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Abstract

We consider the stability of the linear multiple LAD-regression equation
when two or more observations are added to the existing ones. In particular,
we are interested to know whether the coefficients β’s remain the same or,
on the contrary, a change is produced.
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1 Introduction

We consider the following linear model:

Yi = β0 + β1X1,i + β2X2,i + . . .+ βpXp,i + εi,

where the coefficients β are determined by least absolute deviation (LAD) regression
on the basis of n observations (X1,i, . . . ,Xp,i, Yi), for i = 1, . . . , n. We are interested in
the changes in form or, on the contrary, the stability of the LAD-regression hyperplane,
when a new observation is added to the n existing ones. Further, we investigate the
case of the addition of several new observations.
This problem has been studied by Arthanari and Dodge (1993, p. 82-85). Another
approach can be found in Dupačova (1992). In this paper we study this problem from
a geometrical point of view and we generalize it to the case of several observations and
several variables.
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In order to find the equation of the LAD-regression hyperplane, we need to find the
coefficients β0, β1, . . . , βp, which represent the solution of the optimization problem:

min
β0,β1,...,βp

n∑

i=1

| Yi − β0 − β1X1,i − β2X2,i − . . . − βpXp,i | . (1)

Ifm new observations indexed by n+1, . . . , n+m are added, the minimization problem
changes in principle. The aim of this paper is to determine some necessary and/or
sufficient conditions to assure that a solution of the old optimization problem is also
a solution for the new optimization problem.

2 Notations

We introduce the vector variables βββ = (β0, β1, . . . , βp), XXX i = (1,X1,i, . . . ,Xp,i), and
the functions Fi(βββ) =| Yi −βββXXX i |, where, as usual, the product of two vectors in R

p+1

simply denotes the scalar product.
Let F be the function defined by

F (βββ) =

n∑

i=1

Fi(βββ).

The optimization problem (1) is now:

min
βββ∈Rp+1

F (βββ),

and F is a real-valued piecewise convex function, since made up of a sum of the n
real-valued convex functions Fi on R

p+1.
The functions considered in the previous section are not differentiable, but a somewhat
weaker form of differentiability is suitable. In fact these functions are subdifferentiable.
Consider a convex real-valued function ϕ:Rk → R. We adopt the notation and the
definition of subdifferentiability already used in Dodge and Roenko (1992), which is a
natural generalization of the concept of differentiability.

Definition 2.1. A vector vvv ∈ R
k is said to be a subgradient of ϕ at a point xxx ∈ R

k if
ϕ(uuu) ≥ ϕ(xxx) + vvv · (uuu− xxx) for every uuu ∈ R

k.

Definition 2.2. The set of all subgradients of ϕ at xxx is called the subdifferential of ϕ
at xxx and it will be denoted by ∂ϕ(xxx).

So, for example, consider the absolute value function φ(x) = |x|, x ∈ R. We have

∂φ(x) =





−1 if x < 0,
[−1, 1] if x = 0,
1 if x > 0.
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Similarly, for the functions Fi introduced above,

∂Fi(βββ) =





−XXXi if Yi −βββXXXi > 0,
Co (−XXX i,XXX i) if Yi −βββXXXi = 0,
XXXi if Yi −βββXXXi < 0.

where by Co(A) we mean the convex hull of A. Note that one can also define the
preceding subdifferentials by the use of the sign function, so for example ∂φ(x) = sign x
if x 6= 0, and ∂Fi(βββ) = −[sign (Yi − βββXXX i)]XXX i if Yi − βββXXX i 6= 0.
A useful property of subdifferentials is the linearity. So, for example, we have

∂F (βββ) =

n∑

i=1

∂Fi(βββ).

Through this paper we denote a vector by a bold character and an observation by a
capital character, so for example a capital bold character means a vector of observa-
tions; a bold lowercase letter means a vector of variables, and so on.
Now consider the optimization problem

inf
xxx∈Rk

ϕ(xxx)

where ϕ is a convex function. If ϕ > −∞ then ϕ reaches at least a minimum. In this
case we have the following theorem (Rockafellar, 1996):

Theorem 9. For a convex function ϕ > −∞, xxx is a minimum if and only if 0 ∈ ∂ϕ(xxx).

If m new observations indexed by n + 1, . . . , n +m are added, the new optimization
problem becomes

min
βββ∈Rp+1

F new(βββ),

where

F new(βββ) = F (βββ) +

m∑

i=1

Fn+i(βββ).

The function F new is again a convex function.
In the subsequent sections we give some necessary and sufficient conditions (or, simply,
some sufficient conditions) to assure that a solution of the optimization problem for
F is also a solution for the optimization problem for F new.

