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Abstract

A family of distributions has been proposed which includes the symmetric
triangular distribution as special case. The new family of distributions,
which we refer to as generalized curvi-triangular (GCT) distributions, al-
lows the shape of the density to be non-triangular and asymmetric, in
general. The properties of GCT distributions along with the inferential
procedures regarding the parameters are discussed.

Keywords and Phrases: Skewness; Skew-Normal distribution; Triangu-
lar distribution.

AMS Classification: 60Exx.

1 Introduction

A regular three-parameter triangular distribution is given by the density

f(x;α, β, ξ) =

{
2(x−α)

(β−α)(ξ−α) , α ≤ x ≤ ξ
2(β−x)

(β−α)(β−ξ) , ξ ≤ x ≤ β
. (1)

This distribution has limited application, mostly because of its triangle-shape density,
which makes it less suitable for real-life data. In practice, frequency curves seldom
take the shape of a triangle. This kept the use of triangular density clinical. We
will mention several recent works with triangular distribution here. An extension of
the three-parameter triangular distribution utilized in risk analysis has been discussed
by René van Dorp and Kotz (2002). They showed that the extended four-parameter
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family includes the triangular distribution, the power function distribution and the
uniform distribution. Both Johnson (1997) and Johnson and Kotz (1999) explored
the possibility of using triangular distribution as a proxy for the beta distribution in
risk analysis. Johnson (1997) used triangular distributions as a proxy to the beta
distribution, specifically in problems of assessment of risk and uncertainty, such as the
project evaluation and review technique (PERT). In risk analysis, the parameters of a
triangular distribution have a one-to-one correspondence with an optimistic estimate,
most likely estimate and pessimistic estimate of a quantity under consideration, pro-
viding to the triangular distribution its intuitive appeal (René van Dorp and Kotz,
2002).

Nonetheless, the statistics community has been somewhat quiet about the ap-
plication of this distribution. We will deal with a simpler version of the triangular
distribution and will show that when extended in a manner similar to the extension
of normal distribution to skew-normal distribution, by Azzalini (1985), the distribu-
tion becomes more exciting. We will investigate the properties of the newly defined
distribution. Some inferential aspects of the parameters of the new family will also be
investigated.

The article is organized as follows. In Section 2, we generalize a standard symmet-
ric triangular distribution by introducing a shape parameter. We refer to the resulting
family of distributions as generalized curvi-triangular distribution and investigate im-
portant characteristics of this distribution. Section 3 is devoted to the discussion of
some inferential procedures such as random number generation, estimation and test of
hypothesis concerning the shape parameter. In section 4 we present the results from
a simulation study. We conclude in Section 5 with a discussion.

2 General form of Curvi-triangular Distribution

Let us consider the case where ξ = 0, α = −θ and β = θ. The density function of such
a simple one-parameter triangular distribution (symmetric about zero) is given by

f(x; θ) =
θ − |x|
θ2

I[−θ,θ](x), (2)

where IA(x) = 1, x ∈ A, 0, otherwise is the characteristic function for the set A.
Corresponding distribution function is defined as

F (x; θ) =
1

2

{
1 +

x (2θ − |x|)
θ2

}
I[−θ,θ](x) + I(θ,∞)(x). (3)

Although only the symmetry property (not the symmetry about zero) is required for
the derivations in this paper, for simplicity we adopted this form throughout, with
the understanding that in cases where the random variable Y is symmetric about
µ, µ 6= 0, a transformation X = Y −µ would lead to a distribution which is symmetric
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about zero. One common example given in undergraduate classes for introducing
this distribution is the sum of two uniform random variables. If X1 and X2 are two
independent U(−θ/2, θ/2) random variables, then the distribution of X1 +X2 follows
a triangular distribution given by (2). The distribution has mean zero, standard
deviation θ/

√
6 and has a kurtosis of β2 = 2.4. Following Azzalini (1985), we define

the following distribution with one additional parameter λ(λ ∈ R):

g(x; θ, λ) =





(
θ−|x|
θ2

){
1 + λx(2θ−|λx|)

θ2

}
, |x| ≤ θ, |λx| ≤ θ,

2(θ−|x|)
θ2

, |x| ≤ θ, λx > θ,
0, otherwise.

