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Abstract

The objective of this paper is to develop a methodology for the Best Linear Unbiased
Estimator (BLUE) of HIV population vies avis the projection of AIDS. This has been
accomplished by developing a suitable informative prior distribution of HIV and an in-
cubation period distribution of AIDS based on the reduction of CD-4 cells; the latter
being a state through which an HIV positive individual passes while reaching the con-
dition of full blown AIDS. Commenges and Etcheverry (1993) obtained Empirical Prior
distribution for HIV using a Poisson process without taking into consideration of (i)
deaths of HIV population in the state of HIV, (ii) Transition to AIDS during the process
of growth of HIV population. The present approach comprises of replacing the Poisson
Process by Kendall’s Generalized birth and death process (1948), that does take into
consideration of deaths of HIV population in the state of HIV. Also for consideration of
transition to AIDS during the process of growth of HIV population, a more meaningful
incubation period distribution based on biological consideration of decay of CD-4 cells
has been developed and applied to the present situation rather than an inflexible Weibull
distribution as used by many of the earlier investigators. Estimates for the BLUE of HIV
population for 16 years are obtained first by obtaining a prior distribution of HIV pop-
ulation on time based on Kendall’s birth and death process supplementing by using the
data of the US official Statistics. Then, by setting a linear regression model of AIDS
on HIV under Gauss Aitken set- up while the incidence data of AIDS from the prior
distribution of HIV and the newly developed incubation period distribution is obtained.
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1 Introduction

The Center for Disease Control and Prevention (CDC) defined individuals with AIDS,
who have CD-4 counts less than 200 cells per cubic millimeter or a CD-4 person
less than 14% (the 1992 surveillance definition of CDC, Monroe, 1996; Dwyer, 1995).
It is also revealed that after a long follow-up of HIV positive men, only 69% were
diagnosed with AIDS after being HIV positive for 13 1/2 years (Buchbinder, et al,
1993). While 67% of patients infected with HIV will have developed AIDS within ten
years of infection (Dwyer, 1995), others stay well longer. The misclassification with
respect to the causes of deaths of HIV positive individuals mostly happens because the
incubation period of AIDS is usually abnormally long even to the extent of 30 years
or even more (Becker, 1991).

A good approach given by Becker (1989) is to use a non-parametric maximum like-
lihood technique incorporating modified E-M algorithm. Commenges and Etcheverry
(1993) proposed a better technique exploring the pattern of growth in HIV popula-
tion. The technique uses empirical Bayes approach for obtaining prior distribution of
HIV based on the transmission of HIV infection from carrier to susceptible at varying
Poisson rates over time. The authors considered only the data on AIDS vector and
the transition matrix. By applying the Gauss Aitken generalized least squares method
on the linear model, the BLUE of fresh incidences of HIV over time was re-estimated.
However, the authors did not consider the double decrement pattern of HIV positive
individuals viz the mortality of HIV positive individuals in the state of HIV and the
transition of HIV affected individuals to the state of AIDS in the course of growth of
HIV population.

The motivation of this paper is to extend the technique of Commences and Etchev-
erry (1993) by replacing the Weibull distribution. A meaningful alternative incubation
period distribution that is used in this paper is based on a biological consideration on
the reduction of CD-4 cells. Therefore, its validity is not for a short range. The Incu-
bation period distribution is based on the assumption of a log-normal distribution of
the number of CD-4 cells for HIV free individuals. A theoretical justification of this
choice is given in the Appendix. Following Berman (1990), an exponential decay rate
of CD-4 cells is chosen for HIV positive individuals, that leaves 5 to 10 percent of HIV
patients not reaching the state of AIDS in 30 years in conformity with similar findings
in Buchbinder, et.al (1993).
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2 Development of the Model - A Diagrammatic Repre-
sentation

A cohort starts with 45,000 fresh HIV in 2002 in U.S.A. 

