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Abstract

D-optimal designs are derived for certain quadratic logistic regression mod-
els. The performance of the D-optimal designs regarding maximum like-
lihood estimation of model parameters and estimation of the optimum of
the response function is studied for different sample sizes. Comparisons
are made with a couple of non-optimal designs. There were found to be
disagreements between the asymptotic distribution and the small sample
distribution of the maximum likelihood estimator. The designs are also
evaluated as to what extent they suffer from the problem of non-existence of
the maximum likelihood estimator. The probability that the maximum like-
lihood estimate exists is compared for the various designs. Non-existence
proved to be a substantial problem for these quadratic logistic models.
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1 Introduction

The statistical methods for designing and analyzing the outcome of experiments where
interest is in a response variable that is affected by one or several variables are known
as Response Surface Methodology (RSM). A thorough exposition of these techniques
is given in the book by Box and Draper (1987). RSM is traditionally used for finding
optimum operating conditions in the industry. It is now common in many different
fields like physical, chemical, biological, clinical and social sciences.
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The principal objective of RSM is to explore the unknown relationship between the
response/output variable and the control/input variables. For example, the response
variable might be the yield of a chemical process and the control variables might be
temperature and pressure or the response variable might be the reaction time of an
individual and the control variables might then be dose of alcohol and amount of
sleep. RSM attempts to answer questions about how the response variable behaves
when the levels of the control variables are changed, e.g. what happens to the yield
when the temperature and pressure levels are varied. The true unknown function that
describes this relationship is often locally approximated by a polynomial in the region
of interest. Thus, this approximating function is not expected to be valid outside
the limited region of interest. One common application for RSM is to find optimum
operating conditions, e.g. to find out for what levels of temperature and pressure the
yield is maximized.

RSM is essentially a sequential procedure where the experimental design is gradually
updated as investigation proceeds. Initially choices have to be made regarding the
model, the number of replications, the levels of the control variables and the size and
location of the region of interest. The objective is that the procedure is such that the
right conclusions can be drawn even if the initial experimental design is poor and that
the path to arrive there is as short as possible, for details see Box and Draper (1987).

It is often assumed that the responses are normally distributed and an ordinary re-
gression model is used. However, there are many situations where this is not the
case, e.g. when the response variable is binary that is, it assumes one of two possible
values. Generalized Linear Models (GLMs)is a class of models that can be used in
such situations, which include the linear regression model as a special case but also
allows discrete data. Examples on GLMs also include logistic, probit and log-linear
models. GLMs are treated in several books, e.g. Dobson (2002) and McCullagh and
Nelder (1989). For an overview of the use of Generalized linear models in RSM, see the
article by Khuri (2001). The problem of finding optimum operating conditions when
the response variable is binary is about determining the levels of the control variables
that give the maximum/minimum of the probability of ”success”/”failure”.

When estimating the parameters in the model that is assumed to describe the rela-
tionship between the response and the control variables the aim is to choose a design
that gives the highest possible precision in these estimates, i.e. to choose an optimal
design. The problem of finding an optimal design is treated in, for example, Atkinson
and Donev (1992), Silvey(1980) and Fedorov and Hackl (1997). A problem with find-
ing optimal designs for GLMs is that the optimal design generally depends on the true
parameters. If the true parameters are known it is possible to find an optimal design
but then at the same time there is no need for estimation at all. Another problem that
can arise with maximum likelihood estimation of the parameters in the logistic model
and small samples is that the maximum likelihood estimate does not always exist.

The theoretical results about optimal designs are asymptotic results. In practice ex-
periments are often restricted by time and money constraints. Furthermore, the true



Fornius: D-optimal Designs for Quadratic Logistic Regression Models 271

parameters are generally unknown in practice. The purpose of this paper is to derive
optimal designs for a quadratic logistic model given four different sets of true param-
eters and to examine the properties of those designs in small samples. In addition
comparisons will be made with the properties of some non-optimal designs. This pa-
per is organized as follows. GLM, the model and the sets of parameters are outlined
in section 2. Section 3 presents the derivation of the optimal designs. The results of
the maximum likelihood estimation are given in section 4. A concluding discussion is
found in the final section.

2 Model

A logistic regression model with one control variable and a quadratic term is ex-
amined in this paper. The logistic model belongs to the generalized linear models
which generally are characterized by three components: (1) The distribution of each
of the independent response variables Y1, ..., YN belongs to the exponential family (2)
The linear predictor η = xTβ is a linear (in β) combination of k control variables
(x1, x2, ..., xk) and p parameters and (3) The link function g (µ) specifies the relation-
ship between the expected value of the response variable (E (Y ) = µ) and the linear
predictor. This is a monotonic and differentiable function.
The response variable in a logistic model is binary. Success/failure, broken/not broken
and pass a test/not pass a test are examples on outcomes of binary response variables.
The responses are independent and Bernoulli distributed

Yi ∼ bern(πi) = bin(1, πi),

with the logit link function

g(πi) = ln

(
πi

1− πi

)
= ηi,

and

πi =
eηi

1 + eηi
.

The linear predictor for this logistic model with one control variable and a quadratic
term is

ηi = xT
i β =

[
1 xi x2i

]


β0
β1
β2




= β0 + β1xi + β2x
2
i .
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The probability of “success”, π, is a function of the control variable x. The levels on
the control variable are set by the experimenter. For example consider manufacturing
a food product, then x might be the quantity of an additive which affects π, the
probability that the product is good. If the quantity is too small or too large the
probability of a good product is small but for some quantity π is maximized. In
this case interest is in determining the value of the control variable for which π is
maximized, i.e. determining the optimum operating conditions. For some applications
interest is instead in minimizing the probability of an undesirable outcome. Because
of the fact that the link function is monotonic optimizing π is equivalent to optimizing
η, thus the optimum point is given by

∂

∂x
η = 0 ⇒ xm = − β1

2β2
.

The response curve that describes π as a function of x is symmetric around this point.
Taking the second derivative of η

∂2

∂x2
η = 2β2,

shows that whether π(x) has a maximum or a minimum is determined by the sign
of the parameter β2. The parameter β0 determines the height of the curve in the
optimum point. The linear predictor in the optimum point is given by

η (xm) = β0 + β1xm + β2x
2
m = β0 −

β21
4β2

.

If the response curve has a maximum (β2 < 0) a greater β0 means that the maximum
of π is closer to 1 and if there is a minimum (β2 > 0) a greater β0 means that the
minimum of π is closer to 1. Furthermore, the size of β2 determines the relative width
of the response curve for a given height and a larger absolute value of β2 means a
more narrow curve. Thus, the parameters determine the shape of the function π (x).
The four sets of parameters that are examined in this paper are given in Table 1 and
displayed in Figure 1. The sets are chosen to represent different variations of the shape
of the response curve, it can be ”high” or ”low” and given the scale on x it can be
”wide” or ”narrow”.
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Table 1: Four parameter sets labeled according to their associated characteristics of
π(x).

Type of response curve Parameter set

”High-wide” β =
(
2 0 −0.1

)T

”High-narrow” β =
(
2 0 −4

)T

”Low-wide” β =
(
−2 0 −0.1

)T

”Low-narrow” β =
(
−2 0 −4

)T

The maximum likelihood estimates of the model parameters are found by using the
method of scoring (see e.g. Dobson, 2002, Section 4.3). Let xT

i be a row-vector of
control variables and let X be the n × p matrix with xT

i as rows. Also let V be the
n× n diagonal matrix with weights

v (xi) =
1

V ar (Yi)

(
∂µi
∂ηi

)2

.

