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Abstract

We examine standard linear regression models from the perspective of op-
timal spacings for the non-stochastic covariate, when the errors are dis-
tributed with heteroscedastic variances but zero covariances. We present
results for both symmetric and asymmetric factor spaces and for certain
special variance structures.
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1 Introduction

Under standard linear regression model

Yx = β0 + β1x+ ex, (1)

with uncorrelated and homoscedastic errors (mean 0 and variance σ2) and with the
factor space Ξ = [a, b], a < b, it is well-known that for most efficient estimation of the
regression coefficient (β1), optimal spacing corresponds to the extreme points viz., a
and b. That means, one should collect observations only from the extreme points in
the x-scale and that too, with 50 : 50 allocation. We will not pay much attention to
the exact or approximate nature of such allocations. In other words, we will mostly
deal with the continuous design allocation theory. Vide Pukelsheim (1993).
To keep the formulation in its most general form, we start with a continuous k-point
design :

dk = [(x1, p1), (x2, p2), ..., (xk , pk)], k ≥ 2, a ≤ x1 < x2 < ... < xk ≤ b. (2)

The above result suggests that for estimation of β, any such dk is dominated by d∗2 =
[(a, 0.50), (b, 0.50)] in the sense of providing increased precision i.e., smaller variance.
Before proceeding further, we note that the Information Matrix for parameter estima-
tion based on dk has 4 elements given in

I(dk) = ((I11, I12 = I21, I22)) (3)

where
I11 = 1, I12 =

∑
pixi, I22 =

∑
pix

2
i . (4)

At this stage, it is pertinent to recall the celebrated de la Garza Phenomenon
which states that in the case of pth degree polynomial regression with uncorrelated
homoscedastic errors based on a given set of k > p + 1 design points, one can
provide a set of exactly p+1 design points such that both the designs provide identical
information matrices. [de la Garza (1954)].
Applied to the present set-up, we note that corresponding to dk, there is an ”information-
equivalent” design d2 based on exactly 2 points, whenever k > 2. We set d2 =
[(c, p), (d, q); q = 1− p, 0 < p < 1] so that c and d are the support points of d2. Natu-
rally, the elements of d2 are derived as functions of those of the given design dk. It is
known that a ≤ c < d ≤ b. Thus, de la Garza Phenomenon suggests that we can
confine only to 2-point designs under homoscedastic linear regression. The design d∗2
is the best among all such designs for estimation of the β-coefficients.
There is some fact more into it. As an information matrix, apart from information
equivalence, there is a possibility of ”information dominance”! In the special case : Ξ =
[0, b], it is easily argued that corresponding to any 2-point design d2 = [(c, p), (d, q); c >
0, d < b, q = 1−p] having information matrix I, there exists a 2-point design based on
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the allocation of mass at 0 and at another point r (d < r ≤ b) such that the latter
information matrix dominates the former in the sense of ”Loewner Domination”! In
other words, the difference of the matrices [latter minus former] is an nnd matrix. This
is the best result one can hope for. The interpretation is that when the factor space
is Ξ = [0, b], only designs with some allocation of mass at 0 and the rest at just one
other point away from 0 form a ”Complete Class” in the sense that any design outside
this class can be improved by one such design in terms of Loewner Domination.
We will extend the validity of the above result for an arbitrary finite interval Ξ = [a, b]
with 0 < a < b <∞.
Such domination results for quadratic regression are established only recently. Vide
Pukelsheim (1993) and Liski et al (2002).
Our purpose in this paper is to discuss such domination results only in the case of
linear regression with heteroscedastic errors. A preliminary version of this article was
presented at Taiwan Design Conference (December 22-24, 2003).
We organize the paper as follows. In Section 2, we establish the general domination
result mentioned above. Next in Section 3, we examine the prospect of Loewner Dom-
ination in the context of linear regression involving heteroscedastic but uncorrelated
errors. Specific optimal designs are characterized in Section 4.

2 Loewner Domination in Homoscedastic Linear Regres-
sion

We use the same set-up and notations as above. We establish the following result.
Theorem 1. Given a 2-point design d2 = [(c, p), (d, q); c > a, d < b, 0 < p < 1, q =
1− p] over Ξ = [a, b], 0 < a < b, there exist P, 0 < P < 1 and e , d < e < b such that
the 2-point design d∗2 = [(a, P ), (e,Q);Q = 1 − P ] dominates over the given design in
the Loewner sense under homoscedastic linear regression.
Proof. We will follow closely the arguments as in Pukelsheim (1993) and Liski et
al (2002). It is readily seen that the (1, 1)th term of Id2 and I∗d2 are each equal to

