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Abstract

A regression model defined by a single set of parameters may be suitable for
fitting a set of spatial data. However the data may be divided into subsets
each of which is modelled using a different set of regression parameters.
Statistics for detecting the presence of boundaries of such subsets of spatial
data are available provided the data do not exhibit spatial correlation. Since
the distribution of a change-boundary statistic is modified by the presence
of spatial correlation, distributional results are presented to deal with the
problem. Detecting boundaries in higher dimensional data is discussed.
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1 Introduction

We consider linear regression of a random variable against general non-stochastic func-
tions of a matrix array, but with error variables that form a stationary spatial process.
We then examine the large sample properties of the stochastic process defined by the
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matrix array of the partial sums of regression residuals. After introducing the prob-
lem in section 2 we derive, in section 3, the residual processes for stationary spatial
series satisfying a moment condition. These processes are used in section 4 to obtain
the residual processes for regression against general nonstochastic regression functions
of a matrix array when the errors form a stationary spatial series. We then discuss
in section 5 the effect of spatial correlation on change boundary statistics and large
sample adjustments to account for this spatial correlation. Extension to d-dimensional
space is presented in section 6.

2 Regression Models and Error Process Structure

We first define the basic 2-dimensional model. Let X(n,m) (n,m = 0,±1, . . .) be a
zero mean, stationary spatial series defined on a lattice with covariance function

R(u, v) = E{X(t, s)X(t + u, s+ v)}, |u|, |v| <∞ .

If the covariance function is absolutely summable, i.e.,
∑

|u|<∞

∑

|v|<∞

|R(u, v)| <∞ , (1)

then the spectral density function,

f(λ1, λ2) =
1

4π2

∑

|u|<∞

∑

|v|<∞

e−iλ1u−iλ2vR(u, v) , λ1, λ2 ∈ [−π, π] ,

exists.
In the sequel we require a central limit theorem for spatially correlated series. Brillinger
(1970) defined the cumulant functions for stationary spatial series as follows:

Ck+1(v1,v2, . . . ,vk) = Cum{X(n+ v1), . . . ,X(n+ vk),X(n)} ,
where vj = (v1j , v2j), n = (n1, n2). Stationarity to order k+1 is implicit in this defini-
tion. Note that the first two cumulants are E{X(n1, n2)} and R(v1, v2), |v1|, |v2| <∞.
When necessary we assume the cumulants exist and satisfy what we call the Brillinger
condition for spatial data namely,

Ck+1(v1,v2, . . . ,vk) <
Lk∏k

j=1(1 + v21j)(1 + v22j)
, (2)

for some finite Lk, where vj = (v1j , v2j), j = 1, 2, . . . , k.
If (1) and (2) are satisfied, the results of Brillinger (1973) become as follows: For
t, s ∈ [0, 1] and with [x] denoting the largest integer in x,

1

n

[nt]∑

i=1

[ns]∑

j=1

X(i, j) ,
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converges in distribution to the normal with zero mean and variance {4π2f(0, 0)ts}.
We now consider the regression model

Yn(i, j) =

p∑

k=0

βkgk(i/n, j/n) +X(i, j) ,

where {gk(·, ·), 0 ≤ k ≤ p} is a collection of regressor functions defined on the unit
square.
If we denote the vector of regression coeffients by β = (β0, . . . , βp)

′, the design matrix
by An, the stacked vector of observations by Yn and the stacked vector of stationary
spatial series by Xn, then the model may be written in matrix form as

Yn = Anβ +Xn .

The regression parameter estimators are

β̂ = (A′
nAn)

−1A′
nYn .

The matrix array of partial sums of regression residuals are defined as

Sgn(k, l) =

k∑

i=1

l∑

j=1

{Yn(i, j) − Ŷn(i, j)} , 1 ≤ k, l ≤ n,

where

Ŷ (i, j) = β̂′g(i/n, j/n)

and
g(i/n, j/n)′ = (g0(i/n, j/n), . . . , gp(i/n, j/n)) .