The asymptotic sampling distribution for the MLE is normal with covariance I−1 =(
XTVX

)−1
. That is, the MLE is a consistent and asymptotically efficient estimator

of β. Variance estimates can be obtained by the diagonal elements in

V̂
(
β̂
)
=
(
XT V̂X

)−1
,

where V̂ is the same as V but with the MLE of β used instead of β. The maximum
likelihood estimator of the optimum point xm is given by

x̂m = − β̂1

2β̂2

This estimator is also consistent with approximate (or ”asymptotic”) variance

V
(
g
(
β̂
))

= V (x̂m) =

(
∂xm
∂β

)T

V
(
β̂
)(∂xm

∂β

)

=

(
∂xm
∂β

)T

I−1

(
∂xm
∂β

)
,

with (
∂xm
∂β

)T

=
(
0 − 1

2β2

β1

2β2
2

)
.
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Figure 1: The probability � is plotted against the control variable x for the four

parameter sets in Table 1.
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3 Design

When designing an experiment the objective is to obtain as much information as pos-
sible. A criterion function, Ψ (ξ, θ) , can be used to reflect the amount of information
in a design and therefore to decide which design is the best. An optimal design is
constructed by selecting the levels of the control variables, the design points, and the
proportions of the total number of observations to be allocated to the design points,
the design weights, in a way that the criterion function is optimized. Different crite-
rion functions are used for different situations depending on the aim of the experiment.
For example, when the aim is to explore the relationship between the response and
the control variables, i.e. to estimate the model parameters, the criterion function is
different from when the aim is to find the optimum operating conditions. Thus, the
optimal design for these two situations will also be different.
A design can be denoted as

ξ =

{
x1 x2 · · · xn
w1 w2 · · · wn

}
,

wi ≥ 0,
n∑

i=1

wi = 1,

where x1, x2, ..., xn represents the design points and w1, w2, ..., wn represents the corre-
sponding design weights. The information obtained from an observation at the design
point xi is given by

m (θ,xi) = v (xi)xix
T
i .

when the model belongs to the GLMs. The standardized information matrix for a
design can be expressed as the weighted sum of the information from the individual
design points in the p× p matrix

M (ξ, θ) =

n∑

i=1

wim (θ,xi) .

The Fisher information for the design is given by

I (ξ, θ) = NM (ξ, θ)

and the asymptotic covariance matrix of the MLE of θ is given by the inverse of the
Fisher information matrix

I−1 (ξ, θ) =
1

N
M−1 (ξ, θ) .

Different designs will thus lead to different asymptotic sampling distributions for the
MLE. The standardized predictor variance for a GLM is defined as
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d (x, ξ) = v (x)xTM−1 (ξ, θ)x = tr
[
m (θ,x)M−1 (ξ, θ)

]

One reasonable criterion function when interest is in estimating the model parameters
with high precision is Ψ (ξ, β) = ln

∣∣M−1(ξ, β)
∣∣ , the optimal design is then found

by minimizing ln
∣∣M−1(ξ, β)

∣∣. The square root of
∣∣M−1(ξ, β)

∣∣ is proportional to the
volume of the confidence region for the parameters which is thus minimized. Such a
design is called D-optimal. If interest instead is in estimating the optimum point xm

a reasonable choice of criterion function is Ψ (ξ, β) = cTM−1(ξ, β)c, with c =
(
∂xm
∂β

)
,

which is the asymptotic variance of x̂m. Minimizing this criterion function results in
a c-optimal design.
The General Equivalence Theorem (Kiefer and Wolfowitz, 1959, and Kiefer,1961) can
be used to check optimality of a suggested design. If the design is optimal it is known
from the theorem that the maximum of d (x, ξ) should be equal to the number of
parameters in the model. The maxima will also appear at the design points. Further-

more, it is known that there exists a D-optimal design with p ≤ n ≤ p(p+1)
2 design

points.
For the logistic model with linear predictor ηi = β0 + β1xi + β2x

2
i the standardized

information matrix for a particular design is given by the 3× 3 matrix

M (ξ, β) =

n∑

i=1

wim (β,xi) =

n∑

i=1

wiv (xi)xix
T
i =

n∑

i=1

wiπ (xi) (1− π (xi))



1 xi x2i
xi x2i x3i
x2i x3i x4i




The D-optimal design is found by minimizing ln
∣∣M−1 (ξ, β)

∣∣ or equivalently maximiz-
ing ln |M (ξ, β)| ,which can be accomplished with numerical methods. To start with
the number of design points n is not known. Assume for example p points, mini-
mize

∣∣M−1 (ξ, β)
∣∣ and plot the standardized predictor variance, d (x, ξ). This plot will

show whether the design is optimal or not. For the non-optimal case it can give a
hint of the optimal number of design points by looking at the number of peaks of the
d (x, ξ)-function.
The D-optimal design depends on the true parameter vector β for the logistic model.
Because of the symmetry property that π (x+ xm) = π (−x+ xm) there is a possibility
that the optimal design is also symmetric. Therefore to start with the assumption that
the D-optimal design consists of p = 3 points, where one point is xm and the other two
are symmetric around this point, is made. For all of the four parameter sets presented
in the previous section β1 = 0 so that xm = −β1/ (2β2) = 0. It is also assumed that
the design weights are equal to 1/3. This design, denoted as ξ3, is given by

ξ3 =

{
−x+ xm xm x+ xm

1/3 1/3 1/3

}
=

{
−x 0 x
1/3 1/3 1/3

}
.
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The standardized information matrix will now be

M (ξ3, β) =
1

3


2v (x)



1 0 x2

0 x2 0
x2 0 x4


+ v (0)



1 0 0
0 0 0
0 0 0






where

v (−x) = v (x) =
exp

{
β0 + β1x+ β2x

2
}

(1 + exp {β0 + β1x+ β2x2})2

v (0) =
exp {β0}

(1 + exp {β0})2
.

The next step is to find the value of x that maximizes |M (ξ3, β)| which here was done
using Mathcad 11.0. The resulting 3-point designs for the four sets of true parameters
are given in Table 2.

Table 2: Suggested 3-point designs.

Type of response curve True parameters Design

”High-wide” β =
(
2 0 −0.1

)T
ξ1 =

{
−5.5398 0 5.5398

1/3 1/3 1/3

}

”High-narrow” β =
(
2 0 −4

)T
ξ1 =

{
−0.8759 0 0.8759

1/3 1/3 1/3

}

”Low-wide” β =
(
−2 0 −0.1

)T
ξ1 =

{
−3.9819 0 3.9819

1/3 1/3 1/3

}

”Low-narrow” β =
(
−2 0 −4

)T
ξ1 =

{
−0.6296 0 0.6296

1/3 1/3 1/3

}

It turns out that these suggested designs are D-optimal when the curve describing
π (x) is low, i.e. for the two parameter sets named ”low-wide” and ”low-narrow”.
This can be seen from the plots of the standardized predictor variance, d (x, ξ3) given
in Figure 2 because d (x, ξ3) ≤ 3 and the maxima are attained at the design points for
these two models.

However, d (x, ξ3) > 3 when π (x) is high. As can be seen from the plots in Figure 2 it
seems like the D-optimal design in these cases consist of 4 symmetric points. Another
design with 4 points that is symmetric around xm is given by ξ4, xm = 0 because
β1 = 0 in the current special cases.
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Figure 2: The standardized predictor variance d (x; �
3
) for the four designs given

in Table 2.

2

ξ4 =

{
−x2 + xm −x1 + xm x1 + xm x2 + xm
w2/2 w1/2 w1/2 w2/2

}

=

{
−x2 −x1 x1 x2
w2/2 w1/2 w1/2 w2/2

}

The standardized information matrix for ξ2 is given by

M (ξ4, β) = w1v (x1)



1 0 x21
0 x21 0
x21 0 x41


+w2v (x2)



1 0 x22
0 x22 0
x22 0 x42


 .