 

  

# of fresh HIV in 2003       # of HIV in 2002 who                        # of HIV in 2002 who 

by transmission from       retained their status in 2003             converted into  AIDS 

        fresh HIV in 2002            as HIV without transmitting             up to 2003 

                                                   to the state of  AIDS                              

                   (A)                                              (B)                                                (C) 

                                                                                                        Survivors of (C) in 2003  

                                                                                                       =Total# of AIDS in 2003 

   Survivors of (A)+(B) in 2003=Total # of HIV in 2003                                                                                      

                                 

  # of fresh HIV                     # of HIV in                     # of HIV                Survivors of the # of 

  in 2004 transmitted by       in 2003 who                    in 2003 who          AIDS in 2003 up to      

  total # of HIV in 2003         retained their status      converted              2004 = (G) 

                    = (D)                   as HIV in 2004 =(E)        into AIDS up 

                                                                                         to 2004=(F)         

Survivors of (D) up to 2004 +Survivors of (E) up to 2004=Total HIV population in 2004.  

Survivors of (F) up to 2004+Survivors of (G) up to 2004=Total AIDS population in 2004. 

The above is the diagrammatic representation of the progression of   HIV and AIDS  

over years. 

 

Figure 1: Diagrammatic representation of growth of HIV and AIDS over the years

3 Method of Obtaining Prior Distribution of HIV from
Kendall’s Birth and Death Process (1948)

Let Pn(t) = Probability of n number of HIV in time t satisfying the Kolmogorv dif-
ference equation
Pn(t+δt) = Pn(t)[1−n(λ(t)+µ(t))δt+0(δt)]+Pn−1(t)[(n−1)λ(t)δt+o(δt)+Pn+1[(n+
1)λ(t)δt + o(δt)]
where λ(t) = λtβ−1 and µ(t) = µtα−1 are the Weibull birth and death intensities.
Then, we have the differential equation given by Kendall (1948).

∂Pn(t)
∂t

= −n[λ(t) + µ(t)]Pn(t) + λ(t)(n− 1)Pn−1(t) + µ(t)(n + 1)Pn+1(t) (1)

with the initial conditions P1(0) = 1, P0(0) = 0, Px(0) = 0 for n 6= 1
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P0(t) = 0 for t 6= 0, Pn(t) = 0 for n < 0;λ = λ(t) and µ = µ(t) (2)

The solution if given by Pn(t) = ηn−1(1−ηt)(1−ξt) (3)

where
ηt = 1− 1

W (t)
(4)

and

ξt = 1− e−ρ(t)

W (t)
(5)

ρ(t) and W (t) are given by

ρ(t) =

t∫

0

[µ(τ)− λ(τ)]dτ (6)

W (t) = 1 + e−ρ(t)

t∫

0

eρ(τ)λ(τ)dτ (7)

E(nt) =
(1− ξt)
(1− ηt)

= e−ρ(t) (8)

V ar(nt) =
(1− ξt)(ξt + ηt)

(1− ηt)2
(9)

The Prior Distribution of HIV is given by (3) and the generation of HIV data have
been obtained by estimating parameters µ(t), λ(t), ρ(t), W (t), ξ(t) and η(t) by US
Official Statistics data for 2002. The trend of the data for the future 16 year period
being determined by taking random observations from two Uniform distributions (one
from HIV infectivity and the other for Deaths) with stipulated maxima and minima
based on the actual data subject to the condition that the survival function both from
births and deaths are increasing over time.

3.1 Significance of the Parameters in Terms of HIV Population

λ(t) and µ(t) are the intrinsic birth and death parameters respectively of an HIV
population which starts initially with a single HIV. ρ(t) is the negative of the growth
parameter at any time t. W (t) is the following function of ρ(t) and λ(t) (or λ(t) or
µ(t))W (t) is given by
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W (t) = 1 + e−ρ(t)

t∫

0

eρ(τ)λ(τ)dτ

Average size of the HIV population nt at time t is given by E(nt) =
1− ξt

1− ηt
and

var(nt) =
(1− ξt)(ξt + ηt)

(1− ηt)2
. Given ξt and ηt we can obtain the average size and the

variance of HIV population at any time t where ξt and ηt are given by ξt = 1− e−ρ(t)

W (t)

and ηt =
1

W (t)
and the distribution of n at any time t is given by Pn(t) = ηn−1

t ×
(1− ηt)(1− ξt).

4 Existing Data of HIV & AIDS in USA and in the World

Region Epidemic
Started

People liv-
ing with
HIV/AIDS

People newly
infected with
HIV 2002

% of HIV -
positive adults
who are women

Main modes of trans-
mission (#) for adults
living with HIV/AIDS

Western
Europe

Late 70’s
early 80’s

570,000 30,000 25% MSM, IDU

North
America

Late 70’s
early 80’s

980,000 45,000 20% MSM, IDU, Hetero

Australia
& New
Zealand

Late 70’s
early 80’s

15,000 500 7% MSM

Number of people living with HIV in 2002
Women 19.2 Million

Men 19.4 Million
Children < 15 years 3.2 Million

Total 42 Million

During 2002, some 5 million people became infected with the human immunodeficiency
virus (HIV) which causes AIDS.

