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Abstract

The identification of outliers has been an area of a great deal of attention
in statistical data analysis for many years, especially in regression analysis.
In recent years, the use of logistic regression modeling has exploded and
there has been a great amount of effort in research on all statistical aspects
of the logistic regression model including the identification of outliers. An
important source of outliers in logistic regression is the existence of obser-
vations that disrupt the covariate pattern. In this paper we propose a new
method for the identification of outliers in logistic regression where outliers
are caused by the disruption in covariate pattern. The advantage of using
the proposed method in the identification of outliers is then investigated
through several examples.
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1 Introduction

Diagnostic methods are commonly used in all branches of regression analysis. In
recent years, diagnostics has become an essential part of logistic regression. We often
observe that the presence of outliers can mislead our interpretation. Thus, we need
to detect such observations and study their impact on the model. In this paper our
main objective is to identify a group of observations that appear as outliers due to
their failure to match with the usual pattern in a logistic regression. In section 2, we
introduce a logistic regression model and a class of residuals that are commonly used
in the identification of outliers. In this paper we consider observations as outliers if the
values of the response variable do not match with usual pattern of their corresponding
regressor values. This situation is known as pattern-disruption in the experimental
design data [see Montgomery (2005)]. We propose a new method in section 3 to
identify pattern-disrupting outliers in logistic regression. The usefulness of this newly
proposed method is demonstrated in section 4 through a variety of examples.

2 Identification of Outliers

Consider a simple two variable regression model

yi = β0 + β1xi+ ∈i, i = 1, 2, · · · , n (1)

We would logically let yi = 0 if the ith unit does not have the characteristic and yi = 1
if the ith unit does possess that characteristic. In linear regression, the ordinary least
squares (OLS) method is commonly used for estimating parameters mainly because
of tradition and ease of computation. We can use the OLS method for estimating
parameters in logistic regression, but the maximum likelihood (ML) method based
on the iterative-reweighed least squares algorithm [see Ryan (1997) has become more
popular with the statisticians. The specific form of the logistic regression model we
use in this paper is:

yi = πi (X) + ∈i, i = 1, 2, · · · , n (2)

where πi, known as probability for the ith factor/covariate and is defined as

πi(X) =
exp

(
xT

i β
)

1 + exp
(
xT

i β
)

where xT
i = [1 xi] and β=

[
β0

β1

]
. The model given in (2) satisfies the important

requirement that 0 < πi < 1 and will be a satisfactory model in many applications.
The model in matrix notation becomes

Y = π(X)+ ∈ (3)
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where Y is an n×1 vector of the observed responses, X is an n×2 matrix that contains
the explanatory variable including the intercept, π(X) is an n × 1 vector containing
the values πi and ∈ is an n× 1 vector of unobserved random disturbances.

After estimating the model by the ML method, we define the ith residual as

∈̂i = yi − π̂i, i = 1, 2, · · · , n (4)

According to Barnett and Lewis (1994) outliers are those which stand apart from the
rest of the data. Several versions of outliers for regression problems are discussed in
the literature [see Ryan (1997)]. In this paper we consider the case where the residuals
measure the extent of ill-fitted factor/covariate patterns. Hence the observations that
fail to match with the usual pattern of the majority of data are expected to possess
large residuals and hence are considered as suspect outliers. Here we introduce differ-
ent types of residuals that are commonly used in diagnostics for the identification of
outliers.

2.1 Pearson Residuals

The Pearson residuals are elements of the Pearson chi-square that can be used to
detect ill-fitted factor/covariate patterns. The ith Pearson residual is given by

ri =
yi − π̂i√

vi
i = 1, 2, · · · , n (5)

where vi= π̂i(1-π̂i). We call an observation outlier if its corresponding Pearson resid-
ual exceeds 3 in absolute term.

