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Abstract

Various authors have discussed both continuous and discrete inverted dis-
tributions and its applications to various disciplines. The applications of
inverted distributions extend from social sciences to geological, engineering,
environmental and medical sciences. This paper is an attempt to review
various results, to report some new properties of the inverted distributions
and to develop a theory of inversion.
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1 Introduction

The irreversible damage to manufacturing materials is generally caused by a damage
process such as fatigue, creep, fracture, corrosion and wear. The probability mod-
els corresponding to the reciprocal transformation arise in these different types of
stresses. A number of authors have studied the moments of reciprocals of random
variables and negative moments of positive random variables [See Jones and Zhigl-
javsky (2004), Rempala (2004) and Royer (2003)]. Virtuosa and Vieira (2004) have
recently discussed the creep, shrinkage, cracking and deformation of concrete flange on
the basis of negative moments. Mendenhall and Lehman (1960) while investigating the
properties of the maximum likelihood estimator of the scale parameter of the Weibull
distribution from a sample censored at time T, observe that the mean square error of
the estimator depends on the negative moments of the positive binomial variate.
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Random quantities arising in modeling, simulation, data analysis, life testing, and
in decision-making lead to various kinds of distributional problems and quest for solu-
tions. The concept of a model is familiar in applied science works. The unique feature
of a model is that it describes a measurement variable in mathematical terms. The
probability density function or a cumulative distribution function serves as a statistical
model of a random phenomenon. A vast majority of well-known distributions, discrete
as well as continuous, has been derived analytically from other models independent of
their relevance to particular phenomena.

The applications of inverted probability distributions extend from social sciences
to biological, engineering, environmental and medical sciences. In continuous distri-
butions, Baysians have extensively made use of the inverted probability functions as
priors. The commonly used continuous inverted distributions are half normal, gamma,
Weibull, inverse gaussian etc. In discrete distributions, almost all well known distribu-
tions have been either inverted or their negative moments have been obtained. These
are binomial, Poisson, negative binomial, geometric, logarithmic, hyper Poisson etc.

In spite of the adequacy of these probability functions in many important areas,
no attempt has been made in comprehensively compiling their statistical properties
and characteristics. In this paper, an attempt has been made to compile the statistical
properties of inverted distributions. Some new results are derived. These results may
lead to the development of theory of inversion.

2 Inverse Distributions

If g(x) = 1/X, then it is described by inverted random variable. There are many
inverted distributions discussed in literature. Stephan (1945) is one of the earlier
authors who discuss negative moments of binomial and hyper geometric functions.
Grab and Savage (1954) have constructed the tables for negative moments of the
binomial and Poisson distributions. Mendenhall and Lehman (1960), Govendarajulu
(1962, 1963), Tiku (1964), Vijsokousku (1966), Stancu (1968), Skibusky (1970), Kabe
(1976) Shahnbhag and Busawa (1971), Chao and Strawderman (1972), Gupta (1974,
1984), Lepage (1978), Kumar and Cousul (1979), Cressie et al (1986), Cressie et al
(1981), Ahmad and Sheikh (1981, 1983, 1984, 1987), Cressie and Borkent (1986),
Jones (1987), are some of the early authors who have discussed various aspects of
inverted distributions or negative moments. More recently, Roohi (2002), Jones and
Zhiglijavsky (2004), Rempala (2004) and Ahmad and Roohi (2004a, 2004b, 2004c,
2004d), have also discussed both continuous and discrete inverted distributions.