Since we shall be concerned with weak convergence on the space of functions continuous
on the unit square, C[0, 1]2, we use these matrix arrays of partial sums to define a
sequence of stochastic processes {Zgn(t, s), t, s ∈ [0, 1]} (n ≥ 1) possessing continuous
sample paths as follows (see Kuelbs (1968)):

nZgn(t, s) = Sgn([nt], [ns]) + (nt− [nt]){Sgn([nt] + 1, [ns])
−Sgn([nt], [ns])}
+(ns− [ns]){Sgn([nt], [ns] + 1)− Sgn([nt], [ns])}
+n(nt− [nt])(ns− [ns]){Yn([nt] + 1, [ns] + 1)

−Ŷn([nt] + 1, [ns] + 1)} .
If we let ent,ns denote the n

2-dimensional vector that has: 1 for components where Xn

has as its component Xn(i, j) with i ≤ [nt] and j ≤ [ns], nt − [nt] with i = [nt] + 1
and j ≤ [ns], ns − [ns] with i ≤ [nt] and j = [ns] + 1, n(nt − [nt])(ns − [ns]) with
i = [nt] + 1 and j = [ns] + 1, and 0 otherwise, then we can write

nZgn(t, s) = e′nt,ns{I−An(A
′
nAn)

−1A′
n}Xn .
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3 The Partial Sum Limit Process for Stationary Spatial
Series

To establish the limit process for {Zgn(t, s), t, s ∈ [0, 1]} we need first to examine the
properties of the matrix array of partial sums of the error process X(n,m) (n,m =

0,±1, . . .). Hence, we let SXn(k, l) =
∑k

i=1

∑l
j=1X(i, j) and define another sequence

of stochastic processes {ZXn(t, s), t, s ∈ [0, 1]} (n ≥ 1) possessing continuous sample
paths by

nZXn(t, s) = SXn([nt], [ns])
+(nt− [nt]){SXn([nt] + 1, [ns])− SXn([nt], [ns])}
+(ns− [ns]){SXn([nt], [ns] + 1)− SXn([nt], [ns])}
+n(nt− [nt])(ns− [ns])Xn([nt] + 1, [ns] + 1) .

We note first that
ZXn(0, 0) = E{ZXn(t, s)} = 0

and consider next the covariance kernel of the process

Kn(t1, s1; t2, s2) = E{ZXn(t1, s1)ZXn(t2, s2)} .

We assume t1 = min(t1, t2), s1 = min(s1, s2), ki = [nti] and li = [nsi], i = 1, 2. For
sufficiently large n, we have

∣∣∣∣Kn(t1, s1; t2, s2)− E

{
ZXn(

k1
n
,
l1
n
)ZXn(

k2
n
,
l2
n
)

}∣∣∣∣ ≤
c

n
,

where c > 0 is independent of t1, s1, t2, s2 and n. Therefore, for large samples, we

need only consider Kn

(
k1
n ,

l1
n ;

k2
n ,

l2
n

)
. Then

Kn

(
k1
n
,
l1
n
;
k2
n
,
l2
n

)
=

1

n2
E{SXn(k1, l1)SXn(k2, l2)}

=
1

n2

l1∑

t1=1

k1∑

s1=1

l2∑

t2=1

k2∑

s2=1

E{X(t1, s1)X(t2, s2)}

=
1

n2

l1∑

t1=1

k1∑

s1=1

l2∑

t2=1

k2∑

s2=1

R(t2 − t1, s2 − s1) .

Conditions (1) and (2) imply

1

n2

l1∑

t1=1

l2∑

t2=1

k1∑

s1=1

k2∑

s2=1

R(t2 − t1, s2 − s1) =
1

n2

∑

|u|<l1

∑

|v|<k1

(l1 − |u|)(k1 − |v|)R(u, v)

+O(n−1) .
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We have shown that

