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Abstract

Principal component analysis (PCA) is one of the most popular technique
for dimensionality reduction of multivariate data. This paper discusses a
new learning algorithm to explore local PCA structure in which the ob-
served data follow a mixture of several PCA models, where each model is
described by a linear combination of independent and Gaussian sources.
The proposed method is based on a mixture of several Gaussian distri-
butions to extract all local PCA structures simultaneously. Parameters
are estimated by maximizing likelihood function. The performance of the
proposed method is compared with some existing PCA algorithms using
synthetic datasets.
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1 Introduction

Principal component analysis (PCA) is one of the most popular technique for pro-
cessing, compressing and visualizing multivariate data. It is widely used for re-
ducing dimensionality of multivariate data (1). In general, PCA aims to extract
the most informative q-dimensional output vector y(t) from input vector x(t) =(
x1(t), x2(t), ..., xm(t)

)T
of dimension m ≥ q whose components are assumed to be
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Gaussian and linearly correlated with each other. This is achieved by learning them×q
orthogonal matrix Γ or ΓTΓ = Iq (identity matrix) which relates x(t) ∼ N(µ,Σ) to

y(t) =
(
y1(t), y2(t), ..., yq(t)

)T
by

y(t) = Γ̂T
(
x(t)− µ̂

)
, t = 1, 2, . . . , n (1)

such that components of y(t) are mutually uncorrelated satisfying Var(Y1) > Var(Y2) >

... > Var(Yq) > 0, where Γ̂ is obtained as the q dominant eigenvectors of the estimated

covariance matrix Σ̂, which we write in the form

Γ̂ = eigen(Σ̂). (2)

Note that a dominant eigenvector of a covariance matrix is also known as principal

subspace or principal component (PC) vector. The estimates
(
µ̂, Σ̂

)
of (µ,Σ) are

obtained by maximizing likelihood function as given below:

µ̂ =
1

n

n∑

t=1

x(t) (3)

and

Σ̂ =
1

n

n∑

t=1

(
x(t)− µ̂

)(
x(t)− µ̂

)T
(4)

The input vector x(t) is represented by the m-dimensional latent vector

s(t) =
(
s1(t), s2(t), ..., sm(t)

)T
as

x(t) = As(t) + b, t = 1, 2, . . . , n (5)

where A is an m×m coefficient matrix and b is a bias vector. The components of the
latent vector s(t) are assumed to be mutually independent and Gaussian. The latent
variable model expressed by equation 5 is considered as the data generating model.
It offers a more economical explanation of the linear dependencies among the input
observations (7; 8).

In standard PCA model defined by equations 1-5, all latent vectors belong to only
one source class S , and all input vectors belong to the same class in the entire data
space D . However, in practice, these source vectors may originate from several source
classes, and the corresponding observed vectors belong to several classes in the en-
tire data space. In this case, performance of the classical PCA methods are not so
good. To overcome this problem, Tipping et al. (8) proposed mixture of probabilistic
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PCA. However, their method is a little bit inconvenient due to computational and
conceptual complexity. Therefore, an attempt is made to propose a new PCA mixture
model for exploring local PCA structures. Note that in the PCA mixture model, the
observed data in each class are considered to be a linear combination of independent
and Gaussian sources (8; 5). When the data in each class are modeled as multivariate
non-Gaussian, it is known as a ICA mixture model (2; 4).
Section 2 discusses a new PCA mixture model, section (2.1) describes the derivation
of the PCA mixture model. In section (2.2), we discuss how to extract local PCA
structures. Finally, section (3) presents numerical examples, and Section (4) presents
the conclusions of this study.

2 The Proposed PCA Mixture Model

Let us assume that source vectors come from c source classes {S1,S2, ...,Sc} and that
the corresponding observed vectors belong to c different data classes {D1,D2, ...,Dc}
in the entire data space D , where c is assumed to be known in advance. In addition,
we assume that data class Dk occurs in the entire data space D due to the source class
Sk, (k = 1, 2, . . . , c). In practice, the occurrence order of an observed vector in the
entire data space D from a source class is unknown. However, we can assume that an
observed vector zk(j) ∈ Dk = {zk(j); j = 1, 2, . . . , nk}, (k = 1, 2, . . . , c;

∑c
k=1 nk = n)

whose occurrence order is unobserved, follows a PCA data generating model expressed
as

zk(j) = Aksk(j) + bk, (6)

where Ak is an m × m mixing matrix, bk is the bias vector and sk(j) ∈ Sk =
{sk(j); j = 1, 2, . . . , nk}, (k = 1, 2, . . . , c) is the j-th random vector in the source
class k whose components are assumed to be independent and Gaussian. In a practi-
cal situation, an observable vector x(t) ∈ D = {x(t); t = 1, 2, . . . , n} is obtained as
a vector of