(4)

It is easy to verify that this distribution meets all the criteria for being a density
function. Although distributions derived similar way, for example, from normal, t,
logistic or Cauchy are referred to as skew-normal (Azzalini, 1985), skew-t ( Branco and
Day, 2001), skew-logistic (Wahed and Ali, 2001) or skew-Cauchy (Arnold and Beaver,
2000) respectively, since triangular distribution can itself be skewed, we refer to this
new family as generalized curvi-triangular distribution and will denote by GCT [θ, λ].
It can be seen from (4) that the symmetric triangular distribution defined in (2)
is a special case of the generalized curvi-triangular distribution when λ = 0. The
distribution g(·; θ, λ), defined as a generalization of f(·; θ), no longer is triangular-
shaped, neither is it symmetric (for non-zero λ). Figure 1 shows the shapes of this
distribution for different positive and negative λ values. It is seen from the figures
that the density for a given value of λ is a mirror image of the corresponding density
for −λ. Figure 1 also shows the corresponding cumulative distribution functions for
selected λ-values. The distribution is skewed to the right for approximately λ ∈ I =
(−1.52, 0) ∪ [1.52,∞) and to the left for λ ∈ R− I, as is seen in Figure 1. The degree
of skewness does not depend on θ and as expected, is governed by the magnitude of
λ. When λ = 0 there is no skewness (symmetric triangular) and the largest skewness
is achieved when |λ| → ∞, in which case the density becomes a three-parameter
triangular distribution with bases α = −θ (λ > 0) or α = θ (λ < 0), ξ = 0, and β = 0.
Besides when λ = 0, the distribution is also approximately symmetric for λ = ±1.52,
approximately.

The transformation of standard symmetric triangular distribution to the GCT [θ, λ]
distribution does not change the flatness or peakness of the distribution much. The
coefficient of kurtosis β2, as shown in Figure 1, lies between 2.4 and 2.6 with the lowest
achieved at λ = 0, and highest at around λ = ±0.78.

Although both mean and variance of a GCT [θ, λ] distribution depend on both θ
and λ, the coefficient of variation (CV) is free of θ. Since g(x; θ, λ) = g(−x; θ,−λ),
the mean is an odd function increasing in λ and the variance is an even function of
λ, decreasing in |λ|. The larger the λ, the larger the absolute value of the mean. The
CV function has a vertical asymptote at λ = 0 and is a decreasing odd function of λ.
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2.1 A Simpler Subclass

When λ is restricted in the interval [−1, 1], GCT [θ, λ] distribution given by (4) sim-
plifies to

g(x; θ, λ) =

(
θ − |x|
θ2

){
1 +

λx (2θ − |λx|)
θ2

}
, |x| ≤ θ. (5)

We will refer to this distribution as CT [θ, λ]. Certain properties considered beforehand
simplifies for this class. The distribution function for this special case is given by

G(x; θ, λ) = θ−4
[
λ2x4/4− λ(λ+ 2)θ |x|3 /3 + (2λ− |x| /x)θ2x2/2

+θ3x
]
I(x 6= 0) +

(
1

2
− λ

3
+
λ2

12

)
. (6)

As a consequence of this property and (3), we have, G(x; θ, 1) = F 2(x; θ), proving
the fact that the square of a continuous distribution function is also a distribution
function. The rth raw moment of the distribution about origin is given by

µ′r(θ, λ) = E[Y r] =

{ 2θr

(r+1)(r+2) r even

2λθr

r+3

(
2

r+2 −
|λ|
r+4

)
r odd

. (7)

Thus the mean and variance of a CT [θ, λ] distribution are respectively µ(θ, λ) =
θλ(1/3− |λ| /10), and σ2(θ, λ) = θ2/6− µ2. The coefficient of skewness, which can be
obtained using the moment expressions ( 7), is an odd function of λ (Figure 1).

If X follows a standard symmetric triangular distribution with upper boundary
θ and Y is distributed as CT [θ, λ], then both |X| and |Y | has the same triangular
distribution given by (1) with α = 0, ξ = 0, and β = θ. This property is very
interesting in the sense that the absolute value of a curvi-triangular random variable
with parameter λ does not depend on λ. As a consequence of this property, the
distribution of any function of the absolute random variable |Y |, will be independent
of λ. In particular, Y 2 has the density,

fY 2(y; θ, λ) = fY 2(y; θ) =
1

θ

(
1√
y
− 1

θ

)
, 0 ≤ y ≤ θ2. (8)

3 Inference

3.1 Random Number Generation

Generating random numbers from the GCT (θ, λ) distribution can be done through the
standard triangular distribution. The following proposition, similar to the one proved
for skew-normal random variables in Azzalini and Dalla Valle (1996), facilitates the
generation of GCT (θ, λ) random variables.
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Proposition 3.1. Let Uj , j = 1, 2, 3, 4 are independent Uniform U(−θ/2, θ/2) random
variables. Define, V1 = U1 + U2 and V2 = U3 + U4, and set X = V1 conditional on
λV1 > V2. Then X ∼ GCT (θ, λ).