2.2 Standardized Pearson Residuals

Pregibon (1981) pointed out that the linear regression-like approximation for the ith

residual is given as

∈̂i = yi − π̂i ≈ (1− hi)yi (6)

where hi is the ith diagonal element of the matrix H = V 1/2X(XT V X)−1XT V 1/2.
Here V is an n × n diagonal matrix with general element vi= π̂i(1 − π̂i). Hence the
variance of the ith residual becomes vi(1−hi) which suggests that the Pearson residuals
do not have variance equal to 1. For this reason we could use the standardized Pearson
residuals given by

rsi =
yi − π̂i√
vi (1− hi)

, i = 1, 2, . . . , n (7)
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The ith observation is termed as outlier if |rsi| > 3.

2.3 Generalized Standardized Pearson Residuals

The main problem in using the above residuals in the identification of outliers is that
the presence of outliers may distort the fitting of a logistic model in such a way that the
resulting residuals often suffer from masking (for which outliers may possess relatively
smaller residuals and consequently remain unidentified) and/or swamping (for which
inliers may possess relatively bigger residuals and are identified as outliers). For this
reason a group deletion version of standardized Pearson residuals is suggested in the
literature for the identification of multiple outliers in logistic regression. Let us denote
a set of cases ‘remaining’ in the analysis by R and a set of cases ‘deleted’ by D. Hence
R contains (n − d) cases after d cases in D are deleted. Without loss of generality,
assume that these observations are the last d rows of X,Y and V so that

X =
[

XR

XD

]
Y =

[
YR

YD

]
V =

[
VR 0
0 VD

]

Let β̂(−D) be the corresponding vector of estimated coefficients when a group of obser-
vations indexed by D is omitted. Thus the corresponding fitted values for the logistic
regression model are

π̂
(−D)
i =

exp
(
xT

i β̂(−D)
)

1 + exp
(
xT

i β̂(−D)
) , i = 1, 2, . . . , n (8)

Hence the ith deletion residual is defined as

∈̂(−D)
i = Yi − xT

i β̂(−D), i = 1, 2, . . . , n (9)

When a group of observations D is omitted, we define deletion weights (DW) for the
entire data set as

h
(−D)
i = π̂

(−D)
i (1− π̂

(−D)
i )xT

i

(
XT

RVRXR

)−1
xi, i = 1, 2, . . . , n (10)

We also define

v
(−D)
i = π̂

(−D)
i (1− π̂

(−D)
i ) (11)

Using the above results and also using linear-regression like approximation, Imon and
Hadi (2008) define the ith generalized standardized Pearson residual (GSPR) as

r
(−D)
si =

yi − π̂
(−D)
i√

v
(−D)
i

(
1− h

(−D)
i

) for i ∈ R
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=
yi − π̂

(−D)
i√

v
(−D)
i

(
1 + h

(−D)
i

) for i ∈ D (12)

Residuals defined in (12) are analogous to residuals suggested by Hadi and Simonoff
(1993), Atkinson (1994), Munier (1999) and Imon (2005).

3 Identification of Pattern-disrupting Outliers

In this section we outline a method for the identification of pattern-disrupting outliers.
Here we consider observations as outliers whose response values do not match with
the usual pattern of the values of the explanatory variables. For finding the pattern
of the explanatory variables, we first split the variable X into two variables, X0 and
X1, where X0 denotes a variable that contains the values of X corresponding to the
values Y = 0 and X1 denotes a variable that contains the values of X corresponding
to the values Y = 1. Next we find the center of these two variables. Traditionally the
sample means of these two variables may be considered as their corresponding central
values. Then we can construct a confidence bound-type interval for the variable X as

I : X̄ ± 2 St. dev.(X) (13)

Since the sample means could be highly non-robust in the presence of outliers in X,
we prefer their corresponding sample medians as the central values. Then we make a
confidence bound-type interval for the variable X as

I : Median(X)± 2MAD(X) (14)

where a robust alternative measure of dispersion is the median absolute deviation
(MAD), which is defined for a variable X as

MAD(X) = Median{|Xi −Median(X)|}/0.6745 (15)

Let XU and XL be the upper and the lower bounds of the interval I respectively as
given in (14). We suspect that the observations are disrupting the pattern of the model
if they satisfy any of the following cases:

Case 1: Median (X0) < Median (X1) but xi0 > XU .
Case 2: Median (X0) > Median (X1) but xi1 < XL.

