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Abstract‡

In this paper we propose and study models that can be used to evaluate the
performance of ranked-set sampling when there are errors in the ranking
process.
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1 Introduction

Ranked-set sampling is an alternative to simple random sampling for obtaining a
sample of observations from a population. Compared to simple random sampling,
ranked-set sampling can lead to improved estimators and tests with higher power
in situations where taking an observation is expensive or destructive and there is a
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including an extensive set of publications, his work with the Midwest Biopharmaceutical Statistics
Workshop, establishment of both the undergraduate and Master’s degree programs in statistics at
Ball State, and his excellent teaching. Mir, congratulations on your 70th birthday and an excellent
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relatively inexpensive way to order the observations without taking an actual measure-
ment. McIntyre (1952) introduced ranked-set sampling in the context of estimating
total crop yields. Halls and Dell (1966) used it for estimating forage yields, Mode et
al. (1999) estimated stream habitat area with ranked-set sampling. Estimation using
ranked-set sampling was used by Cobby et al. (1985) for grazing effects on ryegrass and
clovers, plutonium levels in soil by Gilbert (1995) and gasoline sampling by Nussbaum
and Sinha (1997).

There is a large body of statistical research where the benefits of ranked-set sam-
pling (RSS) have been investigated. For a partial review of parametric ranked-set
sampling see Kaur et al. (1995). Bohn (1996) provides a nice review of ranked-set
sampling for nonparametric procedures. The majority of the comparisons between
ranked-set sampling and simple random sampling, however, have been performed un-
der the assumption that the judgment ranking is without error. There are many
situations where it is believed that ranked-set sampling is still beneficial, but perfect
judgment ranking is not a realistic assumption.

In this paper we develop several models for the probability of judgment ranking
errors. These models can be used to evaluate the gains of ranked-set sampling over
simple random sampling when the judgment rankings are not perfect. Models for
imperfect judgment rankings should accomplish several goals. First they should be
flexible enough to represent different degrees of judgment error in the rankings. The
models should also be able to capture the case of random rankings at one extreme
and perfect rankings at the other extreme, as well as reasonably cover the range in
between. In addition, they should be extendable to different set sizes so that they can
be used to answer questions regarding optimal set size.

The new models developed in this paper will be extensions of the expected spacings
model first developed by Bohn and Wolfe (1994) and they focus on alternative ways to

specify the ~P matrix. These include a baseline model, modified baseline model, interval
type models, and simulation models. Sections 2 and 3 describe the notation and give
background on models that have been previously developed. Section 4 presents the
development of the baseline and modified baseline models. Section 5 contains the
development of several interval type models. This is followed by a section describing
three simulation models. The last section contains a brief discussion of these models.

2 Preliminary Results

In this section we develop the notation for a ranked-set sample that is used through-
out the paper. We also present the models that have already been developed in the
literature for incorporating imperfect rankings into ranked-set samples.

Assume that the population of interest has cumulative distribution function (c.d.f.)
F with location parameter θ (this could be the mean or the median). To obtain a
ranked-set sample, the first step is to randomly select k observations from the popula-
tion, where k is referred to as the set size. The k observations are completely ranked
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from smallest to largest by any means other than actually measuring the observations.
This is often done by judgment ordering, but could be done by other means, such as
use of a concomitant, that do not involve measurement of the observations themselves.
The unit believed to be the smallest, called the first judgment order statistic, is then
measured and denoted by X[1]. Then a second set of k observations is chosen randomly
and the one that is judged to be second smallest is measured and denoted by X[2], the

second judgment order statistic. This is repeated until at the kth step k observations
are chosen and the one judged to be the largest is measured and denoted by X[k], the

kth judgment order statistic. The resulting measured variables are X[1], . . . ,X[k]. This

cycle is repeated n times so that nk2 observations have been examined and judgment
ranked in groups of k each, but only nk of them have been measured. A subscript
denoting the cycle is added so the first cycle results in X[1]1, . . . ,X[k]1 and the ith cycle
results in X[1]i, . . . ,X[k]i. The complete, balanced ranked-set sample consisting of n
cycles, each with set size k, is then: {X[r]i : r = 1, . . . , k; i = 1, . . . , n}. Here X[r]i,

called the rth judgment order statistic from the ith cycle, is the observation judged to
be the rth order statistic for one of the k sets in the ith cycle.

There have been a few previous attempts to account for imperfect rankings. Dell
and Clutter (1972) developed a model based on adding random errors to the observa-
tions to represent judgment error. They let Yi = Xi + ǫi, where ǫi represents the error
in the judgment ranking process. Then, with this model, X[r] is the X value corre-

sponding to Y(r). They considered the case where ǫi ∼ n(0, σ2ǫ ), but the distribution
of the X’s can be taken to be any distribution that might be reasonable in practice.

The problem with this model is that it is oversimplified for the setting of ranked-
set sampling. Dell and Clutter mention that the assumption of independent, paired
comparisons is not reasonable. They also note that judgment errors in the ordering
process can be influenced by the set size, by the specific values of other elements in
the set and the magnitudes of the elements themselves. None of these things can be
taken into account via this model.