Number of people infected with HIV in 2002
Women 2 Million

Men 2.2 Million
Children < 15 years 800,000

Total 5 Million

(Source: UNAIDS /WHO: HIV and AIDS/ Global HIV and AIDS-Statistical Information and Tables

2002 - HTML Document.)
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5 Estimation of the Stock of HIV and AIDS in 2002 in
USA

The ratio of Number of People living with HIV and the number of people fresh infected
is 42/5 in the world as a whole. Assuming the same ratio for USA, the estimated
number of persons living with HIV is 42/5*45,000=378,000 in 2002.
Therefore, estimated number of persons living with AIDS in 2002 = 980,000 - 378,000
= 602,000.
Also, the estimated stock of HIV in 2002 = 378,000 + 45,000 = 423,000 in USA and
the Estimated stock of AIDS in 2002 = 602,000 in USA.

6 Estimation of Birth and Death Intensities of HIV

The official birth rate of HIV is 4% per annum in 2002. However, assuming the birth
rate lying between 4% to 6% and the corresponding survival Rates lying between
94 to 96 percent; subject to the condition that the survival rate increases randomly
during 15 years (by generating 15 random observations from a uniform distribution
with minimum = 0.94 and maximum = 0.96 and arranging them in increasing order),
the Weibull birth and death intensities given by λ(t) = λtβ−1 and µ(t) = µtα−1 are
estimated. We assume both to have a decreasing pattern. i.e. 0 < α < 1 and
0 < β < 1. Then,

ρ(t) =
[
µtα

α
− λtβ

β

]
(10)

W (t) = e
λtβ

β
− µtα

α

[
1 + µ

t∫

0

τα−1e
µτα

α
− λτβ

β dτ

]
(11)

By the mean value Theorem

∼= e
λtβ

β
− µtα

α

[
1 +

(
e

µ
α

( t
2
)α−λ

β
( t
2
)β

)(
µtα

α

)]
(12)

ξ(t) = 1− e−ρ(t)

W (t)
(13)

η(t) = 1− 1
W (t)

(14)

E[n(t)] = e−ρ(t) =
(1− ξ(t))
(1− η(t))

(15)
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var(n(t)) =
(1− ξ(t))(ξ(t) + η(t))

(1− η(t))2
(16)

by rank regression method, we have, i.e. by regressing log(− log R(t)) on log t; where

R(t) = exp
(−λtβ

β

)
for birth survival function

= exp
(−µtα

α

)
for death survival function with corresponding Weibull Hazard

rates
λ(t) = λtβ−1 and µ(t) = µtα−1 respectively we have estimated the parameters as
λ̂ = .0052, β̂ = .125, µ̂ = .0050 and α̂ = .0469 based on Official Data of US (2002):
(Sources : US Census (2000), (ii) HIV and AIDS / Global HIV and AIDS - Statistical
Information and Tables 2002, (iii) Tai Webster - Emory Report, April 7, 2004.
In view of the fact, that both the birth and death rates of HIV are underestimated;
the former because of lack of reporting and the latter due to the fact that majority of
deaths due to HIV are ascribed to Opportunistic infections (like Hepatitis - 2, Cardio
-respiratory failure, Tuberculosis, Cancer etc.), we have assumed (with minor modifi-
cation of the figures reported in the above sources) that: (i) mortality rate (adjusted
for opportunistic infection) is 8 to 10 percent with the further assumption that with in
the ranges the rates decrease with time. Data for the same has been generated from
uniform distribution with (min = 0.94, max = 0.96) for survival probabilities from
HIV infection and deaths per annum respectively after sorting 15 observations from
each in increasing order, as survival from HIV infection and survival from death due
to HIV (and other opportunistic infections) are assumed to be increasing functions of
time.

7 Estimation of Trend of Infectivity and Death Rates and
of HIV in 16 Years Based on the above Data

Infectivity rate for HIV at time t (t = 1, 2, · · · , 15) is given by λ(t) = λtβ−1. Substi-
tuting λ̂ = .0052 and β̂ = 0.125, we get the infectivity rates for 15 years which are
graphically y shown in figure 2.