Now we form the deletion set D with the observations that satisfy either of the two
cases. Then we compute the generalized standardized Pearson residuals for the entire
data set after the omission of the cases indexed by D. Observations possessing the
GSPR values bigger than 3 in absolute terms are finally declared as outliers.
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4 Examples

In this section we consider several data sets that have been frequently used in the
study of the identification of outliers in logistic regression.

4.1 Modified Brown Data

We first consider the modified Brown data. The original data set was given by Brown
(1980) where the original objective was to see whether an elevated level of acid phos-
phatase (X) in blood serum would be of value as an additional regressor for predicting
whether or not prostate cancer patients also had lymph node involvement. The de-
pendent variable is nodal involvement (Y ), with 1 denoting the presence of nodal
involvement and 0 indicating the absence of such involvement. This data set has been
extensively analyzed by many authors [see Ryan (1997)]. It is now believed that the
original data set with 53 observations contains one outlier (observation no. 24). Imon
and Hadi (2008) modified this data set by putting 2 more outliers (cases 54 and 55)
in it. This modified data is presented in Table 1.

Table 1: Modified Brown data
Index LNI A.P. Index LNI A.P. Index LNI A.P. Index LNI A.P.

1 0 48 15 0 47 29 0 50 43 1 81
2 0 56 16 0 49 30 0 40 44 1 76
3 0 50 17 0 50 31 0 55 45 1 70
4 0 52 18 0 78 32 0 59 46 1 78
5 0 50 19 0 83 33 1 48 47 1 70
6 0 49 20 0 98 34 1 51 48 1 67
7 0 46 21 0 52 35 1 49 49 1 82
8 0 62 22 0 75 36 0 48 50 1 67
9 1 56 23 1 99 37 0 63 51 1 72
10 0 55 24 0 187 38 0 102 52 1 89
11 0 62 25 1 136 39 0 76 53 1 126
12 0 71 26 1 82 40 0 95 54 0 200
13 0 65 27 0 40 41 0 66 55 0 220
14 1 67 28 0 50 42 1 84

From the scatter plot of this data as given in Figure 1, we observe that X1 values are
on the average bigger than the values of X0. But three observations of X0 are much
bigger than any other values of X1 and consequently they may be considered as suspect
pattern-disrupting outliers. For this data set we obtain Median (X0) = 59.00, Median
(X1) = 78.00, Median (X) = 66.00 and MAD (X) = 23.72 that gives XL = 18.56 and
XU = 113.44.
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Figure 1: Scatter plot of Modified Brown Data

Table 2: Outlier diagnostics for modified Brown data
Index PR SPR GSPR Index PR SPR GSPR Index PR SPR GSPR

1 -0.72 -0.73 -0.51 20 -0.79 -0.80 -1.68 39 -0.76 -0.76 -0.97
2 -0.73 -0.74 -0.61 21 -0.73 -0.74 -0.55 40 -0.78 -0.79 -1.56
3 -0.73 -0.73 -0.53 22 -0.76 -0.76 -0.95 41 -0.74 -0.75 -0.77
4 -0.73 -0.74 -0.55 23 1.27 1.29 0.64 42 1.30 1.32 0.89
5 -0.73 -0.73 -0.53 24 -0.91 -1.02 -12.87 43 1.31 1.32 0.95
6 -0.72 -0.73 -0.52 25 1.19 1.24 0.27 44 1.32 1.33 1.06
7 -0.72 -0.73 -0.48 26 1.31 1.32 0.93 45 1.33 1.35 1.22
8 -0.74 -0.75 -0.70 27 -0.71 -0.73 -0.42 46 1.32 1.33 1.01
9 1.37 1.38 1.70 28 -0.73 -0.73 -0.53 47 1.33 1.35 1.22
10 -0.73 -0.74 -0.59 29 -0.72 -0.73 -0.53 48 1.34 1.35 1.31
11 -0.74 -0.75 -0.70 30 -0.71 -0.73 -0.42 49 1.31 1.32 0.93
12 -0.75 -0.76 -0.86 31 -0.73 -0.74 -0.59 50 1.34 1.35 1.31
13 -0.74 -0.75 -0.75 32 -0.74 -0.74 -0.65 51 1.33 1.34 1.16
14 1.34 1.35 1.31 33 1.39 1.40 2.05 52 1.29 1.31 0.79
15 -0.72 -0.73 -0.49 34 1.38 1.40 1.91 53 1.21 1.25 0.34
16 -0.72 -0.73 -0.52 35 1.38 1.40 2.01 54 -0.93 -1.07 -17.56
17 -0.73 -0.73 -0.53 36 -0.72 -0.73 -0.51 55 -0.97 -1.16 -28.23
18 -0.76 -0.77 -1.02 37 -0.74 -0.75 -0.71
19 -0.77 -0.77 -1.16 38 -0.79 -0.80 -1.85

