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Abstract

This article discusses heuristics of influence functions, an important concept
in robust statistics, with some new counter-examples. It re-emphasises the
caution raised by Davies (1993, 1994 and 1998) about using heuristics of
influence function thoughtlessly. It is suggested that the influence functions
of more smooth functionals have more desirable properties. Finally some
examples of more smooth functionals including a new class of uniformly
Fréchet differentiable L- location functional is presented.
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1 Introduction

Hampel in his Ph.D. thesis (1968) developed three concepts: qualitative robustness
(also Π- robustness), breakdown point and influence function to assess robustness in
estimation and thus raised rigorousness in robust estimation to a satisfactory level.
Hampel discussed and elaborated qualitative robustness at the outset of his thesis,
breakdown point and influence function in the latter part. Though his seminal article
on qualitative robustness (1971) was published three years before his mostly quoted ar-
ticle on the ‘influence function’ (1974) (originally termed as ‘influence curve’), the lat-
ter has become most popular among statistical community. He and his co-researchers
used several heuristics (not theorems) of influence function and developed a new ap-
proach to Robust Statistics. In this article I have critically examined the heuristics
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and tried to raise caution against indiscriminate use of those heuristics, and thereby
argued for the need to seek more smooth functionals in the line of Davies (1993, 1998).
In his seminal article in 1974 Hampel first gave the definition for the particular case
(both sample space and functional range space are R or subsets of R) and then for
the general case (sample space X, a polish space and functional range space, Rk).
We could generalize the concept even further by assuming functional range spaces at
least a topological vector space, V and X, a general sample space. But considering
objectives of the article we define influence function of statistical as follows:
Definition1.Let X be the sample space and T be a Rk-valued mapping from a subset
of the probability measures,DT (X), a finitely full and convex subset of Sp(X), the set
all probability measures on X. Let F ∈ DT (X) and δx denote the atomic probability
measure concentrated at any given point, x. Then the vector-valued influence function
of T at F (here F is a measure) is defined pointwise by

IFT,F (x) = lim
ǫ→0

T[(1− ǫ)F + ǫδx]−T(F)

ǫ
(1)

Though for a particular T , the influence is generally considered as a function of x andF ,
later, for brevity, it is denoted by IF (x). ‘The IF is mainly a heuristic tool, with an
intuitive interpretation ′ (Hampel et al., 1986, p-83). It can be intuitively interpreted
as a suitably normed asymptotic influence of outliers on the value of an estimate or test
statistic,T (Fn). It is a local robustness property. Various characteristics of an influence
function are used to develop various concepts such as Gross Error Sensitivity (GES),
γ∗ (supremum of IF (x) w.r.t. x for fixed F ) and maximum-bias curve ( graph of GES
vs F ), Local -Shift Sensitivity (LSS) (supremum of slope of IF (x)), λ∗, Rejection
Point, ρ∗ (related to the upper limit of the range outside which the influence function
vanishes) etc to delineate definite but different aspects of local robustness properties.
As important by- products of the attempt to quantify the effect of outlier on the
estimators, the concept of Change of Variance Function (CV F ) has been developed
from IF (x) to plot asymptotic variance vs F . While using the heuristics of influence
function we should keep in mind that the heuristics of influence function are heuristics,
not theorems. But tendencies to use them as theorems are not rare in literature.
The article is arranged as follows. Section 2 presents the first heuristic of influence
function with a new result whereas section 1 introduces the topic. Section 3 and
4 present second and third heuristics respectively with some new counter-examples.
The concluding section illustrates some strongly and uniformly Fréchet differentiable
functionals. The article emphasizes that heuristics of influence functions, which are im-
portant for judging robustness of the associated functionals but require careful scrutiny
at every step. The new results are termed as propositions.