Now the problem is about finding the values of x1, x2, w1 and w2 that makes |M (ξ4, β)|
take on its largest value. Doing so results in the two designs shown in Table 3 with
standardized predictor variance d (x, ξ4) as in Figure 3.
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Figure 3: The standardized predictor variance d (x; �
4
) for the two designs given in

Table 3.

3

Table 3: Suggested 4-point designs.
Type of response curve True parameters Design

”High-wide” β =
(
2 0 −0.1

)T
ξ3 =

{
−5.7185 −2.7017 2.7017 5.7185
0.3138 0.1862 0.1862 0.3138

}

”High-narrow” β =
(
2 0 −4

)T
ξ3 =

{
−0.9042 −0.4272 0.4272 0.9042
0.3138 0.1862 0.1862 0.3138

}

An examination of these plots shows that d (x, ξ4) ≤ p = 3 in both cases and that the
maxima are attained at the design points. Hence, these designs are D-optimal.
For the parameter sets where π (x) is low the D-optimal designs consist of 3 points and
for the parameter sets where π (x) is high the D-optimal designs consist of 4 points
indicating that more points are needed to estimate a higher curve. For the two cases
when the shape of the curve π (x) is narrow it can be noted that the design points are
closer to the optimum point xm = 0. Furthermore, it can be noted that regardless of
the number of support points the optimal designs are symmetric around the optimum
point in all four cases.
When deriving c-optimal designs a problem sometimes arises with a singular informa-
tion matrix. A way to circumvent this is to add a small number ε to the diagonal
elements of M (ξ, θ) before inversion, see Section 10.3 in Atkinson and Donev (1992).
Using Mathcad 11.0 cTM−1 (ξ, θ) c was minimized and the resulting c-optimal designs
consist of 2 points that are symmetric around the optimum point for all four sets of
true parameters, see Table 4.
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Table 4: c-optimal designs.

Type of response curve True parameters Design

”High-wide” β =
(
2 0 −0.1

)T
{
−5.2529 5.2529

1/2 1/2

}

”High-narrow” β =
(
2 0 −4

)T
{
−0.8306 0.8306

1/2 1/2

}

”Low-wide” β =
(
−2 0 −0.1

)T
{
−3.3089 3.3089

1/2 1/2

}

”Low-narrow” β =
(
−2 0 −4

)T
{
−0.5232 0.5232

1/2 1/2

}

4 Sampling distribution for the maximum likelihood es-
timator

The D-optimal designs shown in the previous section concern the asymptotic sampling
distribution for the parameter estimators. In practice the sample sizes are often small
due to time and money constraints raising the question how these designs will work in a
small sample setting. Furthermore, the optimal designs depend on the true parameters
which are unknown. The properties of the MLE when the D-optimal designs are used
are examined for different sample sizes and compared to the properties of the MLE
when some non-optimal designs are used.
For each of the four sets of true parameters presented in section 2 three designs are
considered. One is the D-optimal design which depends on the parameters and thus is
different in all four cases. In practice the true parameters are not known and in most
cases more than the optimal number of points are taken to hopefully get some good
points. Sometimes there is an understanding for which values of x the probability of a
”success” is apprieciably greater than zero (if the curve has a maximum) or less than
one (for a minimum) that can be used to determine where the points shall be. One
7-point design (ξ7) and one 8-point design (ξ8) are used here, the design with 8 points
is symmetric around the optimum point whereas the 7-point design is not. All designs
are given in Table 5. The c-optimal designs are derived to be optimal when it comes
to estimating the optimum point. However, it is not possible to estimate the model
parameters with a c-optimal design because two points are not sufficient to estimate
three parameters. This is the reason for not considering the c-optimal designs here
when the small sample distribution of the MLE is studied.
For every combination of true parameter values and design four sample sizes are ex-
amined, two small samples N = 10 and N = 20 and two larger, N = 50 and N = 100.
The exact sampling distribution of the MLE is obtained for the small sample sizes by
generating all possible samples, the parameter estimates obtained in each sample are
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Table 5: D-optimal designs, one 7-point design and one 8-point design.

D-optimal ”High-wide” β =
(
2 0 −0.1

)T
ξ∗ =

{
−5.7185 −2.7017 2.7017 5.7185
0.3138 0.1862 0.1862 0.3138

}

D-optimal ”High-narrow” β =
(
2 0 −4

)T
ξ∗ =

{
−0.9042 −0.4272 0.4272 0.9042
0.3138 0.1862 0.1862 0.3138

}

D-optimal ”Low-wide” β =
(
−2 0 −0.1

)T
ξ∗ =

{
−3.9819 0 3.9819

1/3 1/3 1/3

}

D-optimal ”Low-narrow” β =
(
−2 0 −4

)T
ξ∗ =

{
−0.6296 0 0.6296

1/3 1/3 1/3

}

7-point ξ7 =

{
−4 −1 0.5 1 1.5 3 6
1/7 1/7 1/7 1/7 1/7 1/7 1/7

}

8-point ξ8 =

{
−5 −2 −0.75 −0.25 0.25 0.75 2 5
1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

}

then weighted with the probability of obtaining the current sample. For the larger
sample sizes simulations are performed instead because the number of possible sam-
ples grows very large. Given the sets of true parameter values and design, response
values are generated. For every x the probability for a ”success”, P (Yj = 1) = πj, is
calculated. Uniform random numbers Uj , j = 1, ..., N are generated and if Uj < πj 1
is assigned to the response variable, otherwise 0 is assigned. These response values are,
together with the values of the control variable given by the design, used to estimate
the parameters.
The proportions of the sample to be allocated to the design points are given by the
design weights. The number of observations to be taken at each design point are
thus given by ni = wiN . However, adjustments have to be made to ni because the
number of observations need to be integer values. The resulting designs will then be
approximations to the designs given in Table 5. In Table 6 the number of observations
per design point are shown.

Table 6: Number of observations taken at each design point.
N 3-point design 4-point design 7-point design 8-point design
10 3/4/3 3/2/2/3 1/2/1/2/1/2/1 2/1/1/1/1/1/1/2
20 7/6/7 6/4/4/6 3/3/3/2/3/3/3 2/3/2/3/2/3/2/3
50 17/16/17 16/9/9/16 7/7/7/8/7/7/7 7/6/6/6/6/6/6/7
100 33/34/33 31/19/19/31 14/14/15/14/15/14/14 12/13/12/13/12/13/12/13

4.1 Non-existence of the MLE

For certain data the maximum likelihood estimation procedure does not converge and
there exist no MLEs. Depending on the pattern of the data points a data set can be
categorized as belonging to one of three types of data configurations; complete sepa-
ration, quasi-complete separation and overlap, as described in Albert and Anderson
(1984). It is only when data belong to the third configuration that the MLE is finite
and unique. The responses are binary and the data can thus be divided into two
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response groups, one including the points where Yi = 1 and one including the points
where Yi = 0. If there is a vector that correctly allocates all observations to their
respective response group complete separation is present, that is, if there is a vector α
so that αTxi > 0 for all Yi = 1 and αTxi < 0 for all Yi = 0. Quasi-complete separation
occurs when there is a vector α such that αTxi ≥ 0 for all Yi = 1 and αTxi ≤ 0 for
all Yi = 0. If the data configuration is neither complete separation nor quasi-complete
separation the data points are overlapped and the MLE exists and is unique. Examples
on the three data configurations are shown in Figure 4.
The problem of separation occurs for the logistic model considered here, to what extent
depends on the sample size, the number of design points and the true parameters.
When the sample size is N = 10 divided among three points the number of possible
samples is equal to

(n1 + 1) · (n2 + 1) · (n3 + 1) = 4 · 5 · 4 = 80.

