
International Journal of Statistical Sciences ISSN 1683–5603

Vol. 6 (Special Issue), 2007, pp 63-68

c© 2007 Dept. of Statistics, Univ. of Rajshahi, Bangladesh

On Invariance Properties of A- and D- Minimax Designs
for Estimating Slopes of a Reduced Second-order Model

S. Huda and F. Alqallaf
Dept. of Statistics and Operations Research

Kuwait University
P.O. Box 5969, Safat 13060, Kuwait
Email: shuda@kuc01.kuniv.edu.kw

[Received April 10, 2005; Revised March 5, 2007; Accepted July 17, 2007]

Abstract

The A- and D-minimax criteria are concerned with minimization with re-
spect to the design the trace and determinant, respectively, of the covariance
matrix of the estimated axial slopes at a point, maximized over all points
in the region IR of interest in the factor space. It is shown that for the
reduced multifactor second-order model containing an intercept term and
the pure quadratic terms only the D-minimax design is invariant with re-
spect to the choice of the region IR. It is further shown that the A-minimax
design among the balanced designs is also invariant with respect to IR. The
necessary and sufficient conditions for invariance of A-minimax designs in
two and three dimensions are also provided.
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1 Introduction

Consider the standard response surface experimental design set up in which it is as-
sumed that an univariate response y depends on k quantitative factors x1, . . . , xk
through a smooth functional relationship y = φ(x, θ) where x = (x1, . . . , xk)

t and
θ = (θ1, . . . , θp)

t is a column vector of unknown parameters. Let χ be the exper-
imental region, i.e. the region of the factor space in which experimentation is per-
mitted. A design ξ is a probability measure on χ. If yi is the observation at the
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point xi = (xi1, . . . , xik)
t (i = 1, . . . , N) chosen according to the design ξ, it is as-

sumed that yi = φ(xi, θ) + ei where the ei’s are uncorrelated, zero-mean random

errors with a constant variance σ2. Let θ̂ be the estimate of θ. Then ŷ(z) = φ(z, θ̂)
is the corresponding estimate of the response at a point z = (z1, . . . , zk)

t. Further,
dŷ/dz = (∂ŷ(z)/∂z1, . . . , ∂ŷ(z)/∂zk)

t is the column vector of estimated slopes along
the factor axes at the point. Typically, the method of least squares may be used
for the estimation. Let V (ξ, z) denote (N/σ2) cov(dŷ/dz), the standardized variance-
covariance matrix of the estimated slopes. Obviously V (ξ, z) depends both on the
design ξ used and on the point z at which the axial slopes are estimated.

In many situations estimation of slopes of a response surface is of greater inter-
est than estimation of the response surface itself (see for example, Atkinson (1970),
Mukerjee and Huda (1985)). This is particularly true in situations where the ex-
perimenter is interested in optimizing the response and needs to determine points
where the maximum (or minimum) occurs. The vector dy/dz not only displays the
rates of change along the axial directions but also provides information about the
rates of change in other directions. The directional derivative at point z in the di-
rection specified by the vector of direction cosines c = (c1, . . . , ck)

t is ctdy/dz. Fur-
ther {(dy/dz)t(dy/dz)}−1/2dy/dz is the direction in which the directional derivative is
largest. This well-known result from multivariate calculus provides added justification
for concentrating on estimation of slopes along the axial directions.

Under the traditional A-, D- and E-optimality criteria the objective is to minimize
with respect to the design

tr cov(θ̂) =

p∑

i=1

λi,

|cov(θ̂)| =
p∏

i=1

λi,

max{λ1, . . . , λp},

respectively, where λi (i = 1, . . . .p) are the e-values of cov(θ̂). Huda and Al-Shiha (1999,
2000) generalized these concepts to consider situations where estimation of slopes is
the primary interest of the experimenter and defined the A-, D- and E-minimax criteria
as follows:

min
ξ

max
z∈IR

tr V (ξ, z)(=

k∑

i=1

βi(ξ, z)),

min
ξ

max
z∈IR

|V (ξ, z)|(=
k∏

i=1

βi(ξ, z)),

min
ξ

max
z∈IR

max{β1(ξ, z), . . . , βk(ξ, z)},
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respectively, where βi(ξ, z) (i = 1, . . . , k) are the e-values of V (ξ, z) and IR is the region
of interest in the factor space. Often IR = χ but that need not be the case always. We
shall assume that IR is bounded.

2 Second-order model

A substantial part of statistical literature on experimental design is concerned with lin-
ear models. In the linear model set-up, φ(x, θ) = f t(x)θ with f t(x) = (f1(x), . . . , fp(x))

containing p linearly independent functions of x. Then the least squares estimate θ̂
has the variance-covariance matrix cov(θ̂) given by (N/σ2)cov(θ̂) = M−1(ξ) where
M(ξ) =

∫
χ f(x)f

t(x)ξ(dx) is the information matrix of ξ. Also, (N/σ2)var(ŷ(z)) =

f t(z)M−1(ξ)f(z) and

V (ξ, z) = H(z)M−1(ξ)Ht(z), (1)

whereH(z) is a k×pmatrix whose i-th row is ∂f t(z)/∂zi = (∂f1(z)/∂zi, . . . , ∂fp(z)/∂zi)
(i = 1, . . . , k).

