
International Journal of Statistical Sciences ISSN 1683–5603
Vol. 8, 2008, pp 23-31
c© 2008 Dept. of Statistics, Univ. of Rajshahi, Bangladesh
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Abstract

Mammogram is a good technique for early detection of the breast cancer.
This technique generates digital images, where the radiodense is used as a
marker for a breast cancer. This kind of images do not follow the Gaussian
random field. In this paper, the Laplace random field is introduced as a
model for such images. We give a theorem which characterizes the Laplace
random field. The expected value of the Euler characteristic of its excursion
set is calculated. We also derive an approximation to the mean size of one
connected component of its excursion set above a high threshold.
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1 Introduction

New technologies provide us with informative images about astrophysics, living human
brain and breast cancer, etc. These images are modelled by a smooth and stationary
random field, Z(t), t ∈ C, where C is some search region. If Z(t) is the value of the
image at t ∈ C, and µ(t) is the mean value of the image at t, then the null hypothesis
H0 : µ(t) = 0 for all t ∈ C against H1 : µ(t) = 0 for some t ∈ C, will be rejected if
the statistic supt∈C Z(t) is large. Then the probability P{supt∈C Z(t) ≥ u}, for large
u, represents the P-value of this test statistic. It is not possible in general to find its
exact value. One of the most famous methods to approximate this probability is to
consider the excursion set of the random field Z(t) above a threshold u. Adler (1981)
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defines the excursion set of the random field Z(t) above u in C as the set

Au = Au(Z, C) = {t ∈ C : Z(t) ≥ u}. (1)

If Z(t) is a homogeneous and smooth Gaussian random field, then with probabil-
ity tending to one as u → ∞, the excursion set is a finite union of convex sets
such that each convex set contains a local maximum for Z(t) ( see Figure 1). Then
P{supt∈C Z(t) ≥ u} is approximated by the expected number of local maxima of Z(t)
in C above u.

Mammograms are digital images generated by an X-ray special machine to do
a breast cancer early detection. The value of the image at each pixel is the gray-
level. Some mammogram images are given in Heine, Deans, and Clarke (1999). The
histograms of these images show that the Gaussian random field is not a suitable model
for these images. In this paper, we will introduce the Laplace random field as a model
for this kind of images. Under the null hypothesis, i.e., given a woman has a negative
mammogram result, we study the geometry of its excursion set above a high threshold.
In Sec. 2, we introduce the Laplace random field and we give a characterization
theorem for this field. In Sec. 3, we find the expected Euler characteristic of its
excursion set. In Sec. 4, we find an approximation to the expected number of local
maxima of the Laplace Random field. In Sec. 5, we give an example to check the
validity of the approximations. In Sec. 6, we give an approximation to the mean size
of one component of the excursion set. In Sec. 7, we propose an algorithm to simulate
a Laplace random field. A summary is given in Sec. 8.

 

Figure 1: Excursion set ( top left) and histogram ( top right) of a simulated Gaussian random field
above the threshold u = 2.5. Excursion set ( bottom left) and histogram ( bottom right) of a simulated
Laplace random field above the threshold u = 1.5.
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The following notations will be used. For equality in distribution we use =d. The
transpose, determinant of a matrix A and diagonal blocking of two matrices A and
B will be denoted by AT , det(A) and diag(A,B), respectively. R ∼ exp(1) will mean
an exponential random variable with mean 1, and RZ(t) will denote the covariance
function of a homogeneous random field Z(t). We use W ∼ ND(µ, Σ) for a D-
dimensional multivariate normal random vector with mean vector µ and covariance
matrix Σ. The modified Bessel function of the third kind of order ν, denoted by Kν(x),
is given by

Kν(x) =
1
2

(x

2

)ν
∫ ∞

0
s−ν−1 exp(−s− x2

4s
)ds.

For ν = 1
2 , K 1

2
(x) =

√
π
2x exp(−x).

2 A Laplace Random Field

In this paper, we will assume that all random variables and vectors have densities.

Definition 2.1. A random vector W (D×1) is said to be a D-dimensional multivariate
Laplace with parameters µ (D×1) and Σ (D×D) if its joint density function is given
by

fW (w) = 2(2π)−
D
2 det(Σ)−

1
2

(
1

2
(w − µ)T Σ−1(w − µ)

) ν
2

Kν

(√
2(w − µ)T Σ−1(w − µ)

)
,

w ∈ RD, ν = 1
2(2−D).