3 Inverse Continuous Distributions

Inverted gamma distribution has been discussed first in literature, however, we start
with a popular and extensively used inversion of normal probability distribution also
known as Bernstein distribution and alpha distribution. It is applied in engineering and
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other sciences [See Druzhinin (1963), Kordonsky and Faridman (1976), Vysokovskii
(1966, 1970) and Pronikov (1973a & 1973b)]. In several cases when identical machine
parts (such as cams, splines, cutting tools, machine tools etc.) are tested to determine
the wear on the contact surfaces, the wear process W (x) obtained as a function of
time X is linear as shown in Figure 1. In Figure 1 each realization (line) represents
the wear on the surface of a single part. The random wear process in this case can
be expressed by the random function W (x), given by W (x) = ax + b, where a and

b are random variables such that a = dW (x)
dx = rate of wear and b = W (o) = initial

value of wear. Suppose that the machine part fails if W (x) ≥ Wℓ, where Wℓ is the
permissible wear limit. The random variable X defining the life of the component is
given by X = (Wℓ − b)/a, a > 0. If a ∼ N

[
µa, σ

2
a

]
, Ahmad and Sheikh (1983) have

derived the distribution of X as a function of a−1 called inverted normal distribution
and discussed its various properties. Because of its bimodality and problems at zero,
the distribution has not been studied thoroughly, though many authors have found its
various applications [See Ahmad and Sheikh (1981, 1984) and Druzhinin (1963)].

The probability density function, f(x) of X is B(C,α) where B(C,α) is inverted
normal distribution where α and C > 0 are parameters. [See Ahmad and Sheikh
(1987), Gertshakh and Kordons (1969), Kordonsky and Faridman (1976)]. Some of
the known properties of the density are (See Ahmad and Sheikh, 1984 and Sheikh and
Ahmad, 1982, 1983).

(i) f(x) is bimodal and modes are = 2c
[
1±

√
1 + 8α

]

(ii) Median = c

(iii) Suppose X has B(c, α) inverted normal random variable, then

(a) aX has a density given by B(ac, α), a > 0,

(b) Y = bX/(aX + d) has a density function given by

B
(
bc/d+ ac, ad2/ (d+ ac)2

)
,

(c) Y = aX1X2/(X1 + bX2) has a density function given by

B
(
ac/b+ 1, b2 + 1

/
(b+ 1)2

)
when X1 and X2 are independent random

variables each having inverted normal distribution,

(d) Yn =

(
1
n

n∑
i=1

. (1/Xi)

)−1

has a density function given by B (c, α/n) provided

Xi, i = 1, 2, · · · , n are independent inverted random variables where Yn is
harmonic mean of X,

(e) 1
2α

n∑
i=1

(1− c/xi)
2 has χ2

(n) with n degrees of freedom and

(f) Y = exp (1/X) has log-normal distribution.

The inverted distribution can further be explored and its applications traced in
various disciplines.
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Figure 5: Sample function of linear non-stationary random wear process.

4 Inverse Discrete Distributions

Early authors give approximate results for the negative moments of some discrete dis-
tributions, mainly binomial and Poisson truncated at the point zero along with bounds
for the cumulative error. Chao and Strawderman (1972) using the probability gener-
ating function of the random variable (X +A− 1) > 0, give a technique of obtaining

negative moments of the form E
[
(X +A)−k

]
, and derive the first order negative mo-

ments of the binomial and Poisson distributions. Kumar and Consul (1979) obtain

negative moments of the form E
[
(X +A)−k

]
for the Lagrangian binomial and La-

grangian Poisson distributions. Govindarajulu (1963) obtains a recurrence relation for
the kth negative moment of the positive binomial distribution. Skibinsky (1970) and
Shahnbhag and Busawa (1971) using a probability property obtain characterizations of
the hyper-geometric and binomial distributions respectively. In the following sections,
we find recurrence relations involving negative moments and obtain characterizations
of some discrete distributions using these recurrence relations.