Now clearly Median (X0) < Median (X1) but we observe from Table 1 that there are 3
observations in this data set (case 24, 54 and 56) for which xi0 > XU . Hence we form
the deletion set D to compute the generalized standardized Pearson residuals. These
values together with the Pearson residuals and the standardized Pearson residuals are
given in Table 2.

We observe from the results given in Table 2 that both Pearson and standardized
Pearson residuals fail to identify any one of the three outliers and these outliers get
totally masked here. But the generalized standardized Pearson residuals can correctly
identify all of them.

4.2 Artificial Data

Now we consider a set of artificial data for the detection of multiple outliers. We have
generated data sets of size 40 each where the data for the explanatory variable X
come from a uniform distribution in such a way that the X values corresponding to
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Y = 1 are on the average bigger than those of Y = 0. We have named the data sets
alphabetically as A, B, C, D and E and they are presented in Table 3.

Table 3: Artificial data sets
Index Data Set A Data Set B Data Set C Data Set D Data Set E

Y X Y X Y X Y X Y X
1 0 129.940 0 129.940 0 129.940 1 70.000 1 80.000
2 0 102.091 0 102.091 0 102.091 1 75.000 1 85.000
3 0 115.805 0 115.805 0 115.805 1 80.000 0 115.805
4 0 108.487 0 108.487 0 108.487 1 85.000 0 108.487
5 0 111.189 0 111.189 0 111.189 0 111.189 0 111.189
6 0 118.617 0 118.617 0 118.617 0 118.617 0 118.617
7 0 118.795 0 118.795 0 118.795 0 118.795 0 118.795
8 0 118.375 0 118.375 0 118.375 0 118.375 0 118.375
9 0 107.485 0 107.485 0 107.485 0 107.485 0 107.485
10 0 112.862 0 112.862 0 112.862 0 112.862 0 112.862
11 0 108.974 0 108.974 0 108.974 0 108.974 0 108.974
12 0 128.041 0 128.041 0 128.041 0 128.041 0 128.041
13 0 128.799 0 128.799 0 128.799 0 128.799 0 128.799
14 0 123.670 0 123.670 0 123.670 0 123.670 0 123.670
15 0 114.503 0 114.503 0 114.503 0 114.503 0 114.503
16 0 110.715 0 110.715 0 110.715 0 110.715 0 110.715
17 0 107.277 0 107.277 0 107.277 0 107.277 0 107.277
18 0 102.890 0 102.890 0 102.890 0 102.890 0 102.890
19 0 114.227 0 114.227 0 114.227 0 114.227 0 114.227
20 0 114.030 0 114.030 0 114.030 0 114.030 0 114.030
21 1 127.424 1 127.424 1 127.424 1 127.424 1 127.424
22 1 148.015 1 148.015 1 148.015 1 148.015 1 148.015
23 1 132.548 1 132.548 1 132.548 1 132.548 1 132.548
24 1 139.177 1 139.177 1 139.177 1 139.177 1 139.177
25 1 139.656 1 139.656 1 139.656 1 139.656 1 139.656
26 1 130.570 1 130.570 1 130.570 1 130.570 1 130.570
27 1 149.672 1 149.672 1 149.672 1 149.672 1 149.672
28 1 125.121 1 125.121 1 125.121 1 125.121 1 125.121
29 1 145.071 1 145.071 1 145.071 1 145.071 1 145.071
30 1 122.664 1 122.664 1 122.664 1 122.664 1 122.664
31 1 128.953 1 128.953 1 128.953 1 128.953 1 128.953
32 1 132.533 1 132.533 1 132.533 1 132.533 1 132.533
33 1 134.574 1 134.574 1 134.574 1 134.574 1 134.574
34 1 149.469 1 149.469 1 149.469 1 149.469 1 149.469
35 1 124.880 1 124.880 1 124.880 1 124.880 1 124.880
36 1 141.276 1 141.276 1 141.276 1 141.276 1 141.276
37 1 131.329 1 131.329 0 165.000 1 131.329 1 131.329
38 1 137.338 1 137.338 0 170.000 1 137.338 1 137.338
39 1 143.715 1 143.715 0 175.000 1 143.715 0 165.000
40 1 126.662 0 165.000 0 180.000 1 126.662 0 170.000