⋃c
k=1 Dk = {zk(j); j = 1, 2, . . . , nk, k = 1, 2, . . . , c;

∑c
k=1 nk = n} such

that D =
⋃c

k=1 Dk. If the permutation of {z1(1),z1(2), . . . ,zk(j), . . . ,zc(nc)} into
{x(1),x(2), . . . ,x(n)} is purely random, then equation 6 reduces to the PCA mixture
model and an observed random vector x(t) follows Gaussian mixture distribution (3)
as

p(x(t) | Θ) =

c∑

k=1

p(Ck)ϕ(x(t) | θk, Ck), (7)

where Θ = {θ1, ...θk, ...θc},
∑c

k=1 p(Ck) = 1 and θk = {µk,Σk} are the unknown
parameters for the Gaussian density

ϕ(x | θk, Ck) = |det(2πΣk)|−
1
2 exp

{
−1

2
(x− µk)

TΣ−1
k (x− µk)

}
, (8)

corresponding to the data class Ck. The task is to estimate (µk,Σk) for (1) and (2).
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2.1 Derivation of the PCA Mixture Model by Maximizing Likeli-
hood Function

Let x1,x2, ...,xn be a random sample drawn from (7), then the log-likelihood of the
data for the unknown parameter Θ = {θ1, θ2, ...θc} is given by

L =

n∑

t=1

log p(x(t) | Θ). (9)

The gradients of the parameters for class k is given by

∂L

∂θk
=

n∑

t=1

1

p(x(t) | Θ)

∂

∂θk
p(x(t) | Θ) (10)

=
n∑

t=1

∂
∂θk

p(Ck)ϕ(x(t) | θk, Ck)

p(x(t) | Θ)
(11)

Using the Bayes relation, the class probability for a given data vector x(t) is

p(Ck | x(t),Θ) =
p(Ck)ϕ(x(t) | θk, Ck)∑c
k=1 p(Ck)ϕ(x(t) | θk, Ck)

(12)

Substituting (12) in (11) leads to

∂L

∂θk
=

n∑

t=1

p(Ck | x(t),Θ)

p(Ck)ϕ(x(t) | θk, Ck)

∂

∂θk
p(Ck)ϕ(x(t) | θk, Ck) (13)

=
n∑

t=1

p(Ck | x(t),Θ)
∂

∂θk
logϕ(x(t) | θk, Ck) (14)

Now,
∂

∂µk

logϕ(x(t) | θk, Ck) = Σ−1
k (x(t)− µk)

and

∂

∂Σk
logϕ(x(t) | θk, Ck) =

1

2
Σ−1
k {(x(t)− µk)(x(t)− µk)

T − Σk}Σ−1
k

Therefore, ∂L
∂µk

= 0 implies

µk
∗ =

∑n
t=1 p(Ck | x(t),Θ)x(t)∑n

t=1 p(Ck | x(t),Θ)
(15)
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and ∂L
∂Σk

= 0 implies

Σk
∗ =

∑n
t=1 p(Ck | x(t),Θ)(x(t)− µk)(x(t)− µk)

T

∑n
t=1 p(Ck | x(t),Θ)

(16)

Note that prior probability p(Ck) can be updated by

p(Ck)
∗ =

1

n

n∑

t=1

p(Ck | x(t),Θ) (17)

The notations µk
∗, Σk

∗ and p(Ck)
∗ are the update of µk, Σk and p(Ck) respectively,

where Σk should be initialized by identity matrix and other parameters can be initial-
ized randomly. Then, the orthogonal matrix for extracting k-th local PCA structure
is obtained as

Γ̂k = eigen
(
Σ̂k

)
(18)

If c=1, then the proposed PCA algorithm reduces to the standard PCA algorithm as
discussed around equations 1-5.

2.2 How to Extract Local PCA Structures

For local PCA, we transform the input data vector x(t) into output vector y(t) by

y(t) = Γ̂T
(k)

(
x(t)− µ̂(k)

)
, t = 1, 2, ..., n; k = 1, 2, ..., c (19)

where
(
µ̂(k), Γ̂(k)

)
∈
{(

µ̂1, Γ̂1

)
,
(
µ̂2, Γ̂2

)
, ...,

(
µ̂c, Γ̂c

)}
, k = 1, 2, ..., c

Then, (k)-th local PCA structure is defined by those output vectors y(t) whose input
vectors x(t) belong to the data class

D(k) =

{
x(t) ∈ D : x(t) = argmax

k∈{1,2,...,c}
p(Ck | x(t),Θ)

}
(20)

3 Simulation and Discussion

To demonstrate the performance of the proposed algorithm, we generated the follow-
ing data sets from the c-component Gaussian mixture distribution with different mean
vectors µk and covariance matrices Σk, (k = 1, 2, ..., c) using the data generating model
(6).
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Dataset 1 : 1000 samples were generated from two components Gaussian mixture
distribution (Figure 14a) with mean vectors µ1 = (0, 0)T and µ2 = (8, 0)T , and
variance matrices

Σ1 =

[
3.5 2.1
2.1 2.4

]
and Σ2 =

[
3.6 −1.2
−1.2 1.8

]

respectively, where the first 500 source random samples were drawn fromN(µ1,Σ1)
and the rest 500 source random samples were drawn from N(µ2,Σ2).