Stokes (1977) suggested that the ranking be based on a concomitant variable. If a
variable that is concomitant to the variable of interest exists and the variables follow
certain strict distribution assumptions, her model can be used to determine relative
precisions under imperfect rankings. She assumes that a concomitant variable for the
variable of interest is available and that it can be measured accurately with little or no
cost. This concomitant can then be used to order the variable of interest. To illustrate,
assume that the variable of interest is X, which has mean µX and variance σ2X , and
the concomitant variable is Y with mean µY and variance σ2Y . Further, assume that
both (X − µX)/σX and (Y − µY )/σY have common c.d.f. F .

The good thing about this model is that, if it fits the situation well, there are nice
theoretical results for the efficiency of ranked-set sampling relative to simple random
sampling. Also, the model is able to directly incorporate information obtained through
the concomitant variable into the properties of the concomitant ranked-set sampling
estimator of the mean. The main problem with the model is that the assumptions
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are very restrictive and it is unlikely that many practical situations will satisfy these
assumptions. However, the model could be approximately true in some cases and,
therefore, it may be useful.

Finally, another common model that has been developed is the expected spacings
model due to Bohn and Wolfe (1994). Let pij be the probability that the item that
has actual rank i in the set is chosen as the jth judgment order statistic. That is,
pij = P (X[j] = X(i)). For perfect ranking pii = 1 and pij = 0 for i 6= j. If the ranking

process is completely random then pij =
1
k for all i and j. However, in general, there

is no specific structure for the pij’s. For each j = 1, . . . , k, we have
∑k

i=1 pij = 1 since
the jth judgment order statistic will equal X(i) for some i = 1, . . . , k.

The pij’s are unknown parameters in the model and there is no way to estimate
them based on a ranked-set sample, since the true order statistics will never be known.
To fully specify their model, Bohn and Wolfe take pij to be inversely proportional to
|E[X(j) −X(i)]|, the expected spacing between X(j) and X(i). Let pij =

aj
|E[X(j)−X(i)]|

and pjj = cj . This specification of the pij’s and a doubly stochastic restriction on the

matrix ~P results in a fully specified model, but involves dependence on the underlying
distribution through its expected spacings. Now, using the relation that F[j](x) =∑k

i=1 pijF(i)(x), properties of various statistics (test statistics or estimators) can be
found with this model for the case where judgment ranking is not perfect.

The Bohn and Wolfe model provides a general form for the relationship between the
matrix ~P of probabilities representing the likelihood of misclassifying an observation
and the c.d.f. of the judgment order statistics using the assumption that F[j](t) =∑k

i=1 pijF(i)(t). This relationship can then be used to computate the relative precisions
of various procedures.

The expected spacings model is intuitive in the sense that if the expected difference
between any two order statistics is large then it is unlikely that the ranking in a set
will result in one of these order statistics being mistakenly chosen as the other. This
is not to say it can not happen, but only that it is less likely to occur than if the
expected difference between them is small.

A drawback of the expected spacings model is that it depends on the independence
assumption that has been criticized by Presnell and Bohn (1999). While this assump-
tion is not true, in general, it does appear to be a reasonable approximation for most
distributions likely to be encountered in practice. Also, although the Bohn-Wolfe
model explicitly incorporates the expected spacings, it does not take into account
closeness as measured by the variances of these spacings.

The expected spacings model is dependent on the underlying distribution and thus
is not nonparametric. Finally, the model is difficult to extend to set sizes larger than
five. Even the model derived by Bohn and Wolfe for k = 4 is difficult to work with.
This makes it hard to use the model for such things as determining optimal set sizes
or which order statistics to measure when the sample size is greater than four.
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3 Properties of the ~P Matrix

The models developed in this paper revolve around the same relation (R∗) F[j](x) =∑k
i=1 pijF(i)(x) that was used by Bohn and Wolfe for the expected spacings model,

where pij is the probability that the ith order statistic from the set of k is judgment
ranked as the jth smallest observation in the set. That is, pij = P (X[j] = X(i)). Let

~P =




p11 p12 . . . p1k
p21 p22 . . . p2k
...

...
. . .

...
pk1 pk2 . . . pkk


 .

For the relationship R∗ to hold we must have

k∑

i=1

pij = 1, (1)

for each j = 1, . . . , k. This assumption is implicitly satisfied by the very manner
in which we obtain a ranked-set sample. It corresponds to the fact that the jth

judgment order statistic is equal to exactly one true order statistic and corresponds
to the assumption that the columns of ~P sum to one.

The related condition that
k∑

j=1

pij = 1 (2)

is not assumed. We view the matrix ~P as applying to an entire cycle of a ranked-
set sample. For this interpretation, condition (2) is not necessary. It would imply
that the ith order statistic could be chosen as a judgment order statistic only once
within a cycle. This, however, is not necessarily the case for ranked-set sampling with
imperfect rankings. For example, in the first set of k observations we could correctly
have X[1] = X(1), but in the second set the item judged to be second smallest is
actually the smallest, namely, X[2] = X(1). This is not to say that the same observation
is chosen twice since the order statistics are from two independent samples of size k
from F . However, in this situation the first order statistic is chosen twice with the
consequence that some other order statistic will not be chosen at all in that cycle.