4.1 Recurrence Relations

In this section, a series of recurrence relations involving negative and negative factorial
moments of some discrete distributions have been given [See Ahmad and Roohi (2004a,
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2004b), and Roohi (2002)].
Theorem 1: Suppose X has binomial probability distribution with parameter n
(n = 1, 2, · · · ) and p (0 ≤ p < 1), then for A > 1, the following relation holds

p (A+ n) E

(
1

X +A

)
= 1− (A− 1) (1− p) E

(
1

X +A− 1

)
, n = 1, 2, · · ·

Theorem 2: Suppose X is a binomial random variable with parameters n and p, then

µ′−[k] = E

[
k∏

i=1

(X + i)

]−1

= 1− p (k!)−1
2F1

[
1,−n; k + 1;− p

1− p

]
,

k = 1, 2, · · · , and 0 < p < 1, where µ′−[k] is the negative ascending factorial moment

of X, Γ−[k] = E [X (X + 1) .... (X + k − 1)]−1.
Theorem 3: Suppose X has a binomial probability distribution with parameters n
and p. Suppose µ′−[k] is the kth negative ascending factorial moment of X. Then the

relation
(k + 1 + n) pk µ′−[k+1] = [k (1− p) + np] µ′−[k] − µ′−[k−1]

holds, for k = 2, 3, 4, . . . and 0 < p < 1.
Theorem 4: Suppose X is negative binomially distributed random variable with
parameters r and p. Then

E(X + A)-1 = pr A−1
2F1 [A, r; A+ 1; q] ,

where A > 0, q = 1− p and 2F1 [a, b; c; z] is the hypergeometric series function.
Theorem 5: Suppose X is negative binomially distributed with parameters r and p.
Then the relation

q (A-r) E(X + A)-1 = (A− 1) E (X + A-1)−1 − p, holds for A>1 and A6=r.
Theorem 6: Suppose X has a negative binomial probability distribution with pa-
rameters r and p. Suppose µ′−[k] is the kth negative factorial moment of X. Then the

relation
(k + 1− r) qk µ′−[k+1] = [k (q − p)− qr] µ′−[k] + p µ′−[k−1], k > 1

holds.
Theorem 7: Suppose the random variable X has a logarithmic series distribution
with parameter θ and probability function

P (X = x) =
θx−1

x
[θ ln (1− θ)]−1 , x = 1, 2, ...,

then A2θ E
[
(X +A)−1

]
= A (A− 1)E

[
(X +A− 1)−1

]
−A (1− θ)+P1 holds where

P 1 = P (X = 1) , 0 < θ < 1 and A > 1.



48 International Journal of Statistical Sciences, Vol. 6s, 2007

Theorem 8: Suppose the random variable X has a logarithmic series distribution
with parameter θ and µ′−[k] is the kth negative ascending factorial moment of X. Then

the relation

(k + 1)2 θµ′−[k+1] = [(k + 1) (θ − 1) + kθ] µ′−[k] + (1− θ)µ′−[k−1],

0 < θ < 1, for k = 2, 3, ...
holds
Theorem 9: Suppose the random variable X has a hyper-Poisson distribution with
parameters θ and λ as:

P (X = x) = Cθ,λ
θx

λ[x]
, x = 0, 1, ...; θ > 0, λ > 0,

where Cθ,λ = {1F1 [1; λ; θ]}−1 , λ[0] = 1 and λ[x] = λ (λ+ 1) ... (λ+ x− 1). then

θE (X +A)−1 = 1+ 1−λ
A−1P0+(λ−A) E (X +A− 1)−1 for A > 1 and P0 = P (X = 0).

4.2 Characterizations

Characterization based on negative moments of some discrete distributions have been
given below (Ahmad and Roohi, 2004 b,c):
Theorem 10: X has a binomial probability function Px(n, p) if and only if for A >
1 and p (n− x)Px − (1− p) (x+ 1) Px+1 ≥ 0

p (A+ n)E
[
(X +A)−1

]
= 1− (A− 1) (1− p) E

[
(X +A− 1)−1

]
,

0 ≤ p ≤ 1 and x = 0, 1, 2, 3, . . . n,
holds.
Theorem 11: X has a negative binomial probability function Px(r, p) if and only if

for A>1 and Px+1 >
q(x+r)
x+1 ,

(A− r) qE
[
(X +A)−1

]
= (A− 1) E

[
(X +A− 1)−1

]
− p holds,

where 0 ≤ p ≤ 1, q=1-p and x = 0, 1, 2, . . . . . . .
Theorem 12: X has a logarithmic probability function Px with parameter θ if and
only if for A > 1 and (1 + x) Px+1 − xθPx ≥ 0,