2 First Heuristic

2.1 Introduction. Let T have a bounded influence function IF (x) at F and
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γ∗ = sup
x∈R

|IF (x)| <∞ (2)

According to Davies (1993) the first heuristic conclusion for a bounded IF (x) is that
we expect for ǫ sufficiently small,

sup
x∈R

|T [(1− ǫ)F + ǫδx]− T (F )| ≤ 2ǫγ∗ (3)

i.e. bias caused by a small amount ǫ of point contamination is bounded by ǫ. But
Hampel, the first proponent of influence formulated it in two other forms in his Ph.D
thesis and without sufficient arguments claimed that the following inequalities roughly
hold,

sup
G∈SpX

|T [(1− ǫ)F + ǫG]− T (F )| ≤ ǫγ∗ (4)

where G is arbitrary, and H belongs to Bδ(F ), a ball of radius δ, generated by total
variation metric,

sup
H∈Bδ(F )

|T (H)− T (F )| ≤ 2ǫγ∗ (5)

2.2 Counter-examples and Comments. Davies (1993) showed that the above
mentioned Hampel’s claim is not always true giving an practical counter-example, the

case of the middle of the shortest functional TMSH (defined as (a+b)
2 where a and b

are such as to minimize (a − b) subject to Pr([a, b]) ≥ 1/2) at N(0, 1). Now comes
generally the question − what conditions guarantee the inequalities 4 and 5.

It can be proved easily that if limǫ→0
T[(1−ǫ)F+ǫδx]−T(F)

ǫ − IF (x) = 0 uniformly in x,
then ∋ δ > 0 such that for all ǫ, 0 < ǫ < δ and some K, 0 < K ≤ 1

sup
x∈R

|T [(1− ǫ)F + ǫδx]− T (F )| ≤ (1 +K)ǫγ∗ (6)

⇒ sup
x∈R

|T [(1− ǫ)F + ǫδx]− T (F )| ≤ ǫγ∗ +O(ǫ) (7)

Inequalities 6 and 7 are equally true for Banach -valued functionals. Huber ( 1977)
showed that if T is Fréchet differentiable at F and Gǫ = (1− ǫ)F + ǫH, 0 < ǫ < 1, then

sup
H∈SpX

|T (Gǫ)− T (F )| ≤ ǫγ∗ + o(ǫ) (8)

8 holds true for Banach -valued functional T . Though it is an improvement on 7,
Hampel’s first claim ( inequality 4) is not still satisfied. Since the most popular gross
error model, Gǫ = (1−ǫ)Φ+ǫH, 0 < ǫ < 1

2 , despite the generality of H, doesn’t include
some, perhaps the majority laws Gǫ treated as normal to an acceptable approximation
in practice, such as laws G on R with G([0,∞)) = 1, laws discretized by rounding to
finitely many decimal places, it is imperative for us to seek the condition that guaran-
tees the existence of an inequality of the similar type over a weak neighborhood. The



308 International Journal of Statistical Sciences, Vol. 6s, 2007

following proposition shows an improvement on 8 in the desired line assuming strongly
Fréchet differentiability of functionals with continuous influence function of bounded
variation. Several examples of functionals meeting this requirement are in section 5.

Proposition 2.1 If T is strongly Fréchet differentiable at F w.r.t. Kolmogorov norm
with continuous influence function Ψ(x) of bounded variation, then

i) 8 holds.

ii) There exists ǫ, 0 < ǫ < 1 and M ≥ ‖Ψ(x)‖v > 0 s.t.

∀H,G ∈ {G|‖G − F‖ < δ} ⇒ |T (H)− T (G)| ≤ ǫM (9)

Here 2δ = ǫ

Proof. We prove ii. We know, strong Fréchet differentiability of T at F ⇔ T is Fréchet
differentiable at F and ∀ρ > 0 ∋ δ > 0 s.t. r(H) = T (H) − T (F ) −

∫
Ψ(x)dH(x) is

ρ-Lipschitzean ∀H ∈ {G|‖G − F‖ < δ};
that is ∀H,G ∈ {G|‖G − F‖ < δ} ⇒ |r(H) − r(G)| ≤ ρ‖H − G‖. Again as|r(H) −
r(G)| = |T (H)−T (G)−