1. We equate (1, 2)th term of Id2 and Id∗2 and then establish that the (2, 2)th term

of Id2 is less than the (2, 2)th term of Id∗2 . Set w = a/b, u = c/b, v = d/b, e/b = s.
Given 0 < w < u < v < 1; p, 0 < p < 1, we will show existence of s, v < s < 1 and
P, 0 < P < 1 such that both (5) and (6) stated below are simultaneously satisfied [(5)
corresponds to (1, 2)th term and (6) corresponds to the (2, 2)th term respectively] :

up+ vq = wP + sQ, (5)

u2p+ v2q < w2P + s2Q. (6)

Set again wP = α(up + vq) so that sQ = (1 − α)(up + vq). Note that 0 < α < 1.
These yield :

P = α(up + vq)/w (7)
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and, hence,

s = [w(1 − α)(up + vq)]/[w − α(up + vq)]. (8)

Therefore, (6) can be expressed as :
w2P + s2Q = wα(up+ vq)+ s(1−α)(up+ vq) = (up+ vq)[wα+ s(1−α)] > u2p+ v2q
and this is satisfied whenever (9) stated below holds :

wα+ s(1− α) > B = [u2p+ v2q]/[up+ vq]. (9)

Set A = up+ vq.
Substituting the expression for s from (8) in (9), we obtain
wα+ [w(1 − α)2A]/[w −Aα] > B
i.e., [w2α− wα2A+ w(1 − α)2A]/[w −Aα] > B
i.e., w2α+A(B − 2w)α > w(B −A)
i.e.,

α > [w(B −A)]/[w2 +A(B − 2w)]. (10)

Again from the requirement s < 1, we obtain, from (8),
wA(1 − α) < w −Aα
i.e.,

α < w(1 −A)/A(1 − w). (11)

Note that A > u > w and so 1−A < 1−w, implying thereby that α < w/A < 1 and
hence, from (7), P = Aα/w < 1.
It remains to show that the inequalities (10) and (11) are consistent i.e.,
w(1 −A)/A(1 −w) > w(B −A)/[w2 +A(B − 2w)]
i.e., (1−A)[w2 + (B − 2w)A] > A(1 − w)(B −A)
i.e., (A− w)2 + wA2 − w2A > AB(A− w)
i.e., (A− w) + wA > AB
i.e.,

A(1 + w −B) > w. (12)

Substituting the expressions for A and B i.e., A = up + vq and B = (u2p+v2q)
up+vq , we

simplify (12) as
(1 + w)(up + vq)− (u2p+ v2q) > w
i.e.,

up(1 + w − u) + vq(1 + w − v) > w. (13)

Clearly, (13) holds trivially since u(1 + w − u) − w = (u − w)(1 − u) > 0 and v(1 +
w − v)−w = (v − w)(1 − v) > 0.
Thus we have established that there are choices of P and s for which (5) and (6) hold
i.e., there is Loewner domination of the given design located at the points c and d by
the one located at a and e. There are plenty of choices of e since this is true of α i.e.,
of P .
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Example 1. Take w = 0.2 < u = 0.3 < v = 0.7; p = 0.3. Then A = 0.58, B = 0.64
(approx.). From (10) and (11), bounds for α are [0.067, 0.181]. For α = 0.10, we
obtain P = Aα/w = 0.29, s = (1 − α)wA/[w − Aα] = 0.735. Again, for α = 0.15, we
obtain P = 0.435, s = 0.873.
The information matrices are given below for the case b = 1.
Id = ((1, 0.58, 0.37)); Id∗ = ((1, 0.58, 0.395)); Id∗∗ = ((1, 0.58, 0.4484)).

3 Loewner Domination in Heteroscedastic Linear Regres-
sion

We refer to the linear regression model in (1) but this time we assume that the errors
are uncorrelated with heteroscedastic variances. In particular, we assume V (ex) =
σ2v(x) where v(x) is strictly positive non-constant. Since we are interested in the
estimation of the β-coefficients, without any loss of generality, we take σ = 1. Taking
the factor space to be the positive half of the real line including the point 0, Minkin
(1993) obtained an explicit characterization of the optimum design under the above set-
up for estimation of 1/β, assuming v(x) = ex. See Liski et al (2002) for an alternative
derivation of Minkin’s result, by exploiting the technique of Loewner domination in
the specific heteroscedastic situation.
The following extensions will be made in this article. Continuing as in Liski et al
(2002), a complete class result is established for the estimation of the β-coefficients
with the following error functions:
(i) v(x) = kx, x ≥ 0, k ≥ 1; (ii) v(x) = (1 + x)γ+1, x ≥ 0, γ ≥ 0.
Note that the elements of the information matrix are now defined in terms of the
weighted sums involving the reciprocals of the variances i.e., I11 =

∑
pi/v(xi); I12 =∑

xipi/v(xi); I22 =
∑
x2i pi/v(xi).