Remark: The above pattern in the trend in the infectivity is same as that of Com-
menges And Etcheverry (1993).
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Figure 2: Trend in the infectivity rates in HIV

Similarly the trend in the HIV death rate is given by Weibull intensities µ(t) = µtα−1

for t = 1, 2, · · · , 15. On substitution of µ̂ = .0050 and α̂ = .0469, we get the trend in
the HIV death rates for 15 years which are shown in figure 3.

 

Figure 3: Trend in the HIV death intensity for 16 years

8 Estimation of the Pattern of HIV Incidences During 16
Years that Start with One HIV Positive Individual

On substitution of the estimated values of λ(t) and µ(t) in ρ(t), W (t), ξ(t) and η(t)
in (10), (12), (13) and (14) respectively and assuming infection process starts with 1
HIV positive individual, we have

E[n(t)] =
1− ξ(t)
1− η(t)

(17)

from (17) which is the mean of the prior distribution of HIV population for t =
0, 1, 2, · · · , 15 that started with one infected HIV individual. This is given in Table 1.
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Table 1: HIV Population during 16 Years from an Epidemic that Started with 1 HIV
Positive Individual.

0 - 1.0000000 8 - 1.0578230
1 - 0.9850563 9 - 1.0497230
2 - 1.0512223 10 - 1.0495658
3 - 1.0509672 11 - 1.0494189
4 - 1.0507101 12 - 1.0492789
5 - 1.0504770 13 - 1.0491469
6 - 1.0502645 14 - 1.0490210
7 - 1.0500690 15 - 1.0489008

The above figures have only been adjusted for the deaths of HIV in the state of HIV.
However, to estimate the HIV after elimination of those who pass to AIDS, we

require the transition probability of passing to AIDS; for that we require the conversion
rate to AIDS per year which is obtainable from the Incubation period distribution.
This method is given in the next section.

9 Method of Obtaining H = [qji]

We denote, E[X(t)] = µ, var(X(t)) = σ2 and decay rate δ of CD-4 cell a sample of
intravenous drug users in New York city. More specifically, let X(t) be the # of T-4
cells in an HIV free individual. Obviously, X(t) is a Stationary Stochastic Process.
Denoting Z(t) = log(X(t)) and assuming Z(t) to be a Gaussian Process, if we consider
the decay of T-4 cells of HIV individuals infected at time zero by an exponential rate δ
so that the # of T-4 cells at time t for an HIV individual is X(t)e−δt, then denoting the
logarithm of the # of T-4 cells as R(t), we have by denoting the time of detection as
HIV positive as T , [R(t)−R(t+t1)]/t1 taken over all HIV positive individuals provides
an estimate of δ, the decay cell parameter. If we consider the decay of T-4 cells of
HIV individuals infected at time zero by an exponential rate δ so that the number of
T-4 cells at any time t for an HIV positive individual is X(t)e−δt = eZ(t)−δt.

Let us denote the logarithm of the T-4 cells at time t by R(t). Denoting, R(t) as
the number of T-4 cells in logarithmic scale at time t and [R(t) − R(t + t1)]/t1 for
t1 > 0 taken over all HIV individuals provides an estimate of δ. (the average change
per unit time of log(T −4) between the first and second visits), the growth/decay rates
of T-4 cells. Further, denting T as the duration of incubation period, we have,

R(T )− µ

σ
=

[(
Z(T )− µ

σ

)
−δT

σ

]
.

Therefore,

P

[
R(T )− µ

σ
= x

∣∣∣∣
δT

σ
= t

]
⇒ P

[
Z(T )− µ

σ
= x + t

∣∣∣∣
δT

σ
= t

]
= φ(x + t)
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Since
[
Z(T )− µ

σ

]
is N(0, 1).

Therefore, the joint distribution of
[
R(T )− µ

σ
= x,

δT

σ
= t

]
is φ(x + t)q(t), pro-

vided the random variables X and T are independent; where φ(z) is the ordinate of a
standard normal variate at z and qT (t) is the distribution of T .
Following Berman (1993) and taking qT (t) to be exponential, the conditional density

of
δT

σ
= t given

[
R(T )− µ

σ
= x

]
is given by φ(x + t)q(t)

[ ∞∫

0

φ(x + t)q(t)dt

]−1

.