The only way for the data to be overlapped and thereby for the MLE to exist is
to have both response types observed at all three points. In a design point where
three observations are taken there are two variants where both response types are
represented: 1 or 2 ones out of 3. When four observations are taken at a design point
there are three such cases: 1, 2 or 3 ones out of 4. In total there are 2 · 3 · 2 = 12
distinct samples where the MLE exists. Let Zi be the number of ones observed at
design point xi, that is Zi ∼ bin (ni, πi) where πi =

eηi
1+eηi . The probability that the

MLE exists can then be computed as

P (MLE) = [P (Z1 = 1) + P (Z1 = 2)] · [P (Z2 = 1) + P (Z2 = 2) + P (Z2 = 3)]

· [P (Z3 = 1) + P (Z3 = 2)] .

This probability is shown for all combinations of design and true parameters forN = 10
section a) of Table 7. The probability to obtain a MLE is essentially zero for the ”low-
narrow” model irrespective of what design is used. It is not possible to estimate the
parameters with only 10 observations in this case. For the ”low-wide” model this
probability is at best around 10 percent when one of the two non-optimal designs are
used. The reason why the non-optimal designs performs better in this respect is that
the D-optimal design consists of only 3 points which makes it more difficult to obtain
overlapped data compared to the designs with more points. This is particularly the
case for the wide models because for these models P (Y = 1) > 0 for a wider range
of x values than for the narrow models. As a consequence there are more points
to choose from for which there are a possibility of observing both zeros and ones
and thus avoiding complete or quasi-complete separation in the data. This is also
reflected in the pattern for the ”high-wide” model where the probability of obtaining
a MLE is approximately 50% for the non-optimal designs compared to 35% for the D-
optimal design. For the ”high-narrow” model on the other hand the D-optimal design
outperforms the other two having 35% chance of obtaining parameter estimates as
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against 11 or 1%. The low models are more problematic compared to the high models
because P (Y = 1) is low and therefore there will be many points where only zeros are
observed.

Table 7: The number of possible samples, the number of samples where the MLE
exists and the probability that the MLE exists for N=10 and N=20.

Type of response curve Design # samples
# samples where
the MLE exists

P(MLE exists)

a) N = 10
D-opt 144 68 0.35

”High-wide” 7-p 648 544 0.53
8-p 576 488 0.49

D-opt 144 68 0.35
”High-narrow” 7-p 648 544 0.014

8-p 576 488 0.11

D-opt 80 12 2.5 · 10−3

”Low-wide” 7-p 648 544 0.11
8-p 576 488 0.096

D-opt 80 12 2.5 · 10−3

”Low-narrow” 7-p 648 488 2.4 · 10−5

8-p 576 156 2.6 · 10−3

b) N = 20
D-opt 1225 927 0.74

”High-wide” 7-p 12288 11944 0.82
8-p 20736 20384 0.84

D-opt 1225 927 0.76
”High-narrow” 7-p 12288 11944 0.046

8-p 20736 20384 0.43

D-opt 448 180 0.016
”Low-wide” 7-p 12228 11944 0.28

8-p 20736 20384 0.36

D-opt 448 180 0.016

”Low-narrow” 7-p 12228 11944 4.4 · 10−5

8-p 20736 20384 0.016

In section b) of Table 7 the probabilities that the MLE exist when N = 20 is presented.
The probability to obtain parameter estimates has increased but is still extremely
low for the ”low-narrow” model. For the ”low-wide” model these probabilities have
increased about three times for the two non-optimal designs which still are preferable.
The D-optimal design has the highest probability for the ”high-narrow” model and
the three designs are almost equivalent for the ”high-wide” model.
For N = 50 the probability of obtaining parameter estimates can be estimated by
the percentage share of the simulations where the MLE existed. These are shown
in column a) of Table 8. There are hardly ever problems with non-existence for the
”high-wide” model with 99% existence for all three designs. The same thing applies
to the ”high-narrow” model if the D-optimal design is used. The situation is not quite
as good for the ”low-wide” model where the 80% associated with the 8-point design is
the highest proportion. Nevertheless it is a lot better than for the ”low-narrow” case
where existence in 11% of the times (for the D-optimal design) is the maximum.
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Figure 4: Examples on data con�gurations for the 8-point design, if there are only
zeros observed at a point a ring is displayed, if there are only ones observed a cross
is displayed and if both response types are present a cross in a ring is displayed.
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Table 8: The percentage share of the simulations where the MLE existed for N=50
and N=100.

Type of response curve Design
% of the simulation samples
where the MLE existed

a) N = 50 b) N = 100

D-opt 99 100
”High-wide” 7-p 99 100

8-p 99 100

D-opt 99 100
”High-narrow” 7-p 34 69

8-p 84 98

D-opt 12 35
”Low-wide” 7-p 73 97

8-p 80 98

D-opt 11 35
”Low-narrow” 7-p 0.04 0.2

8-p 8 21

For N = 100 the percentage shares of the simulations where the MLE existed are
given in column b) of Table 8. There are no longer any problems with non-existence
for the ”high-wide” model for any of the designs. If the D-optimal or 8-point design is
chosen for the ”high-narrow” model the problem is also avoided. By choosing one of
the non-optimal designs for the ”low-wide” model almost 100% existence of the MLE
can be expected. When the D-optimum design was used for the ”low-narrow” model
existence occurred in only 35% of the times even though the sample size is quite large.

4.2 Results

When the sample sizes are small, i.e. when N = 10 and N = 20, all possible sam-
ples are generated and parameter estimates are calculated when possible. The mean
squared error, mean and variance given that the MLE exists are displayed in Table 9.
Furthermore, an estimate of the variance of the MLE, given by the diagonal elements

in V̂
(
β̂
)
found in section 2, is calculated. The mean and variance of this estimator,

given that the MLE exists, are also presented in the table. In the column AV
(
β̂
)
the

theoretical approximate variance derived using asymptotic results, obtained from the
diagonal in I−1 (ξ, β), can be found.

The results for the smallest sample size N = 10 are summarized as follows. The mean
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squared error given that the MLE exists is not consistently lower for the D-optimal
design compared to the two non-optimal designs , e.g. for the ”high-narrow” model. In
order to maximize the probability of obtaining a MLE for the ”high-wide” model the
7-point design is preferable. The downside is that the mean squared error given that
the MLE exists is larger than for the D-optimal design. For the ”high-narrow” model
the D-optimal design that has the highest probability of existence does not have the
lowest mean squared error for two of the parameters. The mean squared error given
that the MLE exists is smallest for the D-optimal design and the ”low-wide” model,
but the probability of existence is practically zero. Of the other two designs the best
choice is the 7-point design, however, the probability of existence is only 11% so this
is still no good choice. The results for the ”low-narrow” model are less important
because the probability that the MLE exists is virtually zero. It can be noted that
the bias (given that the MLE exists) of β̂1 is small whenever a symmetric design (the
D-optimal or the 8-point design) is used for all models. Apart from these cases, the
bias is large. The variance of the MLE given that the MLE exists is always less than
the theoretical approximate variance when the D-optimal design is used, that is the
asymptotic results are not applicable for such small samples. For the non-optimal
designs the variance given that the MLE exists is sometimes larger and sometimes
smaller depending on the true parameters. The mean of the variance estimator (given
that the MLE exists) is almost always overestimating the variance.