It can be shown that E{W} = µ and cov(W ) = Σ + µµT . For more information
about the properties of the multivariate Laplace distribution, see Kotz et al. (2001).
We will use the notation W ∼ LAn(µ,Σ) for a multivariate Laplace distribution with
parameters µ and Σ. Every Multivariate Laplace random vector W with parameters
µ and Σ admits the following representation W =d µ+

√
RV , where R is independent

of V , R ∼ exp(1) and V ∼ ND(0,Σ).

Definition 2.2. A real valued random field Y (t), t ∈ C, is said to be Laplace random
field if for every k, every set of points t1, . . . , tk ∈ C, the vector (Y (t1), . . . , Y (tk)) has
a multivariate Laplace distribution, i.e., all finite dimensional distributions of Y (t) are
multivariate Laplace.

The following theorem characterizes the Laplace random field.

Theorem 1. A homogeneous Laplace random field, Y (t), with zero mean and covari-
ance function RY (t), admits the stochastic representation

Y (t) =
√

RX(t), (2)
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where X(t) is a homogeneous Gaussian random field with zero mean, unit variance,
covariance function RX(t) = RY (t), and R is an exponential random variable with
mean 1, independent of X(t).

We omit the proof of this theorem.

For a random field Z(t), let Ż(t) = (Ż1(t), . . . , ŻD(t)), Z̈(t) be the gradient and
the Hessian matrix of Z(t) with respect to t, respectively. Let Z̈D−1 = Z̈D−1(t) be
(D− 1)× (D− 1) matrix of second order partial derivatives of Z(t) with respect to t.
For a random field Z(t), the moduli of continuity ωZ(h), ωŻj

(h), ωZ̈ij
(h) of Z, Ż and

Z̈ are defined by

ωZ(h) = sup
‖t−s‖<h

|Z(t)− Z(s)|,

ωZ
j (h) = sup

‖t−s‖<h
|Żj(t)− Żj(s)|, for j = 1, 2, . . . , D,

ωZ
ij(h) = sup

‖t−s‖<h
|Z̈ij(t)− Z̈ij(s)|, for i, j = 1, 2, . . . , D.

We will assume that the Gaussian random field used in equation (2) is ergodic and
satisfies the condition

max
i,j

E{|Ẍij(t)− Ẍij(0)|} ≤ C‖t‖,

for some constant C > 0 and all t in some neighborhood of 0.

3 Expected Euler Characteristic

Consider a homogeneous random field Z(t), t ∈ C, a compact subset of RD with a twice
differentiable boundary ∂C. Adler (1981) defines the differential topology characteristic
of Au(Z, C) as

χ(Au(Z, C)) = (−1)D−1
D−1∑

j=0

(−1)jχj(Au(Z, C)),

where χj(Au(Z, C)) is the number of points t ∈ C such that: (i) Z(t) = u, (ii) Ż1(t) =
0, . . . , ŻD−1(t) = 0, (iii) ŻD(t) > 0 and (iv) the index of Z̈D−1(t) is j. According to
Adler (1981), provided that Au(Z, C) ⋂

∂C = ∅, it can be shown that χ(Au(Z, C)) is
equivalent to the Euler-Poincare characteristic of Au(Z, C) which counts the number
of connected components minus the number of holes. As the level z gets large, the
excursion set has simpler topology, and we are left with isolated connected components.
According to Hasofer (1978), the following approximation is accurate

P{sup
t∈C

Z(t) ≥ u} ≈ E{χ(Au(Z, C))},
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as u → ∞. The mean value of χ(Au(Z, C) is given by Theorem 5.2.1 of Adler (1981)
which will be reported here.

Theorem 2. Assume that Ÿij’s have finite variances, fY (.), the joint density of
(Y, Ẏ, Ÿ), is continuous in its arguments, and the conditional density of (Y, Ẏ1, . . . , ẎD−1),
given ẎD and Ÿij , 1 ≤ i ≤ D, 1 ≤ j ≤ D − 1, is bounded above. Let C be a convex
subset of RD, and

P{max
i,j
{ωY

i (h), ωY
i,j(h)} > ε} = o(hD), as h ↓ 0,

for every ε > 0. Then

E{χ(Au(Y, C))} = λ(C)(−1)D−1

∫ ∞

0

∫

R
D(D−1)

2

ẏ+
D det(ÿD−1)f

Y (u, 0, . . . , ẏD, ÿD−1)dÿD−1dẏD (3)

When Y (t) is Gaussian, Adler (1981) gives the following expression for E{χ(Au(Y, C))}

