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Abstract

In the present paper, we establish some characterizations of proportional
hazard and reversed hazard models based on generalized relative entropy
and measure of inaccuracy, by the property that these measures are inde-
pendent of the point of truncation of the models involved.
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1 Introduction

The concept of proportional hazard (PH) models is well known in literature by its
successful application in a variety of areas like reliability, survival analysis, medicine,
biology, economics etc. Consider a non-negative random variable X with continuous
survival function F (x) = P (X > x) and hazard rate

hX(x) =
d log F (x)

dx
.

If Y is another non-negative random variable with hazard rate proportional to that of
X viz.

hY (x) = θhX(x), θ > 0

or equivalently

G(x) = F
θ
(x) (1)
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where G(.) is the survival function of Y , then (Y,G) is called the PH model corre-
sponding to (X,F ). One can also consider the reversed hazard rate

λX(x) =
d log F (x)

dx

and define proportional reversed hazard (PRH) model (Y,G) related to (X,F ) as

λY (x) = θλX(X) or G(x) = F θ(x) (2)

where F (.) and G(.) are the distribution functions of X and Y respectively. In spite
of the popularity enjoyed by the proportional models, only a few attempts are made
to develop characteristic properties that enable identification of these models in a real
situation. One such result established by (4) makes use of the (7) directed information
distance (also called relative entropy, directed divergence and cross entropy function
in different contexts)

H(F,G) =

∫
f(x) log

f(x)

g(x)
dx (3)

between two distributions with distribution functions F and G and density functions
f and g. They have shown that the distributions of X and Y truncated below at some
point t > 0 with relative entropy

H(F,G; t) =

∫ ∞

t

f(x)

F (t)
log
(f(x)
F (t)

/g(x)
G(t)

)
dx (4)

is independent of t if and only if (Y,G) is the PH model of (X,F ). Following this (8)
studied the relative entropy when the range of integration is (0, t) and characterized
the PRH model through the property that

H(F,G; t) =

∫ t

0

f(x)

F (t)
log
(f(x)
F (t)

/g(x)
G(t)

)
(5)

does not contain t. In Section 2 we extend these results by considering a more general
relative entropy measure and deduce the above results as special cases. We also com-
pare the two measures (4) and (5) with reference to PR and PRH formations. The
importance of PH models (Lehman alternative) and several results are given in (5).
For interpretation of the truncated versions in (4) and (5) in the context of reliability
as residual life and past life distributions see (3) and (2). Another concept of interest
in statistical inference concerning PH models is measure of inaccuracy. If the experi-
menter assigns distribution function G whereas the true underlying distribution is F ,
then the inaccuracy of the assignment G is measured by

I(F,G) = −
∫
f(x) log g(x)dx. (6)

See (6) for properties of I(F,G) and its applications to inference. We prove charac-
terization of proportional models using (6) in Section 3.
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2 Characterization by Extended Relative Entropy

In this section, we consider the extended relative entropy measure defined by (see (9))

Hr(F,G) =
1

r
log

∫ [f(x)
g(x)

]r
f(x)dx, r > −1. (7)

For the finiteness of Hr it is assumed that EX

(
f(x)
g(x)

)r
< ∞. The motivation for

suggesting (7) arises from
(a) it reduces to Kullback-Leibler measure as r → 0.
(b) Hr is more sensitive to events with higher probabilities than H and therefore the
former reveals uncertainty better than the latter.

Theorem 2.1. Let A be the class of absolutely continuous distribution functions sup-
ported by the set of non-negative reals. For F , G ∈ A with corresponding random
variables X and Y , the following statements are equivalent
(i) (Y,G) is the PH model of (X,F )
(ii) For every real r > 0 and 0 < θ < 1+r

r ,

Hr(F,G; t) =
1

r
log

∫ ∞

t

[f(x)
F (t)

/ g(x)
G(t)

]r f(x)
F (t)

dx (8)

is independent of t for all t > 0.