1

n2
Kn(t1, s1; t2, s2) → t1s1

∞∑

u=−∞

∞∑

v=−∞

R(u, v) ,

where t1 = min(t1, t2) and s1 = min(s1, s2). That is,

1

n2
Kn(t1, s1; t2, s2) → 4π2f(0, 0)(t1 ∧ t2)(s1 ∧ s2) ,

where t1 ∧ t2 = min(t1, t2).
We adapt the methods of De Gooijer and MacNeill (1999) to establish asymptotic
normality in the following theorem.
Theorem 1: Under assumptions (1) and (2), the p-vector {ZXn(t1, s1), . . . , ZXn(tp, sp)}
has a non-trivial asymptotic probability distribution that is normal with zero mean
and covariance matrix 4π2f(0, 0)(ti ∧ tj)(si ∧ sj).
Proof: The Brillinger condition for spatial data (2) can be used to demonstrate that
the spatial cumulants of orders higher than two of a vector component of ZXn(ti, si) are
O(n−1) or smaller and hence that ZXn(ti, si) converges in distribution to the normal
with zero mean and variance 4π2f(0, 0)tisi. The Cramér-Wold device of demonstrating
asymptotic multivariate normality by showing asymptotic normality with zero mean
and variance

4π2f(0, 0)

p∑

i=1

p∑

j=1

λiλj(ti ∧ tj)(si ∧ sj)

of
∑p

i=1 λiZXn(ti, si), where the λi are arbitrary real numbers, can be used to complete
the proof for the p-dimensional case.
We next show tightness of the sequence of measures PXn (n = 1, 2, . . .) generated in
C[0, 1]2 by {ZXn(t, s), t, s ∈ [0, 1]}. The arguments used above to derive the covariance
kernel for these processes can be used to show the existence of a constant C such that
for t1, s1, t2, s2 ∈ [0, 1],

E{ZXn(t1, s1)− ZXn(t2, s2)}4 ≤ C{(t1 − t2)
2 + (s1 − s2)

2} (3)

where C is not dependent on t1, s1, t2, s2 and n. We only discuss the case of t2 ≥ t1
and s2 ≥ s1 (the same argument holds for the other cases).
Let [nt1] = k1, [ns1] = l1, [nt2] = k2, [ns2] = l2, then

E

{
1

n
SXn(k1, l1)−

1

n
SXn(k2, l2)

}4

=
1

n4
E









k2∑

i=k1+1

l2∑

j=l1+1

+

k1∑

i=1

l2∑

j=l1+1

+

k2∑

i=k1+1

l1∑

j=1



Xn(i, j)






4

=
1

n4

(
∑

A1

+
∑

A2

+
∑

A3

)

E{Xn(i1, j1)Xn(i2, j2)Xn(i3, j3)Xn(i4, j4)} ,
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where
A1 = {(ih, jh) : k1 < ih ≤ k2, l1 < ih ≤ l2, h = 1, 2, 3, 4} ,
A2 = {(ih, jh) : 1 ≤ ih ≤ k1, l1 < ih ≤ l2, h = 1, 2, 3, 4} ,
A3 = {(ih, jh) : k1 < ih ≤ k2, 1 ≤ ih ≤ l1, h = 1, 2, 3, 4} .

These fourth order moments can be expressed in terms of the corresponding fourth
order cumulants and products of pairs of elements from the covariance function. Hence,

1

n4

∑

Ai

E{Xn(i1, j1)Xn(i2, j2)Xn(i3, j3)Xn(i4, j4)}

=
1

n4

∑

Ai

Cum{Xn(i1, j1), Xn(i2, j2), Xn(i3, j3), Xn(i4, j4)}

+
1

n4

∑

Ai

{R(i1 − i2, j1 − j2)R(i3 − i4, j3 − j4)

+R(i1 − i3, j1 − j3)R(i2 − i4, j2 − j4)
+R(i1 − i4, j1 − j4)R(i2 − i3, j2 − j3)} ,

where Ai, i = 1, 2, 3.
Using the Brillinger condition for spatial data (2) we can obtain