In addition, under the assumption that the underlying distribution is unimodal, it
is reasonable to assume that p11 > p22 > . . . < p(k−1)(k−1) < pkk. This corresponds to
the condition that it is easier to judgment rank extremes than central observations for
such distributions, which makes intuitive sense because observations that fall in the
tails of a unimodal distribution will tend to be further apart than those falling nearer
the center.
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It is also assumed that pjj ≥ pij for any diagonal element pjj and all i 6= j. That
is, the most likely occurrence is a correct judgment ranking. This is reasonable since
it is unlikely that a ranked-set sampling approach would be useful for situations where
this assumption is not appropriate.

When the underlying distribution is symmetric certain symmetries should also
appear in the matrix ~P , such as p11 = pkk, p22 = p(k−1)(k−1), etc. In general, we would

expect pij = p(k+1−i)(k+1−j) as well. However, we do not expect the ~P matrix to be
totally symmetric. For example, the condition that pij = pji would imply that the
probability of judgment ranking the ith order statistic to be the jth is the same as
the probability of judgment ranking the jth order statistic to be the ith. There is no
reason to believe that this should be the case even in the underlying distribution is
symmetric.

These conditions on ~P , along with the ability to extend the model to different
set sizes and having both perfect ranking and random ranking as special cases, are
properties we require for our models.

4 Baseline Model

We first propose a baseline model that assumes that the judgment order statistics
are related to the true order statistics in a way that is similar to how the true order
statistics are related to the quantiles of the underlying distribution. Assume that the
population has c.d.f. F with inverse F−1 and probability distribution function (p.d.f.)
f . Let k be the set size. Then the model specifies that:

pij = P (X[j] = X(i)) ≈ P

(
X(j) = F−1

(
i− 1

2

k

))
.

Of course this does not directly result in a specification since

P

(
X(j) = F−1

(
i− 1

2

k

))
= 0

for all continuous distributions. A more appropriate description of the model would
be:

pij = P (X[j] = X(i)) ≈ P

(
X(j) ∈ N

(
F−1

(
i− 1

2

k

)))
,

where N (y) is a neighborhood around the point y. The question then is how to define
the neighborhood. An even more intuitive way of defining pij would be:

pij = P (X[j] = X(i)) ≈ P (X(j) ∈ N (E[X(i)])),

and the definition of the neighborhood could depend on other properties of the under-
lying distribution, including moments of adjacent order statistics, the variance of the
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ith order statistic, the kurtosis or skewness of the distribution and/or the covariances
between the ith order statistic and adjacent order statistics.

For the assumption in (1) to hold, the neighborhoods must be defined in such a way
that they are non-overlapping intervals that partition the support of the underlying
distribution. This, it turns out, is overly restrictive for the model. In situations
when the neighborhoods do not partition the support of F the probabilities will be
standardized so that they do sum to one and satisfy (1).

4.1 Specification of the Baseline Model

To implement this idea we must specify a way of defining the neighborhood around
E[X(i)]. Consider the following result:

Result 1. Let F be the c.d.f. of a continuous, symmetric distribution such that 1
1−F (x)

is convex. Then,

F−1

(
i− 1

k

)
≤ E[X(i)] ≤ F−1

(
i

k

)
⇐⇒ i− 1

k
≤ F (E[X(i)]) ≤

i

k
.

For proof of this equivalence see David (1981). The condition that 1
1−F (x) is convex

is rather mild and holds for all standard exponential families and distributions dis-
cussed in this paper. Also, it is known that E[X(i)] ≈ F−1( i

k+1), based on a first order
Taylor series expansion of X(i). These inequalities suggest partitioning the support of
f into pieces of equal probability, which leads to the following definition of the pij’s:

pij = P (X[j] = X(i)) ≡ P

(
F−1

(
i− 1

k

)
≤ X(j) ≤ F−1

(
i

k

))
,

which is simply

pij = P

(
i− 1

k
≤ F (X(j)) ≤

i

k

)
.

In the current setup, since the distribution is continuous, the jth order statistic from
a simple random sample of size k has p.d.f.:

fX(j)
(t) =

k!

(j − 1)!(k − j)!
f(t)[F (t)]j−1[1− F (t)]k−j. (3)

Then, it is well-known that F (X(j))
d
=U(j), where U(j) is the jth order statistic for a

sample of size k from a uniform (0, 1) distribution. Moreover, this common distribution
is Beta with parameters j and k − j + 1. Thus, when the support of the underlying
distribution is divided into equal probability intervals this model, hereafter referred to
as the baseline model, is the same for all distributions.
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Consider the case of k = 4. For the baseline model the matrix ~P of pij’s is:

~P =




0.684 0.262 0.051 0.004
0.254 0.426 0.262 0.059
0.059 0.262 0.426 0.254
0.004 0.051 0.262 0.684


 .