Now,

φ(x + t)q(t) =
1√
2π

1
m

exp
(
−1

2
(x + t)2

)
exp

(
− 1

m
t

)

Therefore,

∞∫

0

1√
2π

1
m

(−1
2

(x + t + m−1)2
)

e
1

2m2 e
1

2m
xdt =

1
m

e
1

2m2 e
1

2m
x 1√

2π

∞∫

x+m−1

e
−1
2

ξ2
dξ

Therefore,
φ(x + t)q(t)

∞∫
0

φ(x + t)q(t)dt

=
e
−1
2

(x+t+m−1)2

1− 1√
2π

x+m−1∫
∞

e
−1
2

ξ2
dξ

(18)

Thus,

P

[
δT

σ
= t

∣∣∣∣
R(T )− µ

σ
= x

]
=

e
−1
2

(x+t+m−1)2

1− 1√
2π

x+m−1∫
∞

e
−1
2

ξ2
dξ

=
dnorm(x + t + m−1)

1− pnorm(x + t + m−1)

(19)
using S− plus / R commands.

10 Estimation of the Parameters

Since X is log normally distributed with parameters µ and σ2, therefore, E(X) =
exp(µ + σ2/2) and var(X) = exp(2µ + σ2)(exp(σ2 − 1)) log E(X) = log(600 ∗ 10∧9 =
27.0202 and assuming the σ/µ = 0.354/6.966 = 0.05281826 (Berman) we get the
estimates of µ and σ from the quadratic equation µ2(.001241248) + µ − 27.0202 = 0
which gives µ̂ = 26.17124 and σ̂ = 1.423800.
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The decay rate of CD-4 cells is estimated by assuming that in 30 years only 5% cells
are not destroyed. This gives δ̂ = 0.099874. Also the estimated exponential parameter,
m−1 = 0.421 (Berman).
as an example, taking T , the stopping time (i.e., the incubation period as 5 years)
R(T )|T=5 = log(600 ∗ 10∧9 ∗ exp(−.9985774) ∗ 5) = 28.62978), we get

R(5)− µ

σ
=

28.62978− 26.17124
1.4238

= 1.725341 = x

P

[
δ5

σ
=

09985774 ∗ 5

1.4238
= t

∣∣∣∣
R(T )− µ

σ
= 1.725341 = x

]

T=5

=
dnorm(x + t + m−1)

1− pnorm(x + t + m−1)
= 0.9575928

However, noting that (19) is not obtained from a proper probability distribution, the
corresponding adjusted probability is given by

P

[
δ5
σ = 09985774∗5

1.4238 = .3507304 = t

∣∣∣∣R(5)−µ
σ = 1.7531402 = x

]

15∑
T=0

P

[
δT
σ = t

∣∣∣∣R(T )−µ
σ = x

] =
0.9575928
11.74305

= 0.0816

(20)
Thus the probability distribution of incubation period of AIDS within a range of 15
years of incubation period is given in the following table 2 as follows:

Table 2: Probability Distribution of Incubation Period.

Year Incubation Probability Year Incubation Probability
0 .0075 8 .0628
1 .1217 9 .0580
2 .1019 10 .0538
3 .0989 11 .0500
4 .0896 12 .0437
5 .0816 13 .0411
6 .0745 14 .0387
7 .0683 15 .0079

The distribution is graphically represented in figure 4.
Remarks: The graph in the figure 4 may be indicative of heterogeneity in the distri-
bution of Incubation period of AIDS; possibly, because of genetic co-factors, a class
of HIV infected individuals progress at significantly slow pace towards AIDS than the
rest of the HIV population as revealed by many earlier investigators like Buchbinder
et al (1993), Dywer. John. M (1995) etc. Buchbinder et. al (1993) maintain that
5% of the HIV affected individuals do not reach the state of AIDS even in 30 years.



12 International Journal of Statistical Sciences, Vol. 8, 2008

However, since our study is limited to the extent of incubation period of only 15 years,
therefore, we do not have enough data to support this hypothesis. However, this im-
portant aspect of Incubation period requires further probing. The traditional Weibull
distribution considered by many of the earlier investigators is incapable of highlighting
more facts on this issue.