1

n4

∑

A1

E{Xn(i1, j1)Xn(i2, j2)Xn(i3, j3)Xn(i4, j4)}

≤ C′
1

(
k1
n

−
k2
n

)2 (
l1
n

−
l2
n

)2

≤ C1

{(
k1
n

−
k2
n

)2

+

(
l1
n

−
l2
n

)2
}

,

1

n4

∑

A2

E{Xn(i1, j1)Xn(i2, j2)Xn(i3, j3)Xn(i4, j4)} ≤ C2

(
l1
n

−
l2
n

)2

,

1

n4

∑

A3

E{Xn(i1, j1)Xn(i2, j2)Xn(i3, j3)Xn(i4, j4)} ≤ C3

(
k1
n

−
k2
n

)2

,

where C1, C2 and C3 are not dependent on t1, s1, t2, s2 and n.
Therefore, we can choose C independent of t1, s1, t2, s2 and n such that

E

{
1

n
SXn(k1, l1)−

1

n
SXn(k2, l2)

}4

≤ C

{(
k1
n

− k2
n

)2

+

(
l1
n
− l2
n

)2
}

.

If the process {ZX(t, s), t, s ∈ [0, 1]} is defined by

ZX(t, s) = {4π2f(0, 0)} 1
2Z(t, s) ,

where Z(t, s) is a Brownian sheet and if WX is the measure in C[0, 1]2 corresponding
to ZX(·, ·), then we have the following result.
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Theorem 2: Under assumption (1) and (2),

PXn =⇒WX .

Proof: Theorem 1 assures us that the finite dimensional distributions of PXn converge
to those of WX , and (3) implies that the sequence PXn (n = 1, 2, . . .) is tight. The
proof is completed by applying Theorem 12.3 of Billingsley (1968).

4 The Regression Residual Process for Stationary Spatial
Error Structure

We now consider the matrix array of partial sums of regression residuals when the
error process is a stationary spatial series. The vector of regressor functions evaluated
at (t, s) is denoted by g(t, s) = (g0(t, s), . . . , gp(t, s))

′. It may be seen that the matrix

lim
n→∞

1

n2
(A′

nAn) ≡ G

has as its (i, j)th component

∫ 1

0

∫ 1

0
gi(t, s)gj(t, s)dtds .

The inverse of G exists provided the regressor functions are linearly independent and
square integrable; with this proviso, we define a multilinear form, g(t1, s1; t2, s2), as
follows:

g(t1, s1; t2, s2) = g′(t1, s1)G
−1g(t2, s2) .

Then we define a limit process {ZXg(t, s), t, s ∈ [0, 1]} by

ZXg(t, s) = ZX(t, s)−
∫ t

0

∫ s

0

∫ 1

0

∫ 1

0
g(t1, s1; t2, s2)dZX(t2, s2)dt1ds1 ,

where ZX(t, s) =
√

4π2f(0, 0)Z(t, s) and Z(t, s) is the Brownian sheet.
The partial sum process of regression residuals is given by

nZXgn(t, s) = e′nt,ns{I −An(A
′
nAn)

−1A′
n}Xn .

Theorem 3: Assume conditions (1) and (2). Further assume gk(t, s) (k = 0, 1, . . . , p)
are linearly independent non-stochastic regressor functions that are continuously dif-
ferentiable on [0, 1]2. Then

ZXgn(t, s) =⇒ ZXg(t, s) .
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It can be shown that

E{ZXg(t, s)} = ZXg(0, 0) = 0, t, s ∈ [0, 1]

and that the covariance kernel for any t1, s1, t2, s2 ∈ [0, 1] is

K(t1, s1; t2, s2) = E{Zg(t1, s1)Zg(t2, s2)}
= 4π2f(0, 0){(t1 ∧ t2)(s1 ∧ s2)

−
∫ t1

0

∫ s1

0

∫ t2

0

∫ s2

0
g(t1, s1; t2, s2)dt1ds1dt2ds2} .