For k = 5 the matrix is:

~P =




0.672 0.263 0.058 0.007 0.000
0.250 0.400 0.260 0.080 0.010
0.068 0.250 0.365 0.250 0.068
0.010 0.080 0.260 0.400 0.250
0.000 0.007 0.058 0.263 0.672



.

The biggest advantage of the baseline model is that it does not depend on the
underlying distribution and it meets all the conditions that we wished to impose on
the ~P matrix. In addition, ~P is doubly stochastic (i.e., satisfies both (1) and (2)), and
it is easy to compute and use for any set size. The biggest drawback of the model
is that it is fixed and has no parameter to adjust the probabilities to reflect that
judgment ranking may be easier in some situations than in others. This limitation is
addressed in the next section by modifying the baseline model.

4.2 Modified Baseline Model

The ability to correctly judgment rank elements in a set may be easier for some
situations than others. This could be because the underlying distributions are different
or due to the fact that for certain problems or objects the ranking process may be more
visually distinct than for others. For instance, circumference and height of two objects
may have the same distribution, but it would be easier to judgment rank heights than
it would be to judgment rank circumferences. Another example would be when the
objects that are to be judgment ranked are separated as opposed to being all in one
place for the person doing the judgment ranking. To reflect such features the baseline
model must be generalized, since it assigns the same probabilities in every situation
for which the underlying distribution is the same.

For the baseline model pij = P ( i−1
k ≤ U(j) ≤ i

k ), where U(j) is the j
th order statistic

from a uniform simple random sample of size k. One way to modify this model is to
adjust it according to the variance of the distribution of the order statistic while
keeping its mean constant at E[U(j)] = j/(k + 1). This allows pjj = P (X[j] = X(j))
to be adjusted for each j. By doing this for each j we provide added flexibility for
specifying the diagonal elements for the matrix ~P .

Consider the case k = 5 where it is believed that p11 = 0.9. It is known that
U(1) ∼ Beta(1, 5), so that E[U(1)] =

1
6 . Let Y ∼ Beta(α, β), where α and β are chosen
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such that α
α+β = 1

6 and P (Y ≤ 1
5) = 0.9. The first condition implies that β = 5α,

from which it follows that the second condition requires us to solve

∫ 1/5

0

Γ(6α)

Γ(α)Γ(5α)
yα−1(1− y)5α−1dy = 0.9

for α. Doing so yields α = 35.4 and β = 177. The following table shows the necessary
α’s and β’s for the other judgment order statistics when k = 5 under the conditions
that p22 = 0.8, p33 = 0.7, p44 = 0.8 and p55 = 0.9.

j pjj E[X(j)] α β
1 0.9 1/6 35.4 177
2 0.8 2/6 14.2 28.4
3 0.7 3/6 13.4 13.4
4 0.8 4/6 28.4 14.2
5 0.9 5/6 177 35.4

Using these α’s and β’s with this modified baseline model gives:

~P =




0.900 0.023 0.000 0.000 0.000
0.100 0.800 0.150 0.000 0.000
0.000 0.176 0.700 0.176 0.000
0.000 0.000 0.150 0.800 0.100
0.000 0.000 0.000 0.023 0.900



.

This approach will allow the diagonal probabilities to be as high as desired, but
not necessarily as small as we might want. When its mean is fixed, there is an implied
maximum variance for the distribution of the associated order statistic. This is a
consequence of the finite support for the Beta distribution. With the mean fixed at 1

6
as above, for example, the expression for the variance is

αβ

(α+ β)2(α+ β + 1)
.

Now for the mean to be 1
6 , β = 5α so the variance becomes

5α2

(6α)2(6α + 1)
=

5

36(6α + 1)
.

This converges to 0 as α → ∞ and to 5
36 as α → 0. For the smoothing modification

of the baseline model the restriction that max (α, β) ≥ 1 should be met so that the
distribution is not U-shaped which would lead to a violation of the assumption that
pjj ≥ pij for i 6= j. There are, however, some situations where it may be appropriate
to relax this assumption. For k = 5, the lowest attainable p11 is 0.674 corresponding
to α = 1.16312 and β = 5.8156. It is interesting to note that this does not occur at
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the minimum variance. Similarly, the lowest p55 is 0.674. Even though the central
order statistics have larger variances, the modified baseline model is able to obtain
very small pjj values for them. The following table presents the lowest attainable pjj’s
and the corresponding α’s and β’s for k = 5.

j pjj E[X(j)] α β
1 0.67 1/6 1.163 5.816
2 0.19 2/6 0.000001 0.000002
3 0.20 3/6 0.000001 0.000001
4 0.19 4/6 0.000002 0.000001
5 0.67 5/6 5.816 1.163

For a uniform distribution (or on the uniform scale using the probability integral
transformation for other distributions) the effect of changing α and β can be inter-
preted in a way similar to a Bayesian prior. Consider the 2nd order statistic in the case
of k = 5, namely, U(2) ∼ Beta(2, 4). When the α and β parameters are changed, as in
the first example, to α = 14.2 and β = 28.4 the mean stays the same by design. The
interesting thing to note is that this is like the distribution of the 14.2th order statistic
for a sample of size 41.6 from a uniform distribution. (For an integer sample size this
is similar to the technical device of fractional order statistics introduced by Stigler,
1977.) In general it is like the distribution of the αth order statistic for a sample of
size α + β − 1 from a uniform distribution. Note that because the means are held
constant the relation between the two settings is: 2