E{χ(Au(Y, C))} = λ(C)exp(−u2

2 ) det(Λ)
1
2

(2π)(D+1)/2
HD−1(u), (4)

where

Hn(x) = n!
[n/2]∑

j=0

(−1)jxn−2j

j!(n− 2j)!2j
(5)

is the n-th Hermite polynomial and Λ = Var(Ẏ(0)). If Y (t) is a Laplace random field,
then, using total probability law and Fubni’s theorem for interchanging the integration
order, we can write E{χ(Au(Y, C))} as follows,

E{χ(Au(Y, C))} =

λ(C)(−1)D−1 ×
∫ ∞

0

∫ ∞

0

∫
ẏ+

D det(ÿ)fY (u, 0, . . . , ẏD, ÿD−1|R = r) exp(−r)dÿD−1dẏDdr, (6)

where the inner integration is taken over R
D(D−1)

2 . Since (Y, Ẏ, Ÿ))|R ∼ Nm(0, RΣ),
m = 1 + D + D(D − 1)/2, and Σ is the covariance matrix of (X, Ẋ, Ẍ)), then

fY (u, 0, . . . , ẏD, ÿD−1|R = r) = (2π)−
m+1

2 r−
m
2 det(Σ)−

1
2 ×

exp

(
− 1

2r
(u, 0, . . . , ẏD, ÿD−1)

T Σ−1(u, 0, . . . , ẏD, ¨yD−1)

)
.

Change the variables to vD = ẏD/
√

R, vij = ÿij/
√

R, for 1 ≤ i < j ≤ D − 1, i =
1, . . . , D − 1, we can write (6) as

E{χ(Au(Y, C))} = E{E{χ(Au/
√

R(X, C))}}, (7)
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where the outer expectation is taken over R. Using (4) and (5), we can find a closed
form expression for the right hand-side of (7) as

E{χ(Au(Y, C))} =

∫ ∞

0

E{χ(Au/
√

r(X, C))} exp(−r)dr,

=
λ(C) det(Λ)

1
2

(2π)
D+1

2

∫ ∞

0

exp(−r − u2

2r
)HD−1(

u√
r
)dr,

=
λ(C) det(Λ)

1
2

(2π)
D+1

2

∫ ∞

0

exp(−r − u2

2r
)HD−1(

u√
r
)dr,

=
λ(C) det(Λ)

1
2 Γ(D)

(2π)
D+1

2

×

[ D−1
2 ]∑

j=0

(−1)juD−1−2j

j!(D − 1− 2j)!2j

∫ ∞

0

r−
D−1

2 +j exp(−r − u2

2r
)dr,

=
2

D+1
4 λ(C) det(Λ)

1
2 Γ(D)

(2π)
D+1

2

[ D−1
2 ]∑

j=0

(−1)ju
D
2 −j+ 1

2

j!(D − 1− 2j)!2
3j
2

K D−1
2 −j−1

(
√

2u),

(8)

4 Expected Number of Local Maxima

For a random field Y (t), t ∈ C, let M(Au(Y, C)) denote the number of local maxima
of Y (t) ∈ C above the level u. The following theorem, reported in Adler (1981), gives
the expectation of M(Au(Y, C))

E{M(Au(Y, C))} = λ(C)
∫ ∞

u

∫

D
|det(ÿ)|fY (y,0, ÿ)dÿdy, (9)

where D ⊂ RD(D+1)/2 for which ÿ is negative definite. By conditioning on R, using
Fubuni’s theorem and then changing the variables, it is easy to show that for the
Laplace random field Y (t),

E{M(Au(Y, C))} = E{E{M(Au/
√

R(X, C))}},

where the outer expectation is taken over R. For smooth Gaussian random field, X(t),
Adler (1981) gives the following asymptotic formula as u →∞ :

E{M(Au(X, C))} =
λ(C) det(Λ)

1
2 uD−1

(2π)
D+1

2

exp(−u2

2
)
(

1 + O(
1
u

)
)

(10)

In general, it is difficult to simplify the inner multiple integral in (9). We still can ap-
proximate E{M(Au(Y, C))}, when Y (t) is the Laplace random field, by approximating
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the value of P{supt∈C Y (t) ≥ u}. By conditioning on R and splitting the integral we
get

P{sup
t∈C

Y (t) ≥ u} =

∫ uk

0

P{sup
t∈C

X(t) ≥ u√
r
} exp(−r)dr +

∫ ∞

uk

P{sup
t∈C

X(t) ≥ u√
r
} exp(−r)dr,

where k ≥ 2. The first integral in the last equation is the dominating one since the
second term is dominated by the exp(−uk), which is very small as u →∞. This yields
the following approximation

P{sup
t∈C

Y (t) ≥ u} ≈
∫ uk

0
P{sup

t∈C
X(t) ≥ u√

r
} exp(−r)dr.