The proof of the above proposition follows directly from the assumptions that V1
and V2 are independent standard triangular random variables whose pdf and cdf are
respectively given by Equations (2) and (3). We give a brief outline here. From the
definition of X, the pdf of X can be written as

fX(x) =
fV1(x)P (λx > V2)

P (λV1 > V2)
. (9)

Since both V1 and V2 are symmetric about zero, so is λV1−V2, and therefore, P (λV1 >
V2) = .5. Substituting this result, the pdf of V1 and cdf of V2 in (9), we get, fX(x) =
2fV1(x)FV2(λx), |x| ≤ θ. Azzalini and Dalla Valle (1996) suggested that, in order to
avoid rejection sampling, one could use a slightly different definition of X in the above
proposition, namely, set X = V1 when λV1 > V2, and X = −V1 when λV1 ≤ V2.

3.2 Estimation

We consider two methods, namely, the method of moments and the method of maxi-
mum likelihood. The following derivation assumes that (x1, x2, . . . , xn) is a realization
of a random sample (X1,X2, . . . ,Xn) from a GCT (θ, λ) distribution. Method of mo-
ments (MOM) estimators would be the easiest to apply from the technical point of
view. Of all the characteristics based on moments such as variance, coefficient of vari-
ation, measure of skewness and kurtosis, the coefficient of variation is a one-to-one
function of λ and is independent of θ. Thus, the method of moments estimator for λ
can be obtained by calculating the sample coefficient of variation, equating it to the
population coefficient of variation and solving for λ.

Although, like many other distributions defined on the interval [−θ, θ], the MOM
estimator for θ will seldom be used, nevertheless, once the estimator for λ is obtained,
the moment estimator for θ can be obtained as the solution to the first moment equa-
tion. The maximum likelihood estimates can be obtained by numerically maximizing
the likelihood. We will investigate the properties of these two estimators through
simulation.

3.3 Test for λ = 0

Testing the hypothesis H0 : λ = 0 would be important from the practical point of view.
For a given dataset, this will tell us whether one should fit a standard symmetric tri-
angular distribution or the generalized curvi-triangular distribution. In most practical
applications, the value of θ will be known. The test that will be most straightforward
to implement for this purpose is the likelihood ratio test. The likelihood ratio LR
simply takes the ratio of the maximum of the likelihood of GCT (θ, λ) distribution
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to that of the standard symmetric triangular distribution with parameter θ. For n
sufficiently large, under H0, the distribution of −2 lnLR is well approximated by χ2

1.
Hence the critical values from χ2

1-distribution can be used.

A Wald test, which is based on the λ̂MLE can also be used. One difficulty in using
Wald test is in estimating the standard error of λ̂MLE. We suggest using paramet-
ric or non-parametric bootstrap method for estimating this standard error. Thus, if
λ̂MLE
1 , λ̂MLE

2 , . . . , λ̂MLE
B are B MLE’s of λ from B bootstrapped samples for the given

data, then the standard error of λ̂MLE is obtained as

SE(λ̂MLE) =

√√√√B−1

B∑

k=1

(
λ̂MLE
k − ¯̂

λ
)2
, (10)

where
¯̂
λ =

∑B
k=1 λ̂

MLE
k /B is the bootstrap mean of B MLE’s.

The other difficulty that arises in using the Wald test is that unless the sample
size is very large, the distribution of the maximum likelihood estimator of λ is far
from Normal [see Section 4]. This suggests that comparing the Wald-statistic W =

λ̂MLE/S.E.(λ̂MLE) to standard normal critical values, as is usually done, would lead
to biased inference. To overcome this difficulty, a complete bootstrap test can be used
details of which can be found in Boos (2003) and Efron and Tibshirani (1993).

4 Simulation Study

To evaluate the performance of the method of moments and maximum likelihood
estimators and to see how the distribution fits to a given dataset, we considered several
simulation scenarios. Table 1 gives a sample of size 50 generated from a GCT [5, 1.5]
distribution. Corresponding histogram, actual distribution and the fitted distributions
appear in Figure 2. We assume that the parameter θ is known. The method of moment
estimator of λ for this particular dataset is 1.44 and the MLE is 1.75. It looks like the
distribution fits quite well to the data and the MLE and MOM estimator are quite
close to the true value of λ.

To see how the MLE is distributed, We generated 100 samples of different sizes
from GCT [5, 1.5] distribution. Corresponding histograms are presented in Figure 4.
It is observed that the distribution of MLE of λ is quite skewed, even for moderately
large samples. Only for samples of sizes 500 or larger, the distribution becomes closer
to normal. The estimator seems to be unbiased, but realizes some extreme values
when sample size is small. These characteristics imply that one should take caution
in using the maximum likelihood estimator as a base for large-sample inference when
the sample in fact is not very large.