When N = 20 the probability of existence has increased although it is still very low for
the ”low-narrow” model and quite low for the ”low-wide” model. The mean squared
error given that the MLE exists has decreased and there is no design that consistently
has a lower mean squared error than the others even though the D-optimal design
more often is favored. A higher probability of obtaining an estimate can sometimes
be traded for a higher mean squared error, like for the ”low-wide” model. The bias
(given that the MLE exists) is quite large throughout, with the exception of estimation
of β2 for the ”high wide” model regardless of which design is used, and for β1 when
the D-optimal design is used. The bias has increased for β̂1 and the 8-point design
compared to when N = 10. There is no clear-cut pattern as to when the variance given
that the MLE exists is larger than or less than the theoretical approximate variance.
The mean of the variance estimator given that the MLE exists is with one exception
an overestimation of the variance. In addition, the variance of this variance estimator
(given that the MLE exists) is very large for some cases for the non-optimal designs,
especially for the 7-point design and the ”low-wide” model.

Simulations are performed for the larger sample sizes N = 50 and N = 100. MLEs of
the parameters are obtained for each of the true parameter-design-sample size com-
binations which is repeated 5000 times. The simulation results concerning parameter
estimation when N = 50 and N = 100 are summarized in Table 10. The mean squared
error for the simulation samples where the MLE converged is computed and shown
in the second column. The average and sample variance of the MLE in the simula-
tion samples where the MLE existed are given in the third and fourth columns. The
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next column contains the theoretical approximate variance derived using asymptotic

results, abbreviated as AV
(
β̂
)
. An estimate of the variance of the MLE, given by the

diagonal elements in V̂
(
β̂
)
, is calculated for each of the simulation samples where the

MLE existed. The average and sample variance of these variance estimates are found
in the last two columns.

When N = 50 almost all of the 5000 simulations resulted in overlapped data with
an existing MLE for the ”high-wide” model no matter what design was used and for
the ”high-narrow” model together with the D-optimal design. 80% existence was the
best that was achieved for the ”low-wide” model (the 8-point design) which might be
tolerable contrary to 11% existence that was the maximum for the ”low-narrow” model
(the D-optimal design). The pattern of the simulation mean squared error based on
the times where the MLE existed is similar to the pattern of the mean squared error
(given that the MLE exists) observed when N = 20. That is, although none of the
designs entirely outperforms the others, the D-optimal design is more often associated
with the lowest mean squared error. The bias is still quite large, in most cases it has
decreased but there are examples where the opposite is true, e.g. β̂1 and the D-optimal
design. The simulation sample variance of the MLE exceeds but is quite close to the
theoretical approximate variance when the percentage share of existence was as high
as 99%. The variance estimator also worked well when the MLE existed in 99% of
the times, it slightly underestimated the simulation sample variance in those cases.
For almost all the rest it was an overestimate of the sample variance and the higher
proportion of existence the closer it came. The simulation sample variance of this
variance estimator was particularly large for the non-optimal designs and both the
low models.

When the sample size is N = 100 the D-optimal design was the design with the
highest proportion of existence in three out of four cases. For the ”low-wide” model
on the other hand both the non-optimal designs managed to estimate the parameters
in almost 100% of the times compared to only 35% for the D-optimal design. The
mean squared error for the simulation samples where the MLE existed is lowest for
the D-optimal design besides for β0 for both the wide models and it is lowest for all
parameters for the ”high-narrow” model. The 8-point design is instead associated
with the lowest mean squared error for two parameters for the ”low-narrow” model.
The MLE is still biased (with the exception of β̂2 for the ”high-wide” model and the
D-optimal or 8-point design) although it has decreased. The bias is generally smallest

for β̂1 when the D-optimal or 8-point design is used. For all three designs and the
”high-wide” model and for the two symmetric designs and the ”high-narrow” model
the simulation sample variance agrees well with the theoretical approximate variance.
Furthermore, the variance estimator comes close to the simulation sample variance.
In spite of the fact that the proportion where the MLE existed was approximately
100% for the two non-optimal designs and the ”low-wide” case, the simulation sample
variance exceeds the theoretical approximate variance with a fairly large amount.
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However, the variance estimator succeeds quite well in these two cases.

The mean and variance of the optimum point, x̂m, given that the MLE exists are
computed for N = 10 and N = 20 and the average and simulation sample variance
of x̂m are computed for N = 50 and N = 100. Occasionally the estimate of β2
comes close to zero which causes x̂m and with that the mean or simulation average
of x̂m to degenerate. Therefore the most severe cases of degenerated estimates are
discarded. An estimate is here considered degenerated if x̂m is more than 10 times
the approximate theoretical standard deviation away from the true optimum point,
i.e. falls outside xm ± 10 ·

√
AV (x̂m). The probability that x̂m is not degenerated

according to this definition is displayed in the second column of Table 11. For the two
smallest sample sizes this probability is calculated by summing the probabilities to
obtain each of the samples where x̂m is not degenerated. For the two largest sample
sizes this probability is estimated by the percentage share of the samples (where the
MLE existed) where x̂m was not degenerated. The mean and variance of x̂m given
that the MLE exists and that x̂m is not degenerated is found in the third and fourth
columns of Table 11. The fifth column contains the theoretical approximate variance
of x̂m derived using asymptotic results. The variance estimator V̂ (x̂m) is computed
according to the equations given in section 2 and its mean and variance are given
in the last two columns. The corresponding simulation results given that the MLE
existed and that x̂m was not degenerated are presented in Table 12 for N = 50 and
N = 100.

The probability of obtaining degenerated estimates is higher for the wide models be-
cause β2 is closer to zero, as can be seen from Table 11 for N = 10. The differences
between the designs are small in this respect. The differences when it comes to bias
and variance of x̂m given that the MLE exists and that x̂m is not degenerated was
on the other hand large. The D-optimal design had the smallest bias (for all but
the ”low-wide” model) and variance irrespective of the true parameters. The 8-point
design comes in a good second place when grading is made by size of bias, it is not far
away from the D-optimal design. A symmetric design is as might be expected better
at estimating the optimum point. The variance of x̂m was smallest for the D-optimal
design and in three cases smaller for the 8-point than for the 7-point design. The
variance exceeded the theoretical approximate variance for the high models and vice
versa for the low models. The variance estimator does not work well at all. For all
models it overestimates the variance of x̂m given that the MLE exists and that x̂m
is not degenerated and it only came fairly close for the 8-point design and the nar-
row models. It needs to be pointed out that the probability that the MLE exists is
extremely low for many cases making some of these results not that meaningful.

The probability that x̂m is not degenerated has increased somewhat when the sample
size is increased from N = 10 to N = 20. The D-optimal design is now associated
with the lowest bias and variance given that the MLE exists and that x̂m is not
degenerated in all cases. The 8-point design is still in a second place but has now
fallen behind. The bias has also increased for the D-optimal design and the high
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models. The variance of x̂m given that the MLE exists and that x̂m is not degenerated
was higher than the theoretical approximate variance for the two high models and
lower for the two low models. The variance estimator is still no good for any of the
models, although it is somewhat closer for the 7-point design together with the narrow
models. These patterns remain when N = 50 apart from that the simulation sample
variance of x̂m now is closer to the theoretical approximate variance, especially for the
D-optimal design, and that the variance estimator has improved for the ”high-wide”
model. For the largest sample size the same grading prevails, i.e. that the D-optimal
design was better than the non-optimal designs. The variance of x̂m is quite close to
the theoretical approximate variance for the ”high” models. The variance estimator
also comes close to the simulation sample variance for those models.
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Table 9: Results from maximum likelihood estimation of the paramters in the quadratic logit model for N=10 and
N=20.