 

Figure 4: Probability Distribution of Incubation period for 15 year period. X = year, Y = Probability
of Incubation period (in years)

11 Construction of Transition Matrix

Defining pij as the probability of passing to the state of AIDS in the jth year given
that the HIV positivity occurred in the ith year (i, j = 0, 1, 2, · · · , 15 and j > i), The
Transition matrix [H] = [pji] for i, j = 0, 1, 2, · · · , 15 for j > i has been constructed
from table 4 by considering the homogeneity of the process i.e.

pji = pj−iθ (21)

Given the transition Matrix the probability of transiting from HIV to AIDS in the
adjusted HIV vector is obtained from unadjusted HIV vector by multiplying each
entry in the column of the preceding table by (1− p00), since pii = p00.
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Table 3: Adjusted HIV Incidences (Adjusted for Conversion to AIDS) for an Epidemic
that Started with One HIV Affected Individual.

Year HIV population Year HIV population
0 0.992500 8 1.057823
1 1.05917 9 1.057823
2 1.058909 10 1.057349
3 1.058650 11 1.057208
4 1.058415 12 1.057075
5 1.058201 13 1.056948
6 1.058004 14 1.056827
7 1.057823 15 1.056710

Table 4: Adjusted AIDS Population during 16 Years.

Year HIV population Year HIV population
0 0.00744375 8 0.74383136
1 0.12873099 9 0.80547326
2 0.23797804 10 0.86257142
3 0.34286254 11 0.91564700
4 0.43833960 12 0.92663900
5 0.52516591 13 0.97038726
6 0.60442455 14 1.01390833
7 0.67704589 15 1.05491063

12 Variance-Covariance Matrix of HIV Vector (V)

Defining pji = probability of going to the state of AIDS in jth year given that HIV
positivity occurs in the ith year j ≥ i; i = 0, 1, 2, · · · , 15.

Since, H = [pji] = [pj−i,0] = 1 assuming the homogeneity of the process, therefore

15∑

j=0

pji =
15∑

j=0

pj−i,0 = 1 ∀ i = 0, 1, 2, · · · , 15

and
∑

i

(yj |xi) = yj ; i, j = 0, 1, 2, · · · , 15 (22)

Therefore, the distribution of Y = (y0, y1, y2, · · · , y15) is multinomial. The variance
covariance matrix of Y can therefore be given as follows:
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V ar(Xk) =
k∑

i=0

xip0 k−i(1− p0 k−i) (23)

Covar(Xj , Xk) =
min(j,k)∑

i=0

−[xi, p0 j−ip0 k−i] (24)

Since pji = pj−i 0 because of the homogeneity of the process.

13 Methodology to Obtain the Best Linear Unbiased Es-
timator of the HIV Vector

Let, X = (x1, x2, · · · , x15)t be the HIV vector of 15 observations. Since, no reliable
data are available, we have built up an empirical prior distribution of the same as
discussed in the preceding section. Similarly, let, Y = (y1, y2, · · · , y15)t be the corre-
sponding AIDS vector; and E(Y |X) = HX with the dispersion matrix

D = D(Y |X) = B(X) · · · (25) = B, say ⇒ E(Y ) = HX · · · (25)

var(Y ) = E(V ar(Y |X) + var(E(Y |X)) (26)

Therefore,

V = B + HS Ht where S = var(X) (27)

Then,

X̂ = BLUE of X = (HtV −1H)−1HtV −1Y = S(HtV −1Y ) where S = (HtV −1H)−1

(28)
X = SHtV −1(Y −HX) · · · · · ·

⇒ X̂ −X = SHtV −1(Y −HX) (29)

is the regression of X and Y .

BLUE of HIV=ginv(t(H)%*%ginv(V)%*% (H))%*%H%*%ginv(V)%*%YX.
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Table 5: HIV Population during 16 Years that Start with a Single Infected HIV
Individual.

Year HIV population Year HIV population
0 1.05070854 8 1.0400300
1 1.09884727 9 1.0609486
2 1.10092763 10 1.1607088
3 1.14450123 11 1.2376678
4 1.21711091 12 1.0111850
5 1.11740764 13 0.9823875
6 1.00262278 14 0.9449600
7 1.02561700 15 0.8988975

14 Estimates of HIV (2002-16) in USA (Adjusted for
Transition to AIDS)

The existing total HIV Population is 423,000. Using the same we have given in tables 6
and 7 the estimated HIV population in USA from 2002-2016, on the basis of generated
HIV population as well as BLUE of the HIV that started with one HIV affected
individual (subject to adjustment for AIDS).