Proof. First we prove that (i) ⇒ (ii). From G(x) = F
θ
(x) and g(x) = −θF (θ−1)

(x)
f(x), we can write (8) as

Hr(F,G; t) =
1

r
log

−F θr
(t)

F
(r+1)

(t)θr

∫ ∞

t

f(x)dx

F
(θ−1)

(x)

= r−1 log θ−r(1− r(θ − 1))−1, θ <
1 + r

r

which is independent of t. Conversely, assuming constancy of Hr say, Hr = K, (8)
reduces to

eKrF
r+1

(t)

G
r
(t)

=

∫ ∞

t

f r+1(x)dx

gr(x)
.

Differentiating,

eKr (r + 1)F
r
f(t)

G
r
(t)

− rF
(r+1)

(t)g(t)

G
r+1

(t)
=
f r+1(t)

gr(t)
,

which simplifies to
(r + 1)hrY (t)

hrX(t)
− r

hr+1
Y (t)

hr+1
X (t)

= e−Kr. (9)
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Writing

p(t) =
hY (t)

hX(t)
,

we have
(r + 1)pr(t)− rpr+1(t) = e−Kr.

Differentiating again with respect to t

(r + 1)rpr−1(t)p′(t)− r(r + 1)pr(t)p′(t) = 0

or
r(r + 1)p′(t)pr−1(t)[1 − p(t)] = 0. (10)

The solutions for p(t) are, p(t) = 0, 1, θ where θ is
constant, of which first one is inadmissible and the second gives F = G. Hence
hY (t) = θhX(t), θ > 0 for all t and this implies (i).

Remarks:

1. As the form of F is nowhere used in the theorem, it is true of PH models with
any base line distribution satisfying the conditions.

2. Reversing the roles of F and G we see that for PH models,
Hr(G,F ; t) = r−1 log θr+1(rθ − r + θ)−1 is also independent of t irrespective of
the base line distribution and for all θ > r

r+1 . The converse also is true as can
be seen by the method of proof of Theorem 2.1.

3. Both Hr(F,G; t) and Hr(G,F ; t) are functions of θ and r. As a function of θ,
one can write the relationship Hr(F,G; θ) = Hr(G,F ;

1
θ ).

4. Hr(F,G; θ) is an increasing function of r, decreasing function of θ, for 0 < θ < 1,
attains the minimum value zero at θ = 1, and increasing in the interval 1 < θ <
1+r
r .

5. For PRH model G(x) = F θ(x) a similar result stated in Theorem 2.2 holds. The
proof is identical to that of

Theorem 2.1 with F and G replacing F and G and is therefore not given.

Theorem 2.2. The distribution functions F and G in A, (Y,G) is the PRH model
corresponding to (X,F ) if and only if

H(F,G; t) =
1

r
log

∫ t

0

[f(x)
F (t)

/g(x)
G(t)

]r f(x)
F (t)

dx

is independent of t for every real r > 0 and 0 < θ < 1+r
r . The remarks 1 to 4 hold for

Hr(F,G; t) also with appropriate modification. Further

Hr(F,G; t) = Hr(F,G; t) and Hr(G,F ; t) = Hr(G,F ; t).
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3 Characterization by Inaccuracy Measure

Unlike the relative entropy, the property of the measure of inaccuracy (6) depends on
the base line distribution. Characterizations of some important life distributions that
have simple forms for (6) are discussed in the following theorems.

Theorem 3.1. Let F,G be distribution functions in A such that (Y,G) is the PH
model of (X,F ). Then the inaccuracy measure truncated below some t > 0,

I(F,G; t) = −
∫ ∞

t

f(x)

F (t)
log

g(x)

G(t)
dx (11)

has the log linear form

I(F,G; t) = log
at+ b

θ(a+ 1)
− a+ θ(a+ 1)

a+ 1
(12)

for all t > 0, a > −1 and b > 0 if and only if F has generalized Pareto distribution

F (x) =
(
1 +

ax

b

)−(1+ 1
a
)
. (13)

In particular, the only absolutely continuous distribution on (0,∞) for which
I(F,G; t) =constant is the exponential.