Data set A: Each value of Y perfectly matches with the pattern of X, i.e., each
xi0 < XU and eachxi1 > XL. We observe from the scatter plot (see Figure 2) of this
data that there exists no pattern-disrupting observation in this data.

Data set B: We have one observation (case 40) for which xi0 > XU and hence this
data may have one pattern-disrupting outlier.

Data Set C: We observe from Table 3 and also from Figure 2 that this data set contains
four observations (cases 37, 38, 39 and 40) for which xi0 > XU .

Data Set D: So far we have considered examples where pattern-disrupting observa-
tions are occurring due to excessive large values of xi0. In this data set we have four
observations (cases 1, 2, 3 and 4) that has unusually low xi1 values such that xi1 < XL.
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Figure 2: Scatter Plot for the Artificial Data Sets A - E

Data Set E: In the above examples we consider cases where the pattern-disrupting
observations are occurring at the any one end of the data. The data set E gives us a
situation where we have pattern-disrupting cases at the both ends of the data set. We
observe from Figure 6 that the data set E contains two observations (cases 1 and 2)
for which xi1 < XL and two observations (cases 39 and 40) for which xi0 > XU .

For each artificial data set we have computed three sets of residuals, the Pear-
son residuals, the standardized Pearson residuals, and the generalized standardized
Pearson residuals. Summary results are presented in Table 4.
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Table 4: Diagnostics for the suspect outliers of the artificial data sets A-E
Data Set Index of Suspect Case PR SPR GSPR

A — — — —
B 40 -15.86 -15.964 -584.53
C 37 -1.426 -1.517 -412.93

38 -1.542 -1.660 -888.12
39 -1.669 -1.815 -1911.18
40 -1.805 -1.984 -4116.38

D 1 1.790 1.977 29088.64
2 1.657 1.811 11296.97
3 1.534 1.657 4391.16
4 1.420 1.516 1707.79

E 1 2.161 2.323 4563.54
2 1.984 2.117 1777.49
39 -1.978 -2.111 -1954.29
40 -2.154 -2.317 -5017.08

We observe from the results presented in Table 4 that the data set A does not contain
any outlier and neither of the three sets of residuals, PR, SPR and GSPR contains any
residual (in absolute term) bigger than 3. The data set B contains a single outlier and
all three techniques can correctly identify it. But when we have more than one outlier
such as the examples C, D and E we see that both Pearson and standardized Pearson
residuals fail to identify even a single outlier. But the generalized standardized Pearson
residuals can correctly identify each and every outlier and hence are considered as the
most effective diagnostics.

5 Conclusions

In this paper we suggest a method to identify outliers in logistic regression that are
responsible for the disruption of the usual design. We use the generalized standardized
Pearson residuals as diagnostics in this method. The numerical examples show that
our proposed method may be very effective to identify multiple outliers under a variety
of situations where the traditional methods fail to do so.
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