Since uk is large we can replace the integrand in the last equation by the right hand
side of (10) to get

P{sup
t∈C

Y (t) ≥ u} ≈ λ(C) det(Λ)
1
2 uD−1

(2π)
D+1

2

∫ uk

0
r−

D−1
2 exp(−r − u2

2r
)dr

If uk is large, then
∫ uk

0
r−

D−1
2 exp(−r − u2

2r
)dr ≈ 2(

2√
2u

)
D−3

2 KD−3
2

(
√

2u).

So

P{sup
t∈C

Y (t) ≥ u} ≈ λ(C) det(Λ)
1
2 2

D+1
4 u

D+1
2

(2π)
D+1

2

KD−3
2

(
√

2u).

Since E{M(Au(Y, C))} approximates P{supt∈C Y (t) > u} we get the following ap-
proximation

E{M(Au(Y, C))} ≈ λ(C) det(Λ)
1
2 2

D+1
4 u

D+1
2

(2π)
D+1

2

KD−3
2

(
√

2u). (11)

This approximation is simpler than that given by (8).

5 Example

To check the validity of the approximations derived in the previous sections, we con-
sider the Laplace random field (D = 1), when X(t) = Z1 sin(t) + Z2 cos(t), t ∈ [0, 2π]
and Z1 and Z2 are standard normal random variables. The process X(t) can be writ-
ten as X(t) = R cos(t − θ), where R =

√
Z2

1 + Z2
2 and θ is uniformly distributed in

(0, 2π). It is straightforward to see that R has the density

f(r) = r exp(−r2

2
), r > 0.
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and det(Λ) = 1. This yields V = sup[0,2π] Y (t) =
√

ZR. So the density V is given by
mixing over Z as follows

P{V > u} =
∫ ∞

0
P{R >

u√
z
} exp(−z)dz,

= 2
1
2 uK1(

√
2u).

For D = 1 and λ(C) = 2π, (8) gives

E{χ(Au(Y, C))} = 2
1
2 uK1(

√
2u)

while (11) gives
E{M(Au(Y, C))} ≈ 2

1
2 uK1(

√
2u)

Note that the approximations yield the same value for the one-dimensional case.

6 Mean Size of One Component

In this section, we derive an approximation to S, the mean size ( Lebesgue measure) of
one connected component of Au(Y, C) when u is large. The excursion set of the Laplace
random field can be modelled as mosaic process, i.e., the connected components are
random sets thrown at random according to a Poisson point process in C. This way of
modelling the excursion set is called the Poisson clumping heuristic (Aldous, 1989).
By using the Poisson clumping heuristic, we get an approximation to the mean value
of the size of one connected component as follows

E{S} ≈ λ(C)(1− FY (u))
E{χ(Au(Y, C))} , (12)

where

FY (y) =
1√
2

∫ u

−∞
exp(−

√
2|y|)dy,

= 1− 1
2

exp(−
√

2u), for u > 0. (13)

Using (8), (12) and (13) we can get an approximation to E{S}.

7 Simulation of Y (t)

A Laplace random field can be simulated by simulating a multivariate Laplace distri-
bution on a grid of C. Here we propose more a simpler method. A Laplace random
field, given by equation (2), can be simulated as follows:
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• Simulate a Gaussian random field X(t) with zero mean and variance equal to 1.

• Simulate exp(1) random variable R.

• Y (t) =
√

RX(t) is a realization of Y (t).

8 Summary

In this paper, we introduced a new random field called the Laplace random field.
This field has a motivation for detecting a breast cancer using mammogram images.
We gave a theorem which characterizes this field. Then we derived a closed form
for the expected Euler characteristic of its excursion set. This expectation is used to
approximate the tail distribution of the supremum of the Laplace random field. We
also derived an approximation to the mean of the size of one connected component.
The results derived here can be extended to another random field, i.e., by replacing
the random variable R by another one. For example, if we replace it by

√
ν
S , where

S is a chi square random variable with ν degrees of freedom, then we will have the
student random field which is a generalization to the Gaussian random field. The
example shows that the approximation works well.
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