5+1 = 14.2
41.6+1 . So in a proportional

sense they are similar order statistics relative to different sample sizes.
Note that U(j) ∼ Beta(j, k − j + 1). Letting U[j] ∼ Beta(α, β) has the same

interpretation on the scale of F . Let x = F−1(u) so that u = F (x) and J = | ∂
∂uF (u)| =

f(u). Then

fX[j]
(x) =

Γ(α+ β)

Γ(α)Γ(β)
[F (x)]α−1(1− F (x))β−1f(x),

which is the distribution of the αth order statistic from a random sample of size α+β−1
from F . Thus, the smoothing of the baseline model is doing similar things on both
the uniform scale and the scale of the original distribution.

This smoothed baseline model has the same advantages as the baseline model,
although because of its added flexibility it is slightly harder to implement. However,
since it is able to represent different degrees of judgment error, it does not have that
drawback possessed by the baseline model. In addition, to use the smoothed baseline
model we must specify the entire diagonal of the ~P matrix. If a one-number model
were desired we could use the same relationship on the diagonal of this model as we
have for the baseline model. For k = 5 the baseline model has p11 = p55 = 0.673,
p22 = p44 = 0.400 and p33 = 0.365. Thus, for a smoothed baseline model we could let
p22 = p44 = 0.400

0.672p11, p33 = 0.365
0.672p11, and p55 = p11. With these stipulations the only

parameter is p11, as with the Bohn-Wolfe expected spacings model. Another way to
achieve this would be to let p22 = p44 = p11−(0.672−0.400), p33 = p11−(0.672−0.365),
and p55 = p11.
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5 Variance and Covariance Interval Models

In addition to the baseline and modified baseline models we propose another group of
models that use the means and variances of order statistics and covariances of adjacent
order statistics to define the intervals that specify the probabilities for the ~P matrix.

5.1 Univariate Variance Model

For this approach we define the intervals in terms of the expected value of the order
statistic plus or minus a constant times its standard deviation. The motivation for this
model is that as the variance of an order statistic gets larger relative to the difference
in the means of adjacent order statistics the order statistics will be harder to judgment
rank correctly. For the normal distribution, for example, the differences between the
means of adjacent order statistics are greater for both the largest and smallest sets
of order statistics but the variances of these order statistics are also larger. In fact,
relative to the standard deviations of the order statistics, the expected differences
between the means are smaller for these extreme order statistics. On the other hand,
for the uniform distribution the expected differences in the means are the same for
all order statistics. The variances, however, are lower for the extreme order statistics.
Based on this information we might expect that the accuracy in judgment ranking the
extreme order statistics as opposed to the central order statistics should be relatively
better for the uniform distribution than for the normal distribution. To reflect this,
we define

qij = P
(
E[X(i)]− z

√
Var(X(i)) ≤ X(j) ≤ E[X(i)] + z

√
Var(X(i))

)
,

where z is a parameter that can be varied, and set pij =
qij
q·j

, where q·j =
∑k

i=1 qij.

For the uniform distribution with k = 5 and z = 0.5, we get the following for

E[X(i)]± z
√

Var(X(i)):

i Lower Upper
1 0.096 0.237
2 0.244 0.422
3 0.406 0.594
4 0.578 0.756
5 0.763 0.904

,

resulting in the following ~P matrix:

~P =




0.571 0.278 0.080 0.013 0.001
0.302 0.364 0.252 0.096 0.021
0.105 0.249 0.336 0.249 0.105
0.021 0.096 0.252 0.364 0.302
0.001 0.013 0.080 0.278 0.571



.
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For the normal distribution with k = 5 and z = 0.5, we get the following for E[X(i)]±
z
√

Var(X(i)):

i Lower Upper
1 0.067 0.204
2 0.219 0.415
3 0.394 0.606
4 0.585 0.781
5 0.796 0.933

,

resulting in the following ~P matrix:

~P =




0.559 0.237 0.056 0.007 0.001
0.320 0.394 0.259 0.091 0.017
0.104 0.270 0.370 0.270 0.104
0.017 0.091 0.259 0.394 0.320
0.001 0.007 0.056 0.237 0.559



.

The ~P matrix for the normal distribution does not indicate that the probability of
judgment ranking the extremes correctly is lower than for the central order statistics.
However, comparing it to the ~P matrix for the uniform distribution we see that the
extreme order statistics are harder to judgment rank relative to the central order
statistics for the normal distrubiton than for the uniform distribution.

One drawback of this univariate variance model is that it does not incorporate
any information about adjacent order statistics. It is reasonable to believe that the
probability of judging the ith order statistic correctly will at least depend on the
distributions of the (i − 1)th and (i + 1)th order statistics as well. One advantage of
the univariate variance model is that it can be extended easily to other distributions.