We now consider the main result of this section which ensures that, in finding optimum
designs, it is sufficient to confine our search in the class of 2-point designs including
the point 0.
Towards establishing the result stated above, first we start with a 2-point design:

d2 = [(a, p), (b, q); 0 < a < b <∞; 0 < p, q < 1, p + q = 1]. (14)

For this d2

I11 = p/v(a) + q/v(b), I12 = pa/v(a) + qb/v(b), I22 = pa2/v(a) + qb2/v(b). (15)

Theorem 2. Given d2 as above, there exists another 2-point design d
∗
2 = [(0, s), (c, 1−

s); c > 0, 0 < s < 1] which dominates d2 in the Loewner Domination sense.
Proof. To prove this theorem, we will proceed as in Liski et al ( 2002 ). As before, we
equate the terms in the (1, 1)th and (1, 2)th positions in the two information matrices
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corresponding to two designs d2 and d∗2 and solve for c and s. Next we show that for
this choice of c and s, I22(d

∗
2) > I22(d2).

The equations in terms of c and s are given by

s/v(0) + (1− s)/v(c) = p/v(a) + q/v(b), (16)

(1− s)c/v(c) = pa/v(a) + qb/v(b). (17)

Eliminating s, we obtain the following equation involving c:

φ(c) = wφ(a) + (1− w)φ(b) (18)

where

φ(x) = [v(x)− 1]/x;w = pa/v(a)/[pa/v(a) + qb/v(b)]. (19)

It is readily seen that the function φ(x) satisfies the following conditions:

φ(x) is convex and increasing in x over [0,∞) (20)

for both the choices of v(x) given in the statement of the Theorem. Hence we have a
unique solution for c in (a, b) satisfying the requirement above. Next, s can now be
deter mined from (16) i.e., from

1− s = [p(1− 1/v(a)) + q(1− 1/v(b))]/[1 − 1/v(c)].

It is easy to see that s < 1. Moreover, s > 0 if and only if

1/v(c) < p/v(a) + q/v(b). (21)

We will establish (21) in the Appendix for both the error functions considered above.

We are yet to establish I22(d
∗
2) > I22(d2). This, after a little simplification, reduces to

establishing the inequality : c > wa + (1 − w)b. This follows readily from the strict
convexity of the function φ(x) and the defining equation for c. This establishes the
Theorem.
Remark 1. In view of the Remark 7.6.1 made in Liski et al (2002), we have the
following Corollary.

Corollary 1. Given dn, an n-point design in Ξ, there exists a 2-point design d2 =
[(0, s), (c, 1 − s); c > 0, 0 < s < 1] that dominates dn in the sense of Loewner Order
Domination.

In view of Theorem 2 and Corollary 1 cited above, it follows that in order to find
optimum designs we can restrict to 2-point designs with one point as 0. In the following
optimum designs are given for different optimality criteria.
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4 Specific Optimal Designs

4.1 Variance Structure : v(x) = kx, x ≥ 0

For the estimation of slope parameter, we have to maximize I22.1, which after a little
algebra, reduces in terms of its reciprocal, to

I−1
22.1 = [c2k−c]−1[1/(1 − s) + k−c/s]. (22)

We first minimize this expression in (22) wrt s which yields

[c2k−c]−1[1 + k−c/2]2 (23)

and the minimum is attained when s = 1/[1 + kc/2] = s(c) (say).
Next we minimize the resulting expression wrt c which results in an implicit equation
in c given by : c∗ = 2[k−c∗/2 +1]/logek. This in its turn produces optimum value of s.

The optimum values of (c, s) for different values of k are given below: (k, c, s) =
(1, 16.192, 0.129); (2, 4.9887, 0.474) : (e, 2.9887, 0.4137);
(3, 2.62731, 0.399); (4, 1.92952, 0.3633); (5, 1.59893, 0.2454).

For the D-optimum design we have to maximize the determinant of the information
matrix or equivalently s(1 − s)c2k−c. Optimum values of s and c are given by s =
0.5; c = 2/logek.
For A-optimality we have to minimize trace I−1 which, after a little algebra, is equiv-
alent to minimizing

[c2k−c]−1[1/(1 − s) + (c2 + 1)k−c/s]. (24)

Minimization wrt s yields the lower bound [c2k−c]−1[1 + (c2 + 1)1/2k−c/2]2 , equality
holding at s = 1/[1 + (c2 +1)−1/2kc/2] . The resulting bound is further minimized wrt
choice of c numerically.
The optimum values of (c, s) for different values of k are given below: (k, c, s) =
(1, ∞, 1.00); (2, 3.17, 0.5256); (3, 2.07, 0.4340);
(4, 1.67, 0.3795); (5, 1.46, 0.3534); (6, 1.32, 0.3367);
(7, 1.23, 0.3239); (8, 1.15, 0.3155); (9, 1.09, 0.3087); (10, 1.05, 0.3021).