Design
(P (MLE))

MSE E
(
β̂
)

V
(
β̂
)

AV
(
β̂
)

E
(
V̂
(
β̂
))

V
(
V̂
(
β̂
))

a) True response curve: ”high-wide”model β =
(
2 0 −0.1

)T

D
(0.35)

1.53
0.018
2.66 · 10−3

1.10
−2.34 · 10−18

−0.064

0.72
0.018
1.39 · 10−3

2.67
0.025
3.87 · 10−3

2.19
0.03
3.81 · 10−3

0.063
1.10 · 10−4

5.20 · 10−7

N = 10
7−P
(0.53)

0.63
0.42
0.017

1.82
−0.16
−0.090

0.60
0.40
0.017

1.28
0.074
5.70 · 10−3

1.60
0.57
0.03

1.41
1.07
5.38 · 10−3

8−P
(0.49)

0.71
0.25
0.019

1.41
−4.16 · 10−17

−0.093

0.36
0.25
0.019

1.31
0.062
5.16 · 10−3

1.30
0.31
0.028

0.094
0.40
0.022

D
(0.74)

0.79
0.016
1.43 · 10−3

1.89
−1.26 · 10−17

−0.10

0.78
0.016
1.43 · 10−3

1.34
0.013
1.94 · 10−3

1.40
0.019
2.45 · 10−3

0.19
1.16 · 10−4

8.13 · 10−7

N = 20
7−P
(0.82)

0.60
0.17
7.82 · 10−3

2.14
−0.097
−0.11

0.58
0.16
7.74 · 10−3

0.64
0.037
2.85 · 10−3

1.02
0.17
9.64 · 10−3

0.73
0.46
0.013

8−P
(0.84)

0.47
0.16
0.014

2.05
−0.019
−0.11

0.47
0.16
0.014

0.65
0.031
2.58 · 10−3

0.82
0.14
0.015

0.16
0.14
0.038
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Continued Table 9 (Part-2)

Design
(P (MLE))

MSE E
(
β̂
)

V
(
β̂
)

AV
(
β̂
)

E
(
V̂
(
β̂
))

V
(
V̂
(
β̂
))

b)True response curve: ”high-narrow”model β =
(
2 0 −4

)T

D
(0.35)

1.53
0.73
4.26

1.10
−4.24 · 10−17

−2.58

0.72
0.73
2.23

2.68
1.01
6.20

2.19
1.21
6.09

0.063
0.18
1.33

N = 10
7−P
(0.014)

4.20
0.51
12.20

−9.79 · 10−4

−0.38
−0.51

0.19
0.37
0.023

7.87
3.26
13.00

1.68
1.07
0.65

0.35
1.83
0.041

8−P
(0.11)

1.53
1.66
0.14

0.86
−3.31 · 10−16

−1.56

0.23
1.66
0.14

4.04
2.73
19.18

1.65
3.71
2.72

0.011
1.89
1.78

D
(0.76)

0.79
0.64
2.29

1.89
−3.89 · 10−16

−4.01

0.78
0.64
2.29

1.34
0.50
3.10

1.40
0.75
3.91

0.19
0.19
2.08

N = 20
7−P
(0.76)

1.46
0.33
5.28

1.08
0.012
−1.77

0.61
0.33
0.30

3.93
1.63
6.49

1.97
1.13
1.97

1.35
40.83
2.43

8−P
(0.046)

0.68
1.63
2.88

1.43
−0.14
−2.94

0.35
1.61
1.76

2.02
1.37
9.59

1.26
1.99
6.26

0.13
1.02
19.89
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Continued Table 9 (Part-3)

Design
(P (MLE))

MSE E
(
β̂
)

V
(
β̂
)

AV
(
β̂
)

E
(
V̂
(
β̂
))

V
(
V̂
(
β̂
))

c)True response curve: ”low-wide”model β =
(
−2 0 −0.1

)T

D(
2.5 · 10−3

)
1.47
1.59 · 10−3

0.014

−0.88
2.11 · 10−17

0.014

0.23
1.59 · 10−3

1.00 · 10−3

2.86
0.36
0.034

1.28
0.047
8.06 · 10−3

0.015
4.34 · 10−19

2.44 · 10−7

N = 10
7−P
(0.11)

2.34
1.36
0.15

−0.86
0.36
−0.35

1.05
1.22
0.088

2.21
0.55
0.060

2.35
2.23
0.35

5.58
11.96
0.14

8−P
(0.096)

3.10
2.01
0.69

−0.43
−5.65 · 10−16

−0.63

2.63
2.01
0.41

1.66
0.63
0.060

1.40
2.31
0.86

0.21
3.96
2.08

D
(0.016)

0.73
1.95 · 10−3

6.60 · 10−3

−1.31
3.36 · 10−17

−0.026

0.25
1.95 · 10−3

1.12 · 10−3

1.43
0.18
0.017

1.07
0.036
6.49 · 10−3

0.044
8.19 · 10−6

7.31 · 10−

N = 20
7−P
(0.28)

1.21
2.37
0.45

−1.52
0.61
−0.46

0.98
2.01
0.32

1.11
0.27
0.030

2.61
6.56
1.46

26.52
696.44
41.63

8−P
(0.36)

0.88
1.66
0.69

−1.36
−0.044
−0.68

0.48
1.66
0.69

0.83
0.31
0.030

0.88
2.04
1.52

0.19
7.66
13.61
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Continued Table 9 (Part-4)

Design
(P (MLE))

MSE E
(
β̂
)

V
(
β̂
)

AV
(
β̂
)

E
(
V̂
(
β̂
))

V
(
V̂
(
β̂
))

d) True response curve: ”low-narrow”model β =
(
−2 0 −4

)T

D(
2.5 · 10−3

)
1.47
0.064
22.52

−0.88
−1.45 · 10−16

0.57

0.23
0.064
1.60

2.86
14.4
54.56

1.28
1.89
12.91

0.015
1.33 · 10−15

0.62

N = 10
7−P(
2.4 · 10−5

)
3.45
0.34
12.45

−0.15
−0.37
−0.47

0.026
0.20
0.011

103.06
139.39
329.69

1.59
0.96
0.63

0.18
1.12
7.24 · 10−3

8−P(
2.6 · 10−3

)
6.11
2.68
4.93

0.47
−5.46 · 10−16

−1.80

0.022
2.68
0.094

6.32
30.32
133.93

1.59
4.69
3.69

8.87 · 10−3

0.91
0.73

D
(0.016)

0.73
0.078
10.56

−1.31
−3.19 · 10−16

−1.04

0.25
0.078
1.79

1.43
7.21
27.28

1.07
1.42
10.38

0.044
0.013
1.87

N = 20
7−P(
4.4 · 10−5

)
1.37
0.85
11.71

−0.98
−0.05
−0.59

0.32
0.85
0.10

1.43
7.21
27.28

1.52
2.10
0.70

1.78
30.67
1.62

8−P
(0.016)

1.54
1.70
5.55

−0.85
0.35
−1.84

0.22
1.58
0.88

3.16
15.16
66.97

0.96
3.52
6.13

0.016
1.71
36.13
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Table 10: Simulation results from maximum likelihood estimation of the paramters in the quadratic logit model for
N=50 and N=100.