∫
Ψ(x)d(H−G)| and |

∫
Ψ(x)d(H(x)−G(x))| ≤ ‖Ψ‖v‖H−G‖,

we have
‖G − F‖ < δ ⇒ |T (H) − T (G)| ≤ ρ‖H − G‖ + |Ψ‖v‖H − G‖ ≤ (ρ + |Ψ‖v)‖H − G‖
Assuming M = (ρ+ |Ψ‖v) and 2δ = ǫ, we get the desired result. (Proved)

It is to be noted that i) since ρ is arbitrary, we could assume M = (|Ψ‖v) and
ii) if F is continuous, {G|‖G − F‖ < δ} always contains a weak neighborhood.

3 Second Heuristic

3.1 Introduction. If T is well defined at all empirical distributionsFn derived from in-
dependently and identically distributed random variables X1,X2, · · ·Xn with common
distribution F , then we expect (Hampel et al., 1986, p-85)

n
1
2 [T (Fn)− T (F )] = n−

1
2

∑
IF (Xi) + op(1) (10)

In particular, n
1
2 [T (Fn)− T (F )] ⇒ N(0, σ2) where

σ2(F ) =

∫
IF (x)2dF (11)

3.2 Counter-examples and Comments. We should be cautious about the fact that
even existence of inequalities 2-7 does not imply the inequality 10 without additional
assumption. Let F be continuous and Tc(F ) = size of the largest atom. Then it
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is obvious, IF (x) = 1 for all x and it satisfies 2 and 3, but Tc(Fn) = 1
n∀n. So

n
1
2 [Tc(Fn) − Tc(F )] = n−

1
2 and n−

1
2
∑
IF (Xi) = n

1
2 . Therefore, 10 and 11 are not

satisfied. Hampel et al. (1986, P-85) claimed; ‘2.1.8 (our 11) gives the right answer in
all practical cases we know of’. Davies (1993, pp 1856-1857) showed that the middle of
the shortest functional TMSH at N(0, 1) does not satisfy the heuristic despite existence
of its influence function, where as Rousseeuw and Leroy (1987) argued for non-existence
of the influence function due to its cube root convergence. The weakest set of sufficient
conditions for existence the validity of 10 is available in Reed (1976).
Let T : E → F . Both E and F are normed spaces and
a) T is Hadamard differentiable at Fwith differential dT (F ),

b) Fn ∈ E and n
1
2 (Fn − F ) is tight,

Then

[T (Fn)− T (F )] = n−1
∑
IF (Xi) + op(n

− 1
2 )

The following point should be noted here, 1) Since Hadamard differentiability of T

at F implies continuity of T at F , T (Fn)
a.e.→ T (F ) ifFn

a.e.→ F in the topology of the
domain, and that implies EF (IF (X) = 0 by the weak law of large numbers.
But more stringent Fréchet differentiability begets extra benefit in the expansion 10
as shown by Bednarski (1993). The expansion is valid if Fn comes from Gn belonging
to shrinking nbd, N = {Gn : ‖Gn − F‖∞ ≤ ǫ

n
1
2
},

[T (Fn)− T (F )] = n−1
∑

IF (Xi) + op(‖Fn − F‖∞) (12)

So it is natural that uniformly Fréchet differentiable functionals as well as strongly
Fréchet differentiable functionals enjoy more properties in this regard.