Dataset 2 :1000 samples were generated from two components Gaussian mixture
distribution (Figure 15a) with mean vectors µ1 = (0, 0, 0, 0, 0)T and µ2 =
(8, 5, 1, 0, 0)T , and variance matrices

Σ1 =




8.3 0 0 0 0
0 6.7 0 0 0
0 0 0.8 0 0
0 0 0 0.5 0
0 0 0 0 0.2



and Σ2 =




1.5 0 0 0 0
0 0.9 0 0 0
0 0 0.6 0 0
0 0 0 0.2 0
0 0 0 0 0.1




respectively, where the first 500 source random samples were drawn fromN(µ1,Σ1)
and the rest 500 source random samples were drawn from N(µ2,Σ2).

For convenience of presentation, samples in both datasets are ordered by class. How-
ever, we will not use any information on sample order throughout the simulation study
so that the simulation results must be the same even when samples are randomly or-
dered.
Let us first consider dataset 1 as early discussed which is consist of 2 data clusters,

where one cluster (D1) is represented by the symbol ‘.’ and the other one (D2) by the
symbol ‘×’ as shown in figure 14a. Figure 14b represent the scatter plot of 1st and
2nd PCs (principal components) obtained by standard method which contradicts with
the uncorrelatedness properties of PCA. Therefore, standard PCA is not so good for
this dataset.
By the proposed method, we obtain two sets of estimates {µ̂(1), Γ̂(1)} and {µ̂(2), Γ̂(2)},
simultaneously. Figure 14c represent the scatter plot between 1st and 2nd PCs ob-
tained by the estimates {µ̂(1), Γ̂(1)} using (19). It is seen that the output components
of {y(t)} consist of two clusters, where one cluster with symbol ‘.’ corresponding to
data cluster D1 satisfies both uncorrelatedness and variance properties of PCA. Fig-
ure 14d shows the scatter plot between two PCs obtained by the estimates {µ̂(2), Γ̂(2)}
using (19). The exhibited properties are the same as those found in Figure 15c and
we obtain the second local PCA structure with the symbol ‘×’ corresponding to data
cluster D2. Figures 14e and 14f show the class probability of each data point corre-
sponding to the estimates {µ̂(1), Γ̂(1)} and {µ̂(2), Γ̂(2)}, respectively. We see that in
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each set of estimates, one data cluster was used and the other data cluster was totally
ignored by the class probability. The arrows in Figures 14c and 14d represent the
center of local PCA structures.

If there is only one data cluster in the entire data space (that is c = 1 ) and outlier
does not exist, then standard PCA algorithm may be better than any other PCA
algorithms. Therefore, we considered standard PCA results using only one data clus-
ter to investigate the performance of the proposed method. First we considered data
cluster D1 (Fig. 14g) from the entire data space D (Fig. 14a). Figure 14h represent
the scatter plot of 1st and 2nd PCs obtained by standard method using data cluster
D1. Comparing figures 14c and 14h, we see that standard PCA structure based on
data cluster D1 and the local PCA structure corresponding to data cluster D1 are al-
most equivalent. Similarly, comparing figures 14d and 14j, we see that standard PCA
structure based on data cluster D2 and the local PCA structure corresponding to data
cluster D2 are also equivalent. Therefore, performance of the proposed method is good
in our current context.
To investigate the performance of the proposed method in a comparisons of the mix-
ture of PPCA algorithm, we consider dataset 2 as a multivariate Gaussian mixture data
which consists of 2 clusters, where one cluster is represented by the symbol ‘.’ and the
other one by the symbol ‘×’. With projection of observed data onto two-dimensional
coordinates, two clusters are overlapped as shown in figure 15a. To compute the k-
th local PCA structures, the true orthogonal matrix (Γk) will be identity matrix (I)
corresponding to k-th data cluster, since the covariance matrix corresponding to each
cluster is diagonal for dataset 2. That is Γk = (γk1, γk2, ..., γkq) = I. An estimate

Γ̂k = (γ̂k1, γ̂k2, ..., γ̂kq) will be good for Γk if the inner product (IP) between γki and
γ̂kj satisfy

γTkiγ̂kj =

{
1, for i = j

0, for i 6= j
(21)

where k = 1, 2, ..., c. It should be noted here that the mixture of PPCA algorithm
is able to estimate at most first q = m − 1 = 5 − 1 = 4 principle components (PCs)
for five-dimensional dataset. Therefore we have to consider first 4 PCs obtained by
the proposed method for comparison with the mixture of PPCA method. Both the
proposed method and the mixture of PPCA method explore two orthogonal matrices
Γ̂1&Γ̂2 for local PCA corresponding to each data cluster for dataset 2. However, in
the case of standard PCA, Γ̂1 = Γ̂2.