4.2 Variance Structure : v(x) = (1 + x)1+γ

This time again we have to maximize I22.1 i.e., minimize I−1
22.1 which, after a little

algebra, reduces to

I−1
22.1 = [c2(1 + c)−(1+γ)]−1[1/(1 − s) + (1 + c)−(1+γ)/s] (25)

which, for fixed c, has an attainable lower bound given by
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[c2(1 + c)−(1+γ)]−1[1 + (1 + c)−(1+γ)/2]2, (26)

with equality holding at s = 1/[1 + (1 + c)−(1+γ)/2].
The resulting expression is further minimized wrt c numerically. Let us write α =
(1 + γ)/2.
The optimum values of c and s for different values of α are given below.

(α, c, s) = (0.5, ∞, 1.00); (1.0, 45918.3, 0.99998); (1.5, 3.0, 0.8888);
(2.0, 1.41421 = e, 0.85355); (2.5, 0.91703, 0.83587), (3.0, 0.677651, 0.82523).
Proceeding as before, for the D-optimum design, the optimum value of s is again and
the maximizing function for the determination of c is c2(1 + c)−(1+γ). The optimum
values of c for different values of γ are derived as copt = 2/(γ − 1), γ > 1; =
∞, − 1 ≤ γ ≤ 1.
MV -Optimality : Here we find a design which minimizes the maximum of the two
variances. It is known that this occurs at

V (b0) = V (b1)

where b0 and b1 denote least squares estimates of β0 and β1 respectively and the above vari-
ance equality yields

1/sopt = 1 + [(1 + c)(1+γ)]/[(c2 − 1)]

and c is to be determined by minimizing

1 + [(1 + c)(1+γ)]/[(c2 − 1)].

Finally, we have

copt = (γ + 1)/(γ − 1), γ > 1;= ∞,−1 ≤ γ ≤ 1.

For A-optimality we have to minimize trace I−1 which, after a little algebra, is equiv-
alent to minimizing A/(1 − s) + B/s with A = c−2(1 + c)(1+γ) and B = c−2(1 + c2).
The opt. choice of s comes out as B1/2/[B1/2 +A1/2] . Finally, c is to be determined
by minimizing [(c2+1)(1+c)(1+γ)/2 ]/c . The opt. values of c and s for different values
of α are given below.
(α, c, s) = (0.5, 0.798, 0.4883); (1.0, 0.657, 0.4193); (1.5, 0.552, 0.3714);
(2.0, 0.478, 0.3366); (2.5, 0.405, 0.3156); (3.0, 0.352, 0.3002).
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Appendix

We will establish (21) for both the error functions (3) one by one.
(i) Error function v(x) = kx.
Note that equation (21) is equivalent to

pk−a + qk−b ≤ k−[(apk−a+bqk−b]/[pk−a+qk−b]

i.e., logk[pk
−a + qk−b] ≤ −[pak−a + qbk−b]/[pk−a + qk−b]

which, after a little simplification, can be written as
logk[p+ qkt] ≤ tqkt/[p+ qkt]
i.e., tqkt − [p + qkt]logk[p + qkt] ≥ 0.
Write δ(t) = tqkt − [p+ qkt]logk[p+ qkt].
It is easy to see that δ(0) = 0 and
δ′(t) is proportional to tlogekloge[p+ qkt] > 0 for k > 1.
And this establishes (21).

(ii) Error function v(x) = (1 + x)1+γ .
Equation (21) is equivalent to

p/(1 + a)1+γ + q/(1 + b)1+γ ≤ 1+

[pa(1 + a)−(1+γ) + qb(1 + b)−(1+γ)]/

[p(1 + a)−(1+γ) + q(1 + b)−(1+γ)]−(1+γ)

i.e., [p(1 + a)−γ + q(1 + b)−γ ](1+γ) ≤ [p(1 + a)−(1+γ) + q(1 + b)−(1+γ)]γ

i.e., [p(1 + a)−γ + q(1 + b)−γ ]1/γ ≤ [p(1 + a)−(1+γ) + q(1 + b)−(1+γ)]1/(1+γ)

which is the so called Liapunovs inequality. Hence the result is established.
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