3 Stability properties for the LAD-regression model

Suppose that βββ∗ is a solution for the optimization problem minβββ∈Rp+1 F (βββ). Suppose
a new observation (X1,n+1, . . . ,Xp,n+1, Yn+1) is taken into account. This corresponds
to the case m = 1 described in Section 2. We have the following theorem, which
generalizes a result of Dodge and Roenko (1992).
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Theorem 10. Let βββ∗ be a solution for the optimization problem minβββ∈Rp+1 F (βββ). Let
(X1,n+1, . . . ,Xp,n+1, Yn+1) be a new observation. Then βββ∗ is a solution for the new
optimization problem minβββ∈Rp+1 F new(βββ) if and only if

[sign (Yn+1 − βββ∗XXXn+1)]XXXn+1 ∈ ∂F (βββ∗).

Proof. If Yn+1 = βββ∗XXXn+1, it is obvious that βββ∗ remains a solution of the new mini-
mization problem.
Suppose Yn+1 > βββ∗XXXn+1. The subdifferential of F new at the point βββ∗ is

∂F new(βββ∗) = ∂F (βββ∗)−XXXn+1.

So by Theorem 9, the point βββ∗ remains a solution of the new minimization problem if
and only if 0 ∈ ∂F (βββ∗)−XXXn+1, i.e. XXXn+1 ∈ ∂F (βββ∗).
The case Yn+1 < βββ∗XXXn+1 is similar.
For the case p = 1, the above theorem gives Theorem 3 of Dodge and Roenko (1992).
Note that ∂F (βββ∗) is convex and it has dimension p + 1, because there are at least
p + 1 points which determine the hyperplane Y = βββ∗XXX (see for example Arthanari
and Dodge, 1993).
Suppose now that several new observations are added, so now m > 1. It is possible to
give a necessary and sufficient condition in order that a solution βββ∗ for the minimization
problem for F remains a solution for F new. We now generalize the previous theorem
for the case of n+m observations.

Theorem 11. Let βββ∗ be a solution for the optimization problem minβββ∈Rp+1 F (βββ). Let
(X1,n+1, . . . ,Xp,n+1, Yn+1), . . ., (X1,n+m, . . . ,Xp,n+m, Yn+m) be m new observations.
Then βββ∗ is a solution for the new optimization problem

min
βββ∈Rp+1

F new(βββ)

if and only if

m∑

i=1

[sign (Yn+i − βββ∗XXXn+i)]XXXn+i ∈ ∂F (βββ∗) +
∑

Yn+i=βββ∗XXXn+i

Co(−XXXn+i,XXXn+i). (2)

Proof. This is an application of Theorem 9. In fact the subdifferential of F new is

∂F (βββ∗)−
m∑

i=1

[sign (Yn+i − βββ∗XXXn+i)]XXXn+i +
∑

Yn+i=βββ∗XXXn+i

Co(−XXXn+i,XXXn+i).

The above theorem is suitable for a massive computation, as for cases which one can
find in real applications.
Note that ∂F new is convex in R

p+1, and actually is the convex hull of a set of points
in R

p+1. The left side of (2) represents a point in R
p+1. On the right side, we have

a convex set: the condition to assure that the model remains unchanged is equivalent
to the membership of a certain point to a certain convex set.
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4 How to determine the membership to a convex hull of
a set of points

Let WWW ∈ R
p+1 and S = {WWW 1, . . . ,WWW n} be a set of points in R

p+1.
The problem of determining whetherWWW belongs to Co(S) is a classic problem in linear
programming (see, for example, Yao, 1981).
A standard method to check whetherWWW belongs to Co(S) uses a linear programming
technique. The problem can be formulated as follows:





find WWW,
satisfying WWW =

∑n
i=1 λiWWW i,∑n

i=1 λi = 1,
λi ≥ 0.

This problem is often called a linear feasibility problem, and has a solution if and only
if the following has no solution:





find z0 ∈ R and zzz ∈ R
p+1,

satisfying zzzWWW i ≤ z0 for all i = 1, . . . , n,
zzzWWW > z0.

Geometrically, the meaning of this problem is simple. If it admits a solution (z0, zzz),
then the set H = {xxx ∈ R

p+1, zzzxxx = z0} is a hyperplane separating the polytope Co(S)
from the inquiry point WWW . Thus the existence of the separation means the nonre-
dundancy. Now, to actually solve the problem, we set up the linear programming
problem: 




maximize zzzWWW − z0,
subject to zzzWWW i − z0 ≤ 0 for all i = 1, . . . , n,

zzzWWW − z0 ≤ 1.