Figures 15b and 15c show the inner products (IP) between true vector (γ1i&γ2i) in

Γ1&Γ2 and their estimates γ̂1i&γ̂2i, (i = 1, 2, .., 4) in Γ̂1&Γ̂2, respectively. In each plot,
dash-dot line with marker style (.), solid line with marker style (×) and dotted line with
marker style (o) represent the estimation based on standard PCA method, mixture
of PPCA method and the proposed method, respectively. In both plots, clearly, we
see that standard estimator does not satisfy γTkiγ̂ki = 1 for i = 1, 2, while it is almost
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satisfied for all i = 1, 2, ..., 4 with the estimates obtained by other two methods for
k = 1, 2.
Now we compute the amount of error for the estimates γ̂ki by the following formula

Error(ki) =
1

m
‖γki − γ̂ki × sign(γ̂ki(i))‖2 , (22)

where sign(γ̂ki(i)) = ±1, the sign of i-th component of γ̂ki. Figures 15d and 15e show
the amount of error for the estimates γ̂ki, (i = 1, 2, .., 4) for k =1 and 2, respectively.
In each plot, dash-dot line with marker style (.), solid line with marker style (×) and
dotted line with marker style (o) represent the estimation based on standard PCA
method, mixture of PPCA method and the proposed method as before, respectively.
In both plots, clearly, we see that the amount of error for the standard estimates are
large for i = 1, 2, while the amount of error for the estimates obtained by other two
methods are almost close to zero for all i = 1, 2, ..., 4. Therefore, local PCA based
on the mixtures of PPCA method and the proposed method are better than standard
PCA method.

Figures 15f and 15g represent the percentage of total variation (TV) by the estimates
γ̂ki, (i = 1, 2, .., 4) for k =1 and 2, respectively. In each plot, dash-dot line with marker
style (.), solid line with marker style (×) and dotted line with marker style (o) repre-
sent the estimation based on standard PCA method, mixture of PPCA method and
the proposed method as before, respectively. In both plots, we see that % of TV for
each PC obtained by the mixtures of PPCA method and the proposed method both
are almost similar, while the % of TV for each PC obtained by the standard method
is not similar for first and second principal components with the other two methods.

Figures 15h and 15i represent the cumulative % of TV upto the estimates γ̂ki, (i =
1, 2, .., 4) for k =1 and 2, respectively. In each plot, dash-dot line with marker style
(.), solid line with marker style (×) and dotted line with marker style (o) represent
the estimation based on standard PCA method, mixture of PPCA method and the
proposed method as before, respectively. In both plots, we see that cumulative % of
TV for each PC obtained by the mixtures of PPCA method and the proposed method
both are almost similar, while the cumulative % of TV for each PC obtained by the
standard method is not similar for first and second principal components with the
other two methods.

4 Conclusions

We proposed a learning algorithm for exploring local PCA structure based on Gaussian
mixture distribution. Parameters are estimated by maximizing the likelihood function.
All local PCA structures can be extracted simultaneously from the entire data space
using the proposed method.
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The purpose of the proposed method is similar to the mixture of PPCA method
proposed by Tipping and Bishop (8). The proposed procedure is able to find all
principal components as well as minor components, whereas, mixture of PPCAmethod
is not able to find some minor components.
Finally, we compare the performance of the proposed method with the standard PCA
algorithm and the mixture of PPCA algorithm by simulation study. We observed the
performance of the standard PCA method is not good in our current context, however,
the performance of both the proposed method and the mixture of PPCA method is
good and almost similar in the current context.
The main advantage of the proposed method is that it is more straightforward com-
putationally and conceptually than mixture of PPCA method. However, either the
proposed method or the mixture of PPCA method are not robust against outliers. A
robust version of PCA mixture model is under development by Mollah et al. (6) and
will be made available soon.
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Figure 14: (a) Scatter plot of observed components belonging to the entire data space
D . (b) Scatter plot between first and second PCs estimated by standard method. (c-d)
Scatter plot between first and second PCs estimated by the proposed method. (e-f)
Class probability for each data point obtained by the proposed method. (g) Scatter
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