4 Third Heuristic

As like any function of population, IF (x)’s relevance to a particular sample can only
be approximate. So there is an imperative to search for finite version of IF (x) which
enjoy similar asymptotic properties but more immediate relation to the actual samples.
We can call them estimators of IF (x). Several types of these estimators with different
properties and use are available in literature (Andrews et al, 1972; Mallows, 1975;
Hampel et al, 1986; Efron, 1992, Devison and Hinkly, 1997 etc.). Mainly they are
used with the following objectives:

i) To have a first-hand idea of the effect of outliers on the statistic T (Fn).

ii) To measure influence of individual observation on T (Fn).

iii) To estimate asymptotic variance σ2(F ) =
∫
IF (x)2dF <∞ of T (Fn).
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Among all these estimators of IF (x), empirical influence function, sensitivity curves
and jackknife influence functions are important ones for both theoretical and practical
considerations. For details see Nasser and Alam (2006). Generally it is expected that
the (stylized) sensitivity curve (defined in the following paragraph) of T (Fn) tends
to IF (x) for all x. Davies (1993) disproves it for the same functional in the same
article. Mallows (1975) mentioned, consistency property holds for all these estimators
without proofs. Some counter-examples including a new one are also given in the next
subsection.

4.1 Sensitivity Curves

Let us suppose

i) x1, x2, · · · , xn−1 be a sample, x be added to the sample and Tn(.) be an estimator
defined on a sample of size n. Let I1(x) = Tn(x1, x2, · · · , xn−1, x)

ii) x1, x2, · · · , xn be a sample and xn be replaced by x,
then I2(x) = Tn(x1, x2, · · · , xn−1, x).

I1(x) simply represents the value of the estimators when a new observation x is added
to the sample (addition-corruption), while the I2(x)upholds the value of the estimator
after replacing a observation, say xn by x ( replacement corruption). Sensitivity curves,
first introduced by Tukey (1970-1971), are nothing but translated and scaled versions
of I1(x) and I2(x). We take the case of addition- corruption that is translated and
scaled versions of I1(x), Sensitivity curve is defined as
SCn(x) = n[Tn(x1, x2, · · · , xn−1, x)− Tn−1(x1, x2, · · · , xn−1)]
When Tn−1(x1, x2, . . . , xn−1) = T (Fn−1)

SCn(x)) =
I1(x)− T (Fn−1)

1
n

=

T

[
(1− 1

n)Fn−1 +
1
nδx

]
− T (Fn−1)

1
n

= g(
1

n
, x;Fn−1)

where g(ǫ, x, F ) = T [(1−ǫ)F+ǫδx]−T (F )
ǫ

Stylized sensitivity curve is based on an artificial sample of size n − 1 instead a real
sample of same size.

SCn(x)) =

T

[
(1− 1

n)Fn−1 +
1
nδx

]
− T (Fn−1)

1
n

= n

(
T

[
(1− 1

n
)Fn−1 +

1

n
δx

]
− T (Fn−1)

)
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where Fn−1 =
1

n−1

∑n−1
j=1 δxjxj = F−1(j/n)

4.2 Consistency of Sensitivity Curve

Taking the same functional in the counterexample in 3.2 we can easily show that sensi-
tivity curve is not always a consistent estimator of IF (x). Since Tc[(1− 1

n)Fn−1+
1
nδx] =

1
n a.e. and Tc(Fn−1) =

1
n−1 , it follows that SCn(x) =

1
n−1 a.e. but IF (x) = 1. Davies

(1993) showed that for TMSH at N(0, 1)limn→∞ SCn(x) = 4IF (x) for stylized sensi-
tivity curve. Croux (1998) demonstrated inconsistency of sensitivity of sample median
but strong and uniform consistency for trimmed mean and smooth M-estimator. So to
have consistent estimators we need extra conditions. It is meaningful to find sufficient
conditions that guarantee consistency, specially strong and uniform consistency.
Now we mention two cases of functionals for which SCn(x) is a consistent estimators
of IF (x). Since in the first one consistency is strong, the related functional is better
from the point under consideration.

Proposition 4.1 Let T be Gâteaux differentiable over neighborhood of F with con-
tinuous derivative and V , the vector space generated by DT (X) be topologized in such
a way ( Kolmogorov norm or Kuiper metric or weak topology are appropriate for this)

that δx − Fn
a.e.→ δx − F . Then SCn(x)

a.e.→= IF (x)

Proof. Proof is straightforward.
The result implies that uniformly Fréchet differentiability of T over a neighborhood
of F with respect to Kolmogorov norm is a desirable property.