5.2 Midpoints Models

Another approach to modeling the pij’s is to start on the uniform scale and let

qij = P (E[(U(i−1) + U(i))/2] ≤ U(j) ≤ E[(U(i) + U(i+1))/2]), (4)

where U(0) ≡ 0, U(k+1) ≡ 1 and U(1) ≤ . . . ≤ U(k) are the order statistics for a random
sample of size k from a Uniform(0, 1) distribution. This approach uses the expected
midpoints between adjacent order statistics to partition the interval [0, 1]. Thus, the
resulting matrix automatically has columns that sum to one.

For k = 5 this gives:

~P =




0.633 0.328 0.099 0.016 0.002
0.262 0.344 0.246 0.090 0.018
0.085 0.221 0.310 0.221 0.085
0.018 0.090 0.246 0.344 0.262
0.002 0.016 0.099 0.328 0.633



.
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This method can be generalized by adjusting the expected midpoints by factors
depending on the covariances between U(i−1) and U(i) and between U(i) and U(i+1).

First, let W(i,j) =
U(i)+U(j)

2 . The generalization is to let

qij = P
(
E[W(i−1,i)] − z

√
Cov(U(i−1), U(i)) ≤ U(j) ≤ E[W(i,i+1)]

+ z
√

Cov(U(i), U(i+1))
)
,

where once again U(0) ≡ 0 and U(k+1) ≡ 1. Then we set pij =
qij
q·j

, where q·j =
∑k

i=1 qij.

The covariance between uniform order statistics from a sample of size k is

Cov(U(i), U(j)) =
i(k + 1− j)

(k + 1)2(k + 2)
.

This generalized midpoints model will be referred to as the midpoints covariance model
or simply the covariance model. With k = 5 and z = 0.5, we obtain the following lower
and upper endpoints for the intervals:

i Lower Upper
1 0.013 0.313
2 0.187 0.494
3 0.340 0.660
4 0.506 0.813
5 0.687 0.987

,

yielding the ~P matrix:

~P =




0.623 0.296 0.100 0.021 0.002
0.256 0.339 0.244 0.104 0.023
0.096 0.239 0.312 0.239 0.096
0.023 0.104 0.244 0.339 0.256
0.002 0.021 0.100 0.296 0.623



.

An alternative way to generalize (4) is to use the variance of the midpoint instead of

the covariance between the two adjacent order statistics. Again, let W(i,j) =
U(i)+U(j)

2 .
For this model let

qij = P
(
E[W(i−1,i)] − z

√
Var(W(i−1,i)) ≤ U(j) ≤ E[W(i,i+1)]

+ z
√

Var(W(i,i+1))
)
,

where once again U(0) ≡ 0 and U(k+1) ≡ 1. Then take pij =
qij
q·j

, where q·j =
∑k

i=1 qij.
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For uniform order statistics the variance of W(i,j) is given by

Var(W(i,j)) =
1

4
[Var(U(i)) + Var(U(j)) + 2Cov(U(i), U(j))] (5)

=
1

4

[
i(k − i+ 1)

(k + 1)2(k + 2)
+

j(k − j + 1)

(k + 1)2(k + 2)
+ 2

i(k + 1− j)

(k + 1)2(k + 2)

]

=
1

4

[
3i(k + 1)− i2 − 2ij + j(k + 1)− j2

(k + 1)2(k + 2)

]
.

The resulting model will be referred to as the variance of the midpoints model. With
k = 5 and z = 0.01, the corresponding lower and upper endpoints of the intervals are:

i Lower Upper
1 0.066 0.264
2 0.236 0.434
3 0.400 0.600
4 0.566 0.764
5 0.736 0.931

,

yielding the ~P matrix:

~P =




0.635 0.323 0.099 0.017 0.002
0.259 0.343 0.245 0.093 0.019
0.086 0.225 0.311 0.226 0.088
0.019 0.092 0.245 0.344 0.263
0.002 0.017 0.099 0.321 0.628



.

However, a number of difficulties arise when this approach is applied to a distri-
bution other than the uniform. First, we do not have closed form expressions for the
expected values of order statistics for many common distributions and only rarely are
the covariances of adjacent order statistics available in closed form. These problems,
however, can be addressed by using approximations for the moments of order statis-
tics. Second, there is no longer a bounded support framework within which to work.
In the standard uniform setting we set U(0) ≡ 0 and U(k+1) ≡ 1 for convenience, but it
was also quite natural. For a distribution that has the real line or a half-infinite inter-
val as its support, we must take a different approach. We considered several different
methods for dealing with this endpoint problem. One such approach that we present
here is to let X(0) and X(k+1) be the corresponding endpoints for the support of the
underlying distribution (even if one or both are infinite).

In general, let W(i,j) =
X(i)+X(j)

2 . Then the extended variance of the midpoints
model is to set

qij = P
(
E[W(i−1,i)] − z

√
Var(W(i−1,i)) ≤ X(j) ≤ E[W(i,i+1)]

+ z
√

Var(W(i,i+1))
)
, (6)
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where X(0) and X(k+1) are defined as the left and right endpoints for the support of

the underlying distribution. As usual, then pij =
qij
q·j

, where q·j =
∑k

i=1 qij.