The linear models most commonly used in response surface designs are the polyno-
mial models. A polynomial model of order d is one for which f(x) contains the terms
of a polynomial of degree d and less in x. For example when d = 2 the model is called a
second-order model. A full second-order model in k variables contains (k+2)(k+1)/2
terms in f(x) (and in θ). In what follows we consider a reduced second-order model
containing the intercept and the pure quadratic terms only, given by

f t(x) = (1, x21, . . . , x
2
k). (2)

Note that the second-order models are widely used in industry and even reduced
second-order models such as (2) may have practical usefulness (cf. Schwabe and Wong
(2003)).

3 Invariance property of A- and D- minimax designs

When the model is specified by (2), the information matrix M(ξ) is given by

M(ξ) =

[
1 m′

m M

]
, (3)

where m′ = (m1, . . . ,mk) with mi =
∫
χ x

2
i ξ(dx) andM is a k×k matrix with diagonal

elements mii =
∫
χ x

4
i ξ(dx) and off-diagonal elements mij =

∫
χ x

2
ix

2
jξ(dx) (i 6= j =

1, . . . , k). Further,

H(z) = [0, 2 Diag{zt}], (4)
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where 0 is the k-component column vector of 0’s. Then assumingM to be non-singular
and using the standard results on inverse of partitioned matrices, from (3) we have

M−1(ξ) =

[
a −am′M−1

−aM−1m M−1 + aM−1mm′M−1

]
, (5)

where a = 1/(1 −m′M−1m).

3.1 D-minimax design

Under the D-minimax optimality criterion the objective is to min
ξ

max
z∈IR

|V (ξ, z)|. But

substituting for H(z) from (4) and M−1(ξ) from (5) into (1), we obtain that for the
reduced second-order model,

V (ξ, z) = 4 Diag{zt}[M−1 + aM−1mm′M−1] Diag{zt}. (6)

From (6) it follows that

|V (ξ, z)| = 4k|M−1 + aM−1mm′M−1|(
k∏

i=1

z2i ). (7)

Clearly, the objective function (7) is separable in the arguments ξ and z. The only

term depending on z is (
∏k

i=1 z
2
i ) and the term |M−1 + aM−1mm′M−1| depends only

on the design ξ and does not involve z at all. Hence, the D-minimax design ξ∗D has to
minimize |M−1 + aM−1mm′M−1| and the same ξ∗D will be optimum whatever IR is.
This may be stated as the following theorem.

Theorem 1. For the reduced second-order model containing the intercept and pure
quantitative terms only, the D-minimax design is invariant with respect to the region
IR over which estimation of slopes is of interest.

3.2 A-minimax design

Under A-minimax optimality criterion, the objective is to min
ξ

max
z∈IR

trV (ξ, z). Now

from (6) we obtain that

trV (ξ, z) =

k∑

i=1

(V (ξ, z))ii = 4

k∑

i=1

viiz
2
i , (8)

where vii = (M−1 + aM−1mm′M−1)ii (i = 1, . . . , k).
If the design ξ is balanced, then vii = v(i = 1, . . . , k) (say) and it follows from (8)

that trV (ξ, z) = 4vρ2z where ρ2z =
∑k

i=1 z
2
i . Then the objective function is again

separable in the arguments and the A-minimax design ξ∗A has to minimize v, the same
ξ∗A being optimum whatever IR is. This may be stated as the following.
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Theorem 2. For the reduced second-order model containing the intercept and pure
quadratic terms only, the A-minimax design within the class of balanced deigns is
invariant with respect to the region IR over which estimation of slopes is of interest.

The question that arises naturally is “Is the condition of balance also necessary
for invariance of the A-minimax design?” This can be easily answered by looking
at the special case of k = 2. Then letting [ii] =

∫
χ x

2
i ξ(dx), [iiii] =

∫
χ x

4
i ξ(dx)

(i = 1, 2) and [1122] =
∫
χ x

2
1x

2
2ξ(dx), it is readily seen that v11 = v22 if and only if

[1111]+[22]2 = [2222]+[11]2. It is easy to construct designs satisfying this requirement
and the two-dimensional designs presented in Huda and Chowdhury (2004) are such.
For k = 3, the necessary and sufficient condition is v11 = v22 = v33 which is true if
and only if

[1111][22]2 + [2222][11]2 + [1122]2 − [1111][2222] − 2[1122][11][22]

= [1111][33]2 + [3333][11]2 + [1133]2 − [1111][3333] − 2[1133][11][33]

= [2222][33]2 + [3333][22]2 + [2233]2 − [2222][3333] − 2[2233][22][33]

where [ii] =
∫
χ x

2
i ξ(dx), [iiii] =

∫
χ x

4
i ξ(dx) and [iijj] =

∫
χ x

2
i x

2
jξ(dx) (i 6= j =

1, 2, 3). The problem of finding necessary and sufficient condition in the general case
of k ≥ 4 is currently under investigation.

4 Remarks

Remark 1. For the reduced second-order model the D-minimax design is the same for
all regions over which estimation of the slopes is of interest. Thus the region IR
can be completely arbitrary. In particular, it may be irregular in shape, disjoint
from the experimental region χ or may even consist of a finite number of points.
The condition that IR be bounded is needed so that the minimax optimality
criterion is well defined.

Remark 2. Experimenters usually prefer the use of balanced designs because of their
simplicity of analysis (and also construction at times). Thus the invariance
result concerning A-minimax optimality criterion also should be of interest to
experimenters.
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