Table 6: Estimated HIV Population in USA from 2002-2015.

0 419827.5=2002* 8 447388.0=2009
1 448027.1=2003 9 447321.3=2010
2 447918.5=2004 10 447258.5=2011
3 447809.1=2005 11 447199.1=2012
4 447709.4=2005 12 447142.8=2013
5 447618.8=2006 13 447089.0=2014
6 447535.9=2007 14 447037.7=2015
7 447459.3=2008 15 446988.5=2016

* (adjusted for 1 year conversion to AIDS)
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Table 7: Estimated HIV Population in USA during 2002-2015 Based on BLUE of
HIV Population.

Formula: 423000* BlueX= BLUE of HIV from 2002-15 in USA.

2002 444449.7 2009 433836.0
2003 464812.4 2010 439932.7
2004 465692.4 2011 448781.2
2005 484124.0 2012 523533.5
2006 514837.9 2013 427731.3
2007 472663.4 2014 415549.9
2008 424109.4 2015 399718.1

 

Figure 5: HIV population (adjusted for elimination into AIDS) for 16 years that Started with a
single HIV affected individual

 

Figure 6: Best linear estimates (BLUE) of HIV population during 16 years that started with a single
HIV affected individual
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Figure 7: AIDS population during 16 years that was generated from a single affected Individual

15 Some Evidences about the Preference of Log-normal
to Weibull as HIV Distribution for Incubation Period
of AIDS

For the choice of models to describe the incubation for AIDS (especially between
Weibull and log-normal), Munoz and Xu (1996) report that there are empirical evi-
dences that, although the hazards of AIDS for an HIV seropositive increase. During
the first six to eight years from sero-conversion, the curvature changes and the hazard
function flattens out past 10 years from sero conversion. The attenuation of the hazard
is most consonant with log normal model of HIV being an appropriate distribution
of incubation period of AIDS rather than traditional Weibull. To exhibit the same
the authors consider the hazard functions of three parameter. Logistic model, Weibull
and log-normal models which are given as follows:

log normal: hL(t) =
1

1− φ

(
log t−β

α

) · 1√
2π

1
αt

exp
[−1

2

(
log t− β

α

)2]

Weibull : hW (t) =
1
αt

(exp(−βt)1−α)

Three parameter logistic : h(t) =
1

1 + exp(−β0 + β1(log t) + β2(log t)2)

They further point out that the three parameter logistic model under certain condi-
tions of β0, β1 and β2 can take the shape of log-normal, Weibull and none of the either
two also. Therefore, in consideration of Weibull and log normal being particular cases
of three parameter logistic (which has been considered as a standard distribution for
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the comparison of Weibull and log normal), they considered the proximities of logis-
tic and Weibull to three parameter logistic respectively by their respective deviances
from the three parameter logistic by the method of likelihood ratio test. The full data
collected by the authors were utilized and the analysis has been carried on 10 times
using a different set of random draws from the imputed times from sero-conversion
to entry for the sero-prevalent cohort. For details of collection of data one may refer
Munoz and Xu (1996). The results reproduced from Table II, page 2464 (Munoz and
Xu (1996) are shown in the following table 8.

Table 8: Values of - 2 log λ Likelihood to Compare Three Parametric Models Using
the Full Data on Ten Imputations.

Models
Imputation -2log λ likelihood

of three parame-
ter logistic

Deviances in respect
of three Parameter
logistic model for
lognormal

Deviances in resect
of three Parameter
Logistic Model for
weibull

1 7822.62 4.90 35.03
2 7797.54 13.15 22.89
3 7823.60 6.03 28.60
4 7799.96 2.46 35.24
5 7812.92 4.68 32.00
6 7850.61 3.23 34.90
7 7818.66 2.16 40.76
8 7827.41 7.74 26.21
9 7874.45 11.65 16.32
10 7801.16 5.61 33.46

The table shows in all cases the deviance of log-normal model from the three
parameter Logistic is lower than the corresponding deviance of the Weibull model and
the latter significantly differs from the three parameter logistic model in all the ten
cases. This Indicates that for the HIV distribution for the incubation of AIDS, the
log-normal provides a much better fit in the context of three parameter logistic family.
Finally, to corroborate our conjecture that log-normal gives a better representation of
HIV distribution than Weibull, we again reproduce a second findings of Munoz and
Xu (1996) relating to the HIV distribution by years (i.e. estimates of percentage free
of AIDS after sero conversion in years) from table III, page 2465 of the same paper.
That shows the relative performance of log-normal and Weibull in representing the HIV
distribution while comparing them with standard distributions like three parameter.
Logistic and Kaplan Meier (which is also considered in the literatures a fairly good
Non-parametric model for describing HIV distribution especially for censored data).
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Table 9: Estimates of Percentage Free of AIDS after HIV Transmission in Years.