Proposition 4.2 Let 〈X,A〉 be a measurable space. G be a probability measure on X,
a() be a random variable defined on X and g : R→ R be a continuously differentiable
function.

Let g(
∫
a(x)dG(x)) = T (G) and

∫
a(x)dG(x) = H(G). Then

i) IFH(x) = a(x)−H(G), SCH
n = a(x)−H(Gn)

ii) IFT (x) = g(1)(a(x)−H(G)), SCH
n = g(1)(a(x)−H(Gn))

iii) SCH
n (x)

P→ IFH(x), SCT
n (x)

P→ IFT (x)

Proof. Proof is straightforward.
The class of functionals that satisfy this proposition includes moments, variance, cor-
relation and other important functionals.
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5 Examples of Uniformly Fréchet Differentiable Func-
tional

Now we place some examples of functionals which satisfy our conditions in the propo-
sitions.
Strong Fréchet diffferentiability of L-Functionals(L-estimator). Let us con-
sider the functional, where T (G) =

∫
xJ(G(x))dG(x) =

∫
G−1(t)J(t)dt where J(t) is

a function defined on [0, 1]. T (Fn) is called L-estimator of T (F ). Following the line
Boos (1979)who showed (theorem 1) under

a) J(u) bounded and continuous a.e. Lebesgue and a.e F−1

b) J(u) vanishes for u < α and u > β when 0 < α < β < 1. T (G) has a Fréchet
differential a w.r.to ‖‖∞

dT (F )(G − F ) =
∫∞
−∞

(
G(y)− F (y)

)
J(F (y))dy i.e. its influence function

dT (F )(δx − F ) =
∫∞
−∞(δx(y)− F (y)J(F (y))dy

Parr (1985) demonstrated that T is strongly Fréchet differentiable at under the same
set of assumption. It is easy to show that ψF (x) is continuous and of bounded variation.
So it satisfies our requirement. Examples;

i) The trimmed mean with J(t) = (α1<t<1−α2)
1−α1−α2

, obviously satisfies b. If F is such that

F−1(α1) and F
−1(1− α2) are uniquely determined, then a is satisfied.

ii) Let us cite another class of J(t) which satisfies a,b and some other interesting
properties,J(t) = k(t − α)p(β − t)p, 0 < α < t < β < 1, p > 0 and k is the
normalized constant.Then the L-functional T (G) can be shown to be uniformly
differentiable on {G|‖G−F‖∞ < δ} for all F where δ ≤ min {α, 1−β} (Nasser,
2ooo).

M-Location and Scale Functionals. Davies in his illuminating article (1998) de-
duced two construction of locally uniformly linearizable high breakdown location and
scale functionals. It can be shown that functionals in both case are Lipschitz continu-
ous of order 1 (i.e. uniformly continuous) with respect to Kolmogorov norm (Kuiper
metric ) over a neighborhood Nδ(F ) for all W (η) ( using Davies’ notation).

M and Minimum Cramer-von Mises estimators of Location Functionals.
Parr (1985) also presentd a M -location and a minimum Cramer-von-Mises location
functional which meet our requirements.

Cramer -von Mises Test Statistic. Shao (1993) showed the following functional
is strongly Fréchet differentiable at F with respect to ‖‖∞. Let F0 be a specified
hypothetical distribution and T (G) =

∫
|G(x) − F0(x)|2dF0(x) T (Fn) is Cramer -von
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Mises test statistic for the test problem. H0 : F = F0 vs H1 : H0 : F 6= F0 Since here
ψF (y) = 2

∫
{δy(x) − F (x)}{F (x) − F0(x)}dF0(x), (if F0 is continuous) we have a)

ψF (y) is of bounded variation. b) ψF (y) is continuous. Then T (G) is strongly Fréchet
differentiable at F and satisfies our required conditions.
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