Design
(% MLE)

mse β̂ s2
β̂

AV
(
β̂
)

V̂
(
β̂
)

s2
V̂(β̂)

a) True response curve: ”high-wide”model β =
(
2 0 −0.1

)T

D
(99)

0.72
7.34 · 10−3

1.14 · 10−3

2.17
2.18 · 10−4

−0.11

0.69
7.34 · 10−3

1.06 · 10−3

0.54
5.03 · 10−3

7.75 · 10−4

0.69
6.33 · 10−3

1.01 · 10−3

0.12
1.26 · 10−5

1.94 · 10−6

N = 50
7−P
(99)

0.39
0.031
2.50 · 10−3

2.16
−0.030
−0.11

0.36
0.030
2.35 · 10−3

0.26
0.015
1.14 · 10−3

0.35
0.025
2.03 · 10−3

0.068
5.03 · 10−3

4.73 · 10−6

8−P
(99)

0.38
0.020
1.73 · 10−3

2.12
−1.35 · 10−4

−0.11

0.36
0.020
1.65 · 10−3

0.26
0.012
1.03 · 10−3

0.34
0.016
1.37 · 10−3

0.041
1.72 · 10−4

1.19 · 10−6

D
(100)

0.33
2.93 · 10−3

4.79 · 10−4

2.09
2.56 · 10−4

−0.10

0.32
2.93 · 10−3

4.57 · 10−4

0.27
2.51 · 10−3

3.87 · 10−4

0.29
2.79 · 10−3

4.28 · 10−4

8.17 · 10−3

3.68 · 10−7

9.20 · 10−9

N = 100
7−P
(100)

0.16
9.50 · 10−3

8.57 · 10−4

2.08
−0.011
−0.11

0.16
9.38 · 10−3

8.25 · 10−4

0.13
7.42 · 10−3

5.70 · 10−4

0.14
8.57 · 10−3

7.22 · 10−3

2.38 · 10−3

3.84 · 10−6

1.57 · 10−7

8−P
(100)

0.15
7.72 · 10−3

6.53 · 10−4

2.05
1.42 · 10−3

−0.10

0.14
7.72 · 10−3

6.53 · 10−4

0.13
6.15 · 10−3

5.16 · 10−4

0.14
6.96 · 10−3

5.83 · 10−4

2.01 · 10−3

4.14 · 10−6

2.54 · 10−8
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Continued Table 10 (Part-2)

Design
(% MLE)

mse β̂ s2
β̂

AV
(
β̂
)

V̂
(
β̂
)

s2
V̂(β̂)

b) True response curve: ”high-narrow”model β =
(
2 0 −4

)T

D
(99)

0.67
0.26
1.70

2.15
−1.26 · 10−3

−4.32

0.60
0.29
1.60

0.54
0.20
1.24

0.68
0.25
1.59

0.10
0.020
0.46

N = 50
7−P
(34)

0.86
0.14
1.27

1.87
−0.083
−3.43

0.85
0.14
0.94

1.57
0.65
2.60

1.56
0.48
2.20

0.27
0.030
0.52

8−P
(84)

0.44
0.82
2.72

1.99
−0.020
−4.11

0.44
0.82
2.71

0.81
0.55
3.84

0.89
0.74
4.31

0.16
0.19
4.66

D
(100)

0.31
0.11
0.74

2.08
4.97 · 10−4

−4.16

0.30
0.11
0.71

0.27
0.10
0.62

0.29
0.11
0.68

8.64 · 10−3

5.75 · 10−4

0.025

N = 100
7−P
(69)

0.76
0.18
0.96

2.10
−1.77 · 10−3

−4.03

0.75
0.18
0.96

0.79
0.33
1.30

0.87
0.36
1.40

0.12
0.020
0.26

8−P
(98)

0.47
0.32
2.21

2.14
0.017
−4.30

0.45
0.32
2.12

0.40
0.27
1.92

0.50
0.30
2.12

0.084
5.05 · 10−3

1.02
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Continued Table 10 (Part-3)

Design
(% MLE)

mse β̂ s2
β̂

AV
(
β̂
)

V̂
(
β̂
)

s2
V̂(β̂)

c) True response curve: ”low-wide”model β =
(
−2 0 −0.1

)T

D
(12)

0.39
4.50 · 10−3

5.75 · 10−3

−1.99
−1.91 · 10−4

−0.037

0.39
4.50 · 10−3

1.78 · 10−3

0.57
0.072
6.82 · 10−3

0.68
0.030
4.59 · 10−3

0.090
2.46 · 10−5

1.53 · 10−6

N = 50
7−P
(73)

1.09
2.32
0.50

−2.04
0.49
−0.44

1.09
2.08
0.38

0.44
0.11
0.012

1.53
2.96
0.65

9.05
106.93
5.79

8−P
(80)

0.42
1.15
0.82

−1.88
−0.026
−0.55

0.41
1.15
0.62

0.33
0.13
0.012

0.50
1.05
0.82

0.12
2.91
5.08

D
(35)

0.34
5.71 · 10−3

2.86 · 10−3

−2.11
−1.94 · 10−3

−0.066

0.33
5.71 · 10−3

1.72 · 10−3

0.29
0.036
3.41 · 10−3

0.35
0.026
3.06 · 10−3

0.042
3.63 · 10−5

7.89 · 10−7

N = 100
7−P
(97)

0.72
1.51
0.34

−2.09
0.30
−0.33

0.71
1.42
0.28

0.22
0.055
5.95 · 10−3

0.66
1.30
0.30

3.26
42.62
2.39

8−P
(98)

0.23
0.44
0.33

−1.99
−2.73 · 10−3

−0.35

0.23
0.44
0.27

0.17
0.063
6.02 · 10−3

0.22
0.33
0.24

0.022
0.50
1.01
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Continued Table 10 (Part-4)

Design
(% MLE)

mse β̂ s2
β̂

AV
(
β̂
)

V̂
(
β̂
)

s2
V̂(β̂)

d) True response curve: ”low-narrow” model β =
(
−2 0 −4

)T

D
(11)

0.37
0.14
8.15

−1.95
2.68 · 10−3

−1.64

0.36
0.14
2.55

0.57
2.88
10.91

0.66
1.20
7.23

0.083
0.037
3.69

N = 50
7−P
(0.04)

0.79
2.77
11.52

−2.56
0.58
−0.62

0.47
2.43
0.099

20.61
27.68
65.94

2.10
3.87
0.78

3.10
21.88
0.48

8−P
(8)

0.46
1.72
4.64

−1.60
−0.078
−2.16

0.30
1.71
1.25

1.26
6.06
26.79

0.69
2.88
6.06

0.012
1.17
16.19

D
(35)

0.34
0.25
4.55

−2.10
0.012
−2.67

0.33
0.25
2.79

0.29
1.44
5.46

0.35
1.05
4.89

0.041
0.055
1.92

N = 100
7−P
(0.2)

0.64
0.14
9.13

−1.83
−0.33
−1.03

0.62
0.027
0.33

10.31
13.94
32.97

0.94
0.49
1.05

0.024
3.09 · 10−3

0.20

8−P
(21)

0.33
1.78
3.74

−2.02
0.067
−2.58

0.33
1.77
1.72

0.63
3.03
13.39

0.52
2.42
6.06

0.021
1.42
11.94
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Table 11: Results from maximum likelihood estimation of the optimum point in the
quadratic logit model for N=10 and N=20.