Years from
Sero con-
version

Kaplan Meier
(%)

*Three parameter
logistic (%)

+ Lognormal
(%)

+Weibull
(%)

2 97.7 97.9 98.7 88.1
4 87.7 87.7 88.6 73.4
6 72.8 72.7 72.9 59.4
8 57.3 57.6 57.5 47.0
10 44.3 44.6 44.5 36.6
12 33.9 34.1 34.3 28.1
14 25.8 26.0 26.4 21.3
16 19.9 20.4 15.9
18 15.3 15.9 11.8
20 11.8 12.4 8.6

* Based on average of 10 imputations,
+ based on average observations over 5 years

A comparison of the observations of Kaplan Meier (based on full observations), Log
normal and Weibull (left truncated at 5 years) clearly shows that the simple two
parameter log normal model provides good fit as three parameter logistic model. In
contrast, the Weibull model provides a very poor fit considerably underestimating the
survival functions at all times.

16 Conclusion

We have attempted to make an innovative application of D. G. Kendall’s generalized
Birth and death process by obtaining a Prior distribution of HIV from the same. This
distribution is supposed to be real as it can be utilized to take into account of the
mortality of HIV patients in the state of HIV; as well as because of the fact that the
parameters of the distribution have been estimated on the basis of available Statistical
data of USA. The trend of HIV infectivity curve obtained by us compares fairly well
with that of Commenges and Etcheverry. Whereas the trend in the HIV mortality
curve cannot be compared with any other earlier investigators as HIV mortality, which
is quite significant has not been considered by any earlier worker to the best of the
knowledge of the Authors.

In view of this, the informative prior obtained by us is considered better than
any other empirical prior that is developed on the basis of only growth behavior of
HIV without considering the mortality pattern of HIV; which is sometimes quite high
because of several opportunistic infections. While taking into account of the same, we
have assumed little flexibility on the official Statistics figures in our analysis. Secondly,
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departing from the traditional line of back projection of HIV from AIDS data, we
have evolved an incubation period distribution with biological orientation based on
the premises of progressive reduction of CD-4 cells; as and when an HIV positive
individual transits towards full blown AIDS state. This kind of Incubation period
distribution is considered to produce better correspondence with real figures than an
inflexible Weibull distribution established by Munoz and Xu (1996) which may not be
quite suitable for long term projection of AIDS; as the estimates of the parameters of
the distribution undergo change during long time range. One important finding in our
exercise is that the trend in the generated data of HIV from informative prior based
on Kendall’s birth and death process shows the same pattern as that of their BLUE
obtained by Gauss-Aitken least squares method which produce maximum correlation
between two consecutive observations of HIV incidences. Further work in this line can
fruitfully be generalized with the break up of HIV data for several identifiable social
classes who are more vulnerable to HIV and AIDS; that is very much applicable in
the preventive and Action research program of HIV and AIDS.
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Appendix

Let Xν+1 be the ] of CD-4 cells at an instant ν, we assume Xν+1 −Xν = ξν+1 · g(Xν)
where ξν+1 is an impulse working at ν + 1 and g(Xν) is a function of Xν .

⇒ Xν+1 −Xν

g(Xν)
= ξν+1 ⇒

n−1∑

ν=0

Xν+1 −Xν

g(Xν)
=

n−1∑

ν=0

ξν+1 ⇒
n−1∑

ν=0

ξν+1 ∼
Xn∫

X0

dt

g(t)

Note that by Central limit theorem, since
n−1∑

ν=0

ξν+1 is the sum of several independent

randon variables, therefore,

Xn∫

X0

dt

g(t)
is normally distributed.

We have assumed g(t) = t ⇒ log
Xn

X0
; which proves that log Xn is normally distributed.

This establishes the justification of the distribution of CD-4 cells as lognormal.