5 Effect of Spatial Autocorrelation on Change Detection

Statistics

The class of possible boundaries we use to illustrate the methodology consists of those
of rectangular shape with sides parallel to the sides of the unit square and with one
corner having coordinates (0, 0). For the case of i.i.d error structure with σ2 < ∞,
a statistic for detecting change at one of these unknown boundaries in regression
parameters is shown to be

Qgn =
1

n4σ2

n∑

l=1

n∑

k=1





l∑

i=1

k∑

j=1

[Yn(i, j) − Ŷn(i, j)]





2

. (4)

Other classes of boundaries result in change detection statistics defined by other func-
tionals of the partial sums of the regression residuals; see Xie and MacNeill (2005) for
further discussion. To make the statistic both operational and effective it is necessary
to estimate σ2 with an estimator that is consistent under both null and alternative
hypotheses. Now assume the spatial error process is not i.i.d and R(0, 0) is used in
place of σ2. Note that

R(0, 0) =

∫ π

−π

∫ π

−π
f(λ1, λ2)dλ1dλ2 .

Then, if Zg(t, s) = {4π2f(0, 0)}−1/2ZXg(t, s),

Qgn → 4π2f(0, 0)∫ π
−π

∫ π
−π f(λ1, λ2)dλ1dλ2

∫ 1

0

∫ 1

0
Z2
g (t, s)dtds . (5)

The distribution of
∫ 1
0

∫ 1
0 Z

2
g (t, s)dtds is tabulated by Xie and MacNeill (2005). The

above results indicate that the large sample effects of spatial correlation on Qgn can
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be adjusted for precisely by multiplying the quantiles of distributions for the i.i.d case
by

4π2f(0, 0)∫ π
−π

∫ π
−π f(λ1, λ2)dλ1dλ2

.

The same adjustment may be applied to any change-boundary statistic that is defined
in terms of the squares of the partial sums of the residuals.
Example: If the noise process is a spatial unilateral multiplicative first-order autore-
gression (Martin (1979)), that is, for |a| < 1 and |b| < 1 and {ǫ(t, s), s, t = 0,±1, . . .}
iid,

X(t, s) + aX(t− 1, s) + bX(t, s − 1) + abX(t− 1, s − 1) = ǫ(t, s) ,

then we have

f(λ1, λ2) =
σ2

4π2
(1 + 2a cos λ1 + a2)−1(1 + 2b cos λ2 + b2)−1

and ∫ π

−π

∫ π

−π
f(λ1, λ2)dλ1dλ2 =

σ2

(1− a2)(1− b2)
.

Hence
4π2f(0, 0)∫ π

−π

∫ π
−π f(λ1, λ2)dλ1dλ2

=
(1− a)(1− b)

(1 + a)(1 + b)
.

Note that as |a| approaches 1 and/or |b| approaches 1 the adjustment to change-
boundary statistics required to account for spatial correlation becomes highly signifi-
cant and should not be ignored.

6 Extension to Higher Dimensional Spaces

We first define the basic model for d-dimensional spaces. Let Xn1,...,nd
(n1, . . . , nd =

0,±1, . . .) be a zero mean, stationary spatial series defined on a lattice with covariance
function

R(u1, . . . , ud) = E{X(t1, . . . , td)X(t1 + u1, . . . , td + ud)}, |ui| <∞ .

If the covariance function is absolutely summable, i.e.,

∞∑

u1=−∞

. . .

∞∑

ud=−∞

|R(u1, . . . , ud)| <∞ ,

then the spectral density function,

f(λ1, . . . , λd) =
1

(2π)d

∑

|u1|<∞

. . .
∑

|ud|<∞

e−i
∑d

i=1 λiuiR(u1, . . . , ud) , λi ∈ [−π, π] ,
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exists. Also

R(0, . . . , 0) =

∫ π

−π
. . .

∫ π

−π
f(λ1, . . . , λd)

d∏

i=1

dλd .

If, analogous to (4), we have the d-dimensional case with

Zgd(t1, . . . , td) = {(2π)df(0, . . . , 0)}−1/2ZXgd
(t1, . . . , td) ,

then the change-boundary quadratic form converges as follows,

Qgdn → (2π)df(0, . . . , 0)∫ π
−π . . .

∫ π
−π f(λ1, . . . , λd)

∏d
i=1 dλi

∫ 1

0
. . .

∫ 1

0
Z2
gd(t1, . . . , td)

d∏

i=1

dti

where Zgk is a d-dimensional Brownian sheet. Thus, the distributional results for the
stationary case can be found from the i.i.d. case by a simple precise adjustment.
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