For the double exponential distribution with z = 0.1 and k = 5 the intervals are

i Lower Upper
1 −∞ -0.995
2 -1.166 -0.227
3 -0.346 0.346
4 0.227 1.166
5 0.995 ∞

and they result in the following probability matrix:

~P =




0.578 0.198 0.040 0.004 0.000
0.316 0.414 0.241 0.071 0.009
0.097 0.312 0.438 0.312 0.097
0.009 0.071 0.241 0.414 0.316
0.000 0.004 0.040 0.198 0.578



.

Computing such a ~P matrix requires values for the expectations, variances and
covariances of order statistics from the assumed distribution. When closed form ex-
pressions for the needed moments are available they should be used. Such closed form
expressions exist for the moments and covariances of uniform and exponential order
statistics. Johnson et al. (1995) give explicit formulas for the moments of double
exponential order statistics.

When approximations for the moments of order statistics from a continuous pop-
ulation with c.d.f. F are needed the integral expression

E[Xt
(i)] =

k!

(i− 1)!(k − i)!

∫ 1

0
[F−1(u)]tui−1(1− u)k−i du (7)

can be approximated in R (see Ihaka and Gentleman, 1996) using the adapt function
for approximating integrals. This package, as modified for R from Mike Meyer’s S
code by Thomas Lumley and obtained from StatLib at Carnegie Mellon University,
calls A.C. Genz’s Fortran ADAPT subroutine to do all the calculations. Accuracy for
the relative error is set to be < 0.00001. When an approximation for the covariance
between two order statistics is needed the integral expression

E[X(i)X(j)] =
k!

(i− 1)!(j − i− 1)!(n − j)!
× (8)

∫∫

0<ui<uj<1

F−1(ui)F
−1(uj)u

i−1
i (uj − ui)

j−i−1(1− uj)
k−i dui duj

can be approximated in R (again see Ihaka and Gentleman, 1996) in the same way
as equation (7). These approximations are used in this paper whenever moments of
order statistics are needed and not available in closed form.
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5.3 Variance of Differences Model

A modification of the model discussed in Section 5.2 is motivated by the idea that if
the correlation between two variables is positive then they behave similarly. If one is
large the other will also tend to be large and both being large will make it harder to
judgment rank them. With negatively correlated variables if one is large the other is
likely to be small so that they will tend to be separated, making it easier to judgment
rank them. Of course, adjacent order statistics are always positively correlated, but in
a relative sense the logic still applies. If two adjacent order statistics have a stronger
positive correlation than two other adjacent order statistics, the pair having the greater
positive correlation will be harder to judgment rank. Thus, in lieu of using the variance
of W(i,j) in (5) to define the width of our intervals in (6), we consider instead the use
of

Var(Spacing) = Var(X(j) −X(i)) = Var(X(i)) + Var(X(j))− 2Cov(X(i),X(j))

in (6). This results in qij equal to

P
(
E[W(i−1,i)] − z

√
Var(X(i+1) −X(i)) ≤ X(j) ≤ E[W(i,i+1)]

+ z
√

Var(X(i+1) −X(i))
)
,

where once again X(0) and X(k+1) are defined as the left and right endpoints for the

support of the underlying distribution, respectively, and we take pij =
qij
q·j

, where

q·j =
∑k

i=1 qij .
For the uniform distribution with k = 5 and z = 0.5, we get the following intervals

from this approach:

i Lower Upper
1 0.013 0.320
2 0.180 0.487
3 0.346 0.654
4 0.513 0.820
5 0.680 0.987

,

with the resulting ~P matrix:

~P =




0.622 0.305 0.107 0.023 0.003
0.264 0.343 0.242 0.100 0.021
0.090 0.229 0.303 0.229 0.090
0.021 0.100 0.242 0.343 0.264
0.003 0.023 0.107 0.305 0.622



.

The drawbacks of this variance of differences model are similar to those of the other
midpoints models discussed in this section, namely, it is difficult to implement for
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different distributions and will sometimes require approximations for various moments
of order statistics from the underlying distribution. Also, it is clearly dependent on
the underlying distribution.

Note that one common problem with all of the interval type models discussed
here is that they are not capable of representing either perfect judgment rankings or
random rankings.

6 Simulation Models

In addition to the baseline model, modified baseline models and the various interval
models using variances and covariances of adjacent order statistics we also suggest
consideration of simulation models to generate an appropriate ~P matrix for settings
where closed form expressions for the pij ’s do not exist. The first proposed model
uses independent order statistics, while the second approach approximates the pij’s by
using a Dell and Clutter type model. The third model of this type considered here is
based on concomitant variables.

6.1 Independent Order Statistics Simulation

This method of generating a ~P matrix is based on independent order statistics from a
specific parametric distribution. For a set of k independent order statistics, the first
order statistic, for example, could be larger than the second order statistic or any
other order statistic. The same is true for any of the independent order statistics.