Aθ E
[
(X +A)−1

]
= (A− 1)E

[
(X +A− 1)−1

]
− 1 + θ +

1

A
P1

holds for 0 < θ < 1, x = 1, 2, 3, . . . . . and P1= P(X=1).
Theorem 13: X has a hyper-Poisson probability function Px (θ, λ) if and only if for
A > 1 and θPx − (x+ λ)Px+1 ≥ 0, θ, λ > 0

E (X +A)−1 =
1

θ

{
1− 1− λ

1−A
P0 + (λ−A) E (X +A− 1)−1

}

holds, where x = 0, 1, 2, . . . . . . ; P0 = P(X = 0), θ > 0 and λ > 0,
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5 Conway-Maxwell-Hyper Poisson Distribution

Shmueli et al (2005) have generalized one-parameter Poisson distribution to a two pa-
rameters distribution called Conway-Maxwell-Poisson (CMP) distribution, discussed
some of its properties and have fitted the CMP distribution to non-Poisson count
data. In this section, we have found, a natural extension of two-parameter CMP
to three-parameter distribution, which may be called Conway-Maxwell-Hyper-Poisson
distribution (CMHP). Hyper-Poisson distribution has been in literature for some time.
It is a natural extension of the Poisson distribution providing information on super-
Poisson, and sub-Poisson depending on one of its parameters (Bardwell and Crow,
1964).

Let the CMP distribution be shifted to X = a and let y = x− a, then

P (Y = y) =
1

Z (λ, ν, a)
.

λy+a

[(y + a)!]ν
, y = 0, 1, 2, ..., a ≥ 0, ν ≥ 0 and λ > 0, (1)

where Z (λ, ν, a) =

[
∞∑
i=0

λi+a

[ (i+a)!]ν

]
. Z (λ, ν, a) converges for any λ > 0 and ν > 0

except for ν = 0 and λ ≥ 1. The equation holds for any a ≥ 0. If a = 0, P(Y = y) is
CMP distribution. P (Y = y) is also true for any positive real value of a. Further, it
may be noted that a truncated CMHP is again CMHP. Following Shmueli et al (2005)
procedures, we have:

E (Y + a)r+1 =

{
λE (Y + a− 1)1−ν + aλa−1

Z(λ,ν,a) (a!)ν
, r = 0,

λ d
dλE (Y + a)r + E (Y + a)r E (Y + a) , r > 0.

We may also find the rth negative moment of Y + A, A > 0 of CMHP

E (Y +A)−r =
1

Z (λ, ν, a)

∞∑

y=0

1

(y + a)r
λy+a

[(y + a)!]ν

Following Shmueli et al (2005) procedure, we have

E (Y +A)−r =

[
E (Y +A)1−r − λ

d

dλ
E (Y +A)−r

]
[E (Y +A)]−1 , r = 1, 2, ....

If a = 0, then we have rth negative moment of CMP distribution.

5.1 Characterization of CMHP and CMP

Theorem 14: Y is a CMHP random variable if and only if

P (Y = y)

P (Y = y − 1)
= λ/(y + a)ν , ν, a ≥ 0 and λ > 0 (2)
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Proof: Suppose Y is CMHP random variable. The relation (2) is trivial.
Suppose the relation (2) holds. Let Py = P (Y = y). If the proportion (2) holds, then

Py = λ
(y+a)ν Py−1. For y = 1, 2, . . . , we have

Py =
λy

[(a+ 1) ... (a+ y)]ν
P0 =

λyΓν (a)

Γν (y + a)
P0.

Since
∑
Py = 1 then P0 =

(
Γν (a)

∞∑
y=0

λy

Γν(y+a)

)−1

.

On simplification, we get (1).
If a = 0, Y is a CMP random variable. The characterization theorem holds for CMP
and under conditions stated by Shmueli et al (2005), the characterization holds for
ordinary Poisson, Bernoulli and geometric distributions.
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