Proof. When (Y,G) is a PH model corresponding to (X,F ), (11) becomes

[logG(t)− I(t)]F (t) =

∫ ∞

t
f(x) log g(x)dx (14)

with I(t) = I(F,G; t).
Differentiating (14)

[ g(t)
G(t)

+ I
′
(t)
]
F (t) + (logG(t)− I(t))f(t) = f(t) log g(t).

Using the definition of the failure rate, the last expression takes the form

hX(t) =
hY (t) + I

′
(t)

I(t) + log hY (t)
(15)

=
θhX(t) + I

′
(t)

I(t) + log θhX(t)
(16)

for the PH model, since in that case hY (t) = θhX(t). We note that for the distribution
(13) direct calculation using (11) gives (12). To establish the converse we substitute
I(t) from (12) in (16) to verify

hX(t) log
at+ b

a+ 1
+
a+ θ(a+ 1)

a+ 1
hX(t) + hX(t) log hX(t) = θhX(t) +

a

at+ b
. (17)
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Differentiating with respect to t and then substituting for log hX(t), from (17)

[
1 +

a

(at+ b)hX (t)

][
h′X(t) +

ahX(t)

at+ b

]
= 0.

The solutions are

hX(t) = c(at+ b)−1 and hX(t) = − a

at+ b

where c > 0 is a constant of integration. The first solution leads to the generalized
Pareto form and the second to the uniform distribution which is also a member of the
same family. This completes the proof of the first part.
Finally as a tends to zero in (13)

F (x) = exp
[
− x

b

]
, x > 0, b > 0

and

I(t) = log
( b
θ

)
− θ

which is independent of t.

Note:

1. The family of distribution considered in Theorem 3.1 includes the Lomax distri-
bution with survival function

F (x) = αβ(x+ α)−β , x > 0, α > 0, β > 0

with a = (α− 1)−1, b = aβ and the beta distribution specified by

F (x) =
(
1− x

R

)d
, 0 < x < R, d,R > 0

for a choice of a = −(1 + d)−1 and b = R(1 + d)−1. Uniform distribution is
special case when d = 1.

2. The inaccuracy measure when F is used in the place of G truncated below t > 0,

I(G,F ; t) = −
∫ ∞

t

g(x)

G(t)
log

f(x)

F (t)
dx.

For the generalized Pareto family

I(t) = log
at+ b

a+ 1
+

(1 + 2a)b

θ(1 + a)
.

This is also independent of t in the exponential case. A characterization theorem
similar to Theorem 3.1 holds in this case also.
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3. On the other hand if we truncate the distributions of X and Y above t > 0, the
resulting inaccuracy measure is

I(F,G; t) = −
∫ t

0

f(x)

F (t)
log

g(x)

G(t)
dx.

Proceeding as in Theorem 3.1, one can find the identity

λX(t) =
λY (t)− I ′(t)

log λY (t) + I(t)
.

When I(t) is a constant with regard to t, for the PRH model G(t) = F θ(t), it
follows that λX(t) should be a constant for all t > 0. There is no absolutely
continuous distribution on the positive real line with a constant reversed haz-
ard rate (see (1)) and accordingly no characteristic property of the PRH model
exist as in the exponential case in Theorem 3.1. However, there is a negative
exponential distribution for X in (−∞, b), b > 0 characterizing PRH model with
I(t) = c, a constant.

4 Conclusions

In this paper we have presented three characterization theorems. Of these, the first
two results relate to characterization of the proportional hazard model by the inde-
pendence of the point of truncation t of an extended relative entropy measure of two
absolutely continuous distributions defined over (t,∞) and an analogous result for the
proportional reversed hazard model over the interval (0, t). Some properties of the rel-
ative entropy measures under the two models are also given. The generalized Pareto
distribution is characterized by the truncated inaccuracy measure of log linear form.
This distribution contains the exponential, beta and Lomax distributions as special
cases, of which the exponential has an inaccuracy measure that does not depend on
the point of truncation.
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