First, for each round of simulation we generate k independent order statistics from
the underlying distribution using the marginal distributions of the order statistics.
Then pij is estimated by the proportion of iterations for which the generated ith

order statistic is actually the jth smallest in the set of k independent order statistics.
The approximate ~P matrix from this approach based on 100, 000 simulations using R
(Ihaka and Gentleman, 1996) from the uniform distribution (independent of location
and scale) with k = 5 is given by

~P ≈




0.740 0.198 0.052 0.010 0.001
0.203 0.509 0.217 0.062 0.009
0.048 0.222 0.463 0.219 0.048
0.008 0.063 0.216 0.512 0.202
0.001 0.009 0.052 0.197 0.741



.

The approximate ~P matrix obtained from this approach is always doubly stochastic
and the model can be applied easily to any distribution for which the order statistics
can be generated. The model does not depend on either the location or scale parameter
of the underlying distribution and it extends easily to larger set sizes. The model is,
however, computationally intensive, especially for larger set sizes.
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6.2 Dell and Clutter Simulation

Our second method for simulating an appropriate ~P matrix is based on the Dell
and Clutter formulation, but instead of using it to approximate the moments of the
judgment order statistics it is used to approximate the pij’s. Recall that the model
is Yi = Xi + ǫi, where ǫi represents the error in the judgment ranking process. To
implement this model a set of k independent random Xi’s and k random error variates,
ǫi’s, are generated and the Yi’s are computed. For this model X[r] is the Xi associated
with Y(r). Then pij is defined to be the proportion of these iterations for which X[j] is
actually X(i).

The variance component in the error term of this model allows the user to control
the degree of judgment error. Also different distributions can be used to generate the
order statistics and the errors.

For set size k = 5 the approximate ~P matrix from this approach based on 100, 000
simulations using R (Ihaka and Gentleman, 1996) for normal order statistics and
normal judgment errors with an error variance of σ2 = 0.5 is

~P ≈




0.715 0.199 0.063 0.018 0.004
0.197 0.493 0.212 0.079 0.019
0.065 0.209 0.448 0.212 0.065
0.019 0.079 0.213 0.492 0.197
0.003 0.019 0.064 0.199 0.715



.

The approximate ~P matrix obtained from this approach is also always doubly
stochastic and model simulation can be applied to any distribution for which order
statistics can be generated. Once again, this ~P matrix does not depend on either the
location or scale parameter for the X distribution or on the location parameter of the
error distribution. The model can be extended easily to larger set sizes, but it also
becomes computationally intensive as the set size increases.

6.3 Concomitant Simulation

For this approach we generate pairs of variables, one (X) being the variable of interest
and the second (Y ) is a concomitant variable. The concomitant variable is then used
to judgment rank the variable of interest. Specifically, X[r] is the Xi corresponding
to Y(r). Then pij is estimated as the proportion of these iterations for which X[j] is
actually X(i). (Note that an alternative method of approximating these probabilities
was proposed by David et al., 1977.)

For the case when the variable of interest and the concomitant variable follow
a bivariate normal distribution, the correlation coefficient represents the degree of
judgment error that is present in the ranking process. A correlation of one corresponds
to perfect judgment rankings and a correlation of zero corresponds to the case of
random rankings.
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For set size k = 5 and a bivariate normal distribution with correlation coefficient
ρ = 0.9, the approximate ~P matrix based on 100, 000 simulations using R is

~P ≈




0.723 0.194 0.062 0.017 0.004
0.196 0.503 0.210 0.074 0.017
0.060 0.210 0.456 0.211 0.063
0.018 0.075 0.210 0.501 0.196
0.003 0.017 0.062 0.197 0.720



.

This bivariate normal concomitant model is easily extended to larger set sizes, but
again it becomes computationally intensive as the set size increases.

7 Discussion

It is difficult to look at a particular ~P matrix and understand how the individual pij’s
will influence the efficiencies of different statistical procedures. It may be possible
to do this for small values of k, but larger values of k present a problem. In this
regard, some of the things to look for in a ~P matrix are the magnitudes and pattern
of the pij’s on the main diagonal (these are the probabilities of correctly judgment
ranking observations), how the probabilities decline off the diagonals and how large
the probabilities are in the corners of the matrix. The baseline model for k = 5 has
moderate values of p11 and p55 and the probabilities fall to zero fairly quickly off
the main diagonal. The modified baseline model has very large probabilities on the
main diagonal (by design) and the probabilities fall to zero very quickly off the main
diagonal. The interval type models tend to have smaller probabilities on the main
diagonal and fall more slowly, never quite reaching zero off the main diagonal. The
simulation models tend to have larger probabilities on the main diagonal and drop
quickly away from this diagonal, but once again not all the way to zero.

Of course, in this preliminary discussion of modeling ~P matrices nothing is being
held constant across the different models so it is difficult to draw real conclusions about
how well any of them reflect a given underlying distribution and associated judgment
rankings. Further studies are needed to sharpen our understanding of the relative
merits of these different approaches. The important result is that these models for
imperfect judgment rankings can now be used to assess the impact that imperfect
judgment rankings have on statistical procedures in a wide variety of settings.
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