Design
(P(MLE))

P (x̂m) E (x̂m) V (x̂m) AV (x̂m) E
(
V̂ (x̂m)

)
V

(
V̂ (x̂m)

)

a)True response curve: ”high-wide”model β =
(
2 0 −0.1

)T
, xm = 0

D
(0.35)

0.94 1.31 · 10−16 1.40 0.63 6.18 170.6

N = 10
7−P
(0.53)

0.90 −0.32 14.23 1.86 345.85 1.55 · 106

8−P
(0.49)

0.95 −6.38 · 10−16 6.90 1.54 81.17 1.10 · 105

D
(0.74)

0.99 2.55 · 10−4 0.59 0.31 3.79 · 1027 3.38 · 1058

N = 20
7−P
(0.82)

0.95 −0.12 4.03 0.93 42.16 1.92 · 105

8−P
(0.84)

0.96 0.076 3.40 0.77 59.30 7.49 · 107

b)True response curve: ”high-narrow”model β =
(
2 0 −4

)T
, xm = 0

D
(0.35)

0.94 4.56 · 10−17 0.035 0.016 0.15 0.11

N = 10
7−P
(0.014)

1 −0.44 0.12 0.051 1.55 0.22

8−P
(0.11)

1 −1.55 · 10−17 0.13 0.043 0.29 7.08 · 10−3

D
(0.76)

0.99 −5.31 · 10−5 0.015 7.86 · 10−3 4.17 · 1027 4.09 · 1058

N = 20
7−P
(0.046)

1 −0.032 0.049 0.025 0.14 0.069

8−P
(0.43)

1 −0.022 0.051 0.021 0.074 1.86 · 10−3



Fornius: D-optimal Designs for Quadratic Logistic Regression Models 299

Continued Table 11

Design
(P(MLE))

P (x̂m) E (x̂m) V (x̂m) AV (x̂m) E
(
V̂ (x̂m)

)
V

(
V̂ (x̂m)

)

c)True response curve: ”low-wide”model β =
(
−2 0 −0.1

)T
, xm = 0

D(
2.5 · 10−3

) 0.99 −3.82 · 10−16 0.070 9.01 15.37 26.85

N = 10
7−P
(0.11)

0.99 0.86 9.59 13.73 1.24 · 103 3.39 · 108

8−P
(0.096)

0.97 2.80 · 10−16 6.24 15.63 92.72 1.05 · 107

D
(0.016)

1 1.65 · 10−15 1.30 4.51 78.97 1.42 · 104

N = 20
7−P
(0.28)

0.99 0.49 21.00 6.87 2.61 · 103 2.01 · 108

8−P
(0.36)

0.98 −0.056 5.51 7.82 278.24 4.66 · 107

d)True response curve: ”low-narrow”model β =
(
−2 0 −4

)T
, xm = 0

D(
2.5 · 10−3

) 0.99 1.00 · 10−16 1.74 · 10−3 0.23 0.38 0.017

N = 10
7−P(
2.4 · 10−5

) 1 −0.44 0.072 2.18 1.71 0.047

8−P(
2.6 · 10−3

) 1 −2.60 · 10−17 0.19 0.47 0.28 0.012

D
(0.016)

1 −1.03 · 10−15 0.032 0.11 1.97 8.88

N = 20
7−P(
4.4 · 10−5

) 1 −0.29 0.32 1.09 1.07 0.19

8−P
(0.016)

1 0.089 0.12 0.24 0.28 0.024
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Table 12: Simulation results from maximum likelihood estimation of the optimum
point in the quadratic logit model for N=50 and N=100.

Design
(% MLE)

x̂m % x̂m s2
x̂m

AV (x̂m) V̂ (x̂m) s2
V̂ (x̂m)

a) True response curve: ”high-wide”model β =
(
2 0 −0.1

)T , xm = 0

D
(99)

100 −4.13 · 10−3 0.16 0.13 0.16 0.028

N = 50
7 − P
(99)

99 −0.18 0.78 0.37 1.86 106.54

8 − P
(99)

100 −5.40 · 10−3 0.50 0.31 1.25 420.49

D
(100)

100 1.30 · 10−3 0.069 0.063 0.068 6.10 · 10−4

N = 100
7 − P
(100)

100 −0.095 0.28 0.19 0.32 0.66

8 − P
(100)

100 2.09 · 10−3 0.19 0.15 0.20 0.072

b) True response curve: ”high-narrow”model β =
(
2 0 −4

)T , xm = 0

D
(99)

100 −8.44 · 10−4 4.06 · 10−3 3.14 · 10−3 5.99 · 10−3 0.020

N = 50
7 − P
(34)

100 −0.013 4.83 · 10−3 0.010 0.014 3.43 · 10−4

8 − P
(84)

100 −1.79 · 10−3 0.016 8.54 · 10−3 0.018 1.95 · 10−4

D
(100)

100 1.06 · 10−3 1.68 · 10−3 1.57 · 10−3 1.72 · 10−3 5.28 · 10−7

N = 100
7 − P
(69)

100 2.73 · 10−3 3.40 · 10−3 5.09 · 10−3 5.89 · 10−3 9.68 · 10−6

8 − P
(98)

100 1.29 · 10−3 5.58 · 10−3 4.27 · 10−3 6.27 · 10−3 2.36 · 10−5
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Continued Table 12

Design
(% MLE)

x̂m % x̂m s2
x̂m

AV (x̂m) V̂ (x̂m) s2
V̂ (x̂m)

c) True response curve: ”low-wide”model beta =
(
−2 0 −0.1

)T
, xm = 0

D
(12)

100 0.039 1.59 1.80 141.68 4.76 · 104

N = 50
7−P
(73)

99 0.29 4.63 2.75 221.35 8.16 · 106

8−P
(80)

100 0.018 3.57 3.13 187.39 1.61 · 107

D
(35)

98 −0.020 0.79 0.90 80.03 1.32 · 105

N = 100
7−P
(97)

99 0.074 1.75 1.37 17.95 9.70 · 104

8−P
(98)

100 −0.027 1.65 1.56 17.10 8.57 · 104

d) True response curve: ”low-narrow”model β =
(
−2 0 −4

)T
, xm = 0

D
(11)

100 4.38 · 10−3 0.036 0.045 3.22 27.19

N = 50
7−P
(0.04)

100 0.17 1.37 0.44 1.04 0.18

8−P
(8)

100 −0.014 0.097 0.095 0.21 0.026

D
(35)

98 3.92 · 10−3 0.022 0.023 1.62 68.91

N = 100
7−P
(0.2)

100 −0.25 0.054 0.22 0.40 0.29

8−P
(21)

100 8.90 · 10−3 0.066 0.047 0.13 0.019
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5 Discussion

The foremost important conclusion to be drawn is that nonexistence is a big problem
for this three parameter logistic model and the sets of true parameters that was exam-
ined here, especially for small samples. How severe the problem is depends on the true
parameters and the design. The non-optimal designs considered here were sometimes
better than the D-optimal design in this respect, due to the larger number of design
points. The models where the response curve π (x) is low were more problematic, in
particular the ”low-narrow” model where existence practically never occurred for the
smallest sample size (N = 10) and only in 35% of the times for the largest sample size
(N = 100). The practical consequence is that large samples demanding big time and
money efforts need to be taken and yet there may be a large risk of not obtaining
estimates, depending on the true parameters.
It turned out to be quite a large discrepancy between the asymptotic sampling dis-
tribution of the MLE and its small sample distribution given that the MLE exists.
Even when existence was 100% and the sample size was N = 100 the MLE remained
biased. It was only when the probability that the MLE exists was close to 100% (as
for the high models and the two largest sample sizes) and the D-optimal design was
used that the simulation sample variance was close to the theoretical approximate
variance. This is a problem because the construction of the optimal designs is based
on the theoretical approximate variance. The accuracy of the variance estimator was
also dependent on the proportion of existence of the MLE.
The parameter dependence makes things troublesome for these kind of models. How-
ever, when estimating the parameters the D-optimal design was not consistently out-
performing the non-optimal designs, although it was preferable more often. When
estimating the optimum point and for the smaller sample sizes in particular the differ-
ence between the D-optimal designs and the non-optimal designs was more distinct.
These results imply that choosing one of the non-opitmal design does not have to be
disastrous, at least not when it comes to parameter estimation, such a design might
perform equally well or it might even be an improvement. Yet again, the choice of
design did have a large impact on the probability of obtaining a MLE. The ideal would
be to combine a D-optimal design with more points in a way that maximizes the prob-
ability of existence of the MLE. Some kind of sequential procedure could be required
considering the parameter dependence of this problem. Further study is needed to find
ways to deal with the problems of non-existence of the MLE in this quadratic logistic
model.
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