The last inequality is artificially added to allow the linear programming problem to
have a bounded solution. It is easy to see that the point is non-redundant if and only
if the optimal value of the linear programming problem is strictly positive.
There is another approach to this problem. We have WWW ∈ Co(S) if and only if
Co(WWW,S) = Co(S). So every convex hull of a set of points is univocally determined
by a minimal subset of points. For example, Mathematica command ConvexHull (of
a set of points) gives the minimal set of points needed to determine the convex hull.

5 An example: Mayer’s data

Consider the following data, derived from observations of the lunar crater Manilius
(Mayer, 1750 and Stigler, 1986). Mayer studied the libration of the moon by observing
the position of the crater Manilius as seen from the Earth. He found a linear rela-
tionship between certain mensurations and some location parameters of Manilius at
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moon’s pole. He obtained a system of 27 linear equations in 3 unknown parameters
(see Table 1), and proposed a method for determining these parameters, by selecting
in a suitable manner some special observations in order to determine the best linear
model. This method was subsequently improved by Boscovitch with the introduction
of the least absolute deviation method.

Obs. X1 X2 Y

1 −0.8836 0.4682 13.17
2 −0.9996 0.0282 13.13
3 −0.9899 −0.1421 13.20
4 −0.2221 −0.9750 14.25
5 −0.0006 −1.0000 14.70
6 −0.9308 0.3654 13.02
7 −0.0602 −0.9982 14.52
8 0.1570 −0.9876 14.95
9 −0.9097 0.4152 13.08

10 −1.0000 −0.0055 13.03
11 −0.9689 −0.2476 13.20
12 −0.8878 −0.4602 13.18
13 −0.7549 −0.6558 13.57
14 −0.5755 −0.8178 13.88
15 −0.3608 −0.9326 13.97
16 −0.1302 −0.9915 14.23
17 0.1068 −0.9943 14.93
18 0.3363 −0.9418 14.78
19 0.8560 −0.5170 15.93
20 −0.8002 −0.5997 13.48
21 0.9952 0.0982 15.92
22 0.8409 −0.5412 15.65
23 0.9429 −0.3330 16.15
24 0.9768 −0.2141 16.37
25 0.6262 0.7797 15.63
26 0.4091 0.9125 14.90
27 −0.9284 0.3716 13.12

Table 1: The libration of the moon. Mayer’s data

The LAD-regression plane is

Y = 14.5676 + 1.51108X1 − 0.133306X2 . (3)

The plan of equation (3) passes through observations 1, 5 and 19.
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In this case βββ∗ = (14.5676, 1.51108,−0.133306) and since

27∑

i=1

[sign (Yn+i − βββ∗XXX)]XXXn+i = (0,−1.2876, 0.2422)

we have:

∂F (βββ∗) = (0,−1.2876, 0.2422)
+Co(−1, 0.8836,−0.4682), (1,−0.8836, 0.4682))
+Co(−1, 0.0006, 1), (1,−0.0006,−1))
+Co(−1,−0.8560, 0.5170), (1, 0.8560,−0.5170))

This means that for Theorem 10 a new observation (XXX,Y ) would not change the
model, if sign (Y − βββXXX)XXX lies on ∂F (βββ∗), which represents a subset of R3 describing
a parallelepiped spanned by the three vectors (1,−0.8836, 0.4682), (1,−0.0006,−1),
(1, 0.8560,−0.5170) and centered in (0,−1.2876, 0.2422). Analogously, for Theorem 11,
m further observations (XXX∗

1, Y
∗
1 ), . . . , (XXX∗

m, Y
∗
m) would not change the model if a

suitable algebraic sum of XXXi (namely, XXXi with the sign of Yi − βββXXX i) lies on ∂F (βββ
∗).

6 Conclusion

The interest of Theorem 11 resides on the fact that a set of new observations may
be uninfluent for the determination of the LAD-regression model. Furthermore, its
application shows a geometrical property. The convex region defined by (2) is a (p+1)
dimensional convex ‘bag’, containing some representative points, and whose meaning
is the ‘no change model region’ in case of further adds of observations.
Finally we note that a further interpretation of the ‘no change model region’ is in
terms of matrix determinant. Note that in its general form, i.e., when there are no
redundant observations in the determination of the LAD-regression model, the region
is determined by a translation of a parallelepiped spanned by p+1 vectors on R

p+1 and
the determinant of the corresponding matrix gives the volume, and then the extension,
of the ‘no change model region’.
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