(c) and 1(d), the variation of standard error of different estimators. We see
that the variation of robust estimator is, in general, smaller than that of nonrobust
estimators. In case of standard the normal score estimator has given the minimum
value in both ‘null’ and ‘nonnull’ models.
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Table 3: Estimate with minimum bias, standard error, and length ( w.r.t different
criteria) for different models

ρ = 0 ρ = .5 ρ = .9
Criteria n 10 20 50 10 20 50 10 20 50
Min(Bi) r2 r3 r7 r15 r1 r1 r15 r1 r12

Min(Ba) r13 r4 r13 r13 r13 r13 r11 r13 r15

Min(Bm) r13 r4 r13 r11 r13 r14 r13 r13 r13

Min(Bmi) r14 r6 r1 r13 r13 r9 r13 r13 r13

Min(IMVB) r13 r11 r13 r11 r13 r14 r13 r13 r13

Min(Sei) r11 r11 r11 r11 r11 r11 r11 r1 r15

Min(Sea) r11 r11 r11 r11 r11 r11 r11 r15 r15

Min(Sem) r11 r1 r1 r11 r11 r11 r11 r15 r15

Min(Semi) r11 r11 r11 r11 r11 r11 r11 r1 r1

Min(IMVS) r11 r4 r4 r11 r9 r13 r11 r4 r15

Min(MSEi) r7 r7 r7 r11 r10 r1 r1 r11 r1

Min(MSEa) r11 r11 r11 r11 r11 r11 r11 r15 r15

Min(Li) r15 r11 r11 r11 r15 r11 r15 r15 r15

Min(La) r11 r11 r11 r11 r11 r11 r11 r15 r15

(Bi=Bias of ideal model, Ba=Bias averaged over contaminated model, Bm = Bias maximum over contami-

nated model, Bmi = Bias minimum over contaminated model, IMVB = Inter Model Variation of Bias over

contaminated model, Sei= Standard error of ideal model, Sea= Standard error of averaged over contaminated

model, Sem = Standard error maximum over contaminated model, Semi = Standard error minimum over con-

taminated model, IMVS = Inter Model Variation of Standard error over contaminated model,MSEi = Means

square error of ideal model, MSEa = Means square error of averaged over contaminated model, Li = Length

of ideal model, La = Length of averaged over contaminated model).

Table 4: Bias, standard error and mean square error using real data ( ρ = .7052)

Bias S.E M.S.E
Estimates n=10 n=20 n=50 n=10 n=20 n=50 n=10 n=20 n=50
r1 0.0136 0.0037 0.0028 0.1899 0.1273 0.0788 0.0362 0.0162 0.0062
r2 0.1669 0.1616 0.1622 0.1768 0.1183 0.0735 0.0591 0.0401 0.0317
r3 0.1857 0.1716 0.1667 0.1743 0.1179 0.0734 0.0649 0.0433 0.0332
r4 0.2355 0.2064 0.1786 0.3021 0.2085 0.1321 0.1467 0.0861 0.0493
r5 0.6720 0.6789 0.6789 0.3314 0.2275 0.1428 0.5613 0.5126 0.4813
r6 0.6793 0.6845 0.6840 0.2741 0.1867 0.1162 0.5366 0.5033 0.4813
r7 0.6743 0.6790 0.6791 0.2478 0.1604 0.0975 0.5161 0.4868 0.4706
r8 0.6846 0.6871 0.6856 0.2510 0.1805 0.1170 0.5317 0.5047 0.4838
r9 0.0424 0.0175 0.0434 0.3203 0.2168 0.1328 0.1044 0.0473 0.0195
r10 0.6599 0.6653 0.6646 0.3621 0.2441 0.1513 0.5666 0.5022 0.4646
r11 0.1995 0.0383 0.0534 0.0321 0.0756 0.0498 0.0408 0.0072 0.0053
r12 0.3334 0.3137 0.3000 0.2493 0.1635 0.0987 0.1733 0.1251 0.0997
r13 0.0201 0.0029 0.0049 0.2590 0.1655 0.1008 0.0675 0.0274 0.0102
r14 0.0234 0.0037 0.0022 0.2745 0.1318 0.0804 0.0759 0.0174 0.0065
r15 0.0601 0.0974 0.1174 0.2562 0.1479 0.0796 0.0692 0.0314 0.0201
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5 Conclusion

So far we know, nobody has yet considered all the fifteen estimators at a time like
us. Researchers ( Devlin et al., 1975; Rodgers and Nicewander, 1988 and Gideon ,
1998) considered only a group of estimators for comparison. For instance, Devlin et
al. (1975) proposed graphical methods that can detect observations that may unduly
influence the sample correlation coefficient and developed robust estimator of corre-
lation coefficient. But they compared only seven estimators of correlation coefficient.
In this study, we have considered fifteen estimators of correlation coefficients available
in the literature. Over all, we have found that the class of robust estimators have
performed better than the class of nonrobust estimators. Especially the normal score
estimator, r11 has given the best performance among all estimators.
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