To investigate the power of the Chi-square approximation of the likelihood ratio
test for testing H0 : λ = 0, we considered simulations based on 200 samples for
different λ values in the range (−2.5, 2.5). It is observed that the test is powerful for
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detecting a departure from the standard symmetric triangular distribution. Figure 4
shows the power function of the test at 5% level of significance, calculated based on
200 Monte-Carlo samples of size 50 each.

5 Discussion

We have presented a family of distribution (generalized curvi-triangular distribution)
which includes the standard symmetric triangular distribution as a special case. The
generalized curvi-triangular family is more flexible than the triangular family in the
sense that it allows for densities which are smooth curves (as opposed to straight lines).
This makes the new family more suitable for practical applications. Although some
complexity arises due to its irregular shape (range depends on both parameters) in
estimation and testing procedures, in an era of computing revolution, this will not
hold back the application of the proposed family of distributions.

Acknowledgement

I am grateful to Prof. Mir Masoom Ali for introducing me to this area of my re-
search while I was conducting my M.A. thesis under his supervision. My warmest
congratulation to him on his 70th birthday.

References

[0] Arnold, B. C. and Beaver, R. J. (2000). The skew-cauchy distribution. Statistics
and Probability Letters, 49, 285-290.

[0] Azzalini, A. (1985). A class of distribution which includes the normal ones. Scand.
J. Statist., 12, 171-178.

[0] Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution.
Biometrika, 83, 715-726.

[0] Boos, D. (2003). Introduction to the bootstrap world. Statistical Science, 18, 168-
174.

[0] Branco, M. D. and Dey, D. K. (2001). A general class of multivariate skew-elliptical
distri- butions. Journal of Multivariate Analysis, 79, 99-113.

[0] Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman
and Hall, New York.

[0] Johnson, D. (1997). The triangular distribution as a proxy for the beta distribution
in risk analysis. Statistician, 46, 387-398.



14 International Journal of Statistical Sciences, Vol. 6s, 2007

[0] Johnson, N. L. and Kotz, S. (1999). Non-smooth sailing or triangular distributions
revisited after some 50 years. Statistician, 48, 179-187.

[0] Rene van Dorp, J. and Kotz, S. (2002). A novel extension of the triangular dis-
tribution and its parameter estimation. Journal of the Royal Statistical Society:
Series D (The Statistician), 51, 63-79.

[0] Wahed, A. and Ali, M. (2001). The skew-logistic distribution. Journal of Statistical
Research, 35, 71-80.



Wahed: The Family of Curvi-Triangular Distributions 15

-2 -1 1 2

0.2

0.4

0.6

0.8

l=25

l=5

l=2

l=1

l=0

-2 -1 1 2

0.2

0.4

0.6

0.8

l=-25

l=-5

l=-2

l=-1

l=-0

-2 -1 1 2

0.2

0.4

0.6

0.8

1

l=25

l=5

l=2

l=1

l=.5

l=0

-2 -1 1 2

0.2

0.4

0.6

0.8

1

l=-25

l=-5

l=-2

l=-1

l=-.5

l=0

-10 -5 5 10

-0.4

-0.2

0.2

0.4

-4 -2 2 4

2.4

2.45

2.5

2.55

2.6

Figure 1: Some properties of GCT [θ = 2, l] distribution. Top panel: densities, and
middle panel: distribution functions, and bottom panel: skewness (γ1 = µ3/

√
µ32, left

) and kurtosis (β2 = µ4/µ
2
2, right) plotted as a function of λ.
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Figure 2: Histogram for the dataset presented in Table 1 and the true distribution
along with the fitted curves. Solid line: true distribution, dotted line: method of
moments fit, and the dashed line is the fit by maximum likelihood.
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Figure 3: Distribution of maximum likelihood estimator in action for 100 samples of
size n from GCT [5, 1.5] distribution. Top left: n = 20, Top right: n = 50, Bottom
left: n = 100, Bottom right: n = 500;
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Figure 4: Power of likelihood ratio test for H0 : λ = 0

Table 1: Sorted sample of size 50 from a GCT [5, 1.5] distribution.

−1.67376 −1.10408 −1.01684 −0.786067 −0.686443
−0.118734 −0.101215 −0.098667 0.0557369 0.128512
0.160828 0.202319 0.22918 0.317187 0.330396
0.423432 0.495496 0.524236 0.594164 0.637784
0.722675 0.767406 0.851608 0.887698 1.00336
1.01973 1.21522 1.40519 1.44812 1.51873
1.62831 1.71586 1.94216 1.96565 2.12891
2.2568 2.2808 2.31929 2.55219 2.5539
2.56224 2.61798 2.6521 2.91498 2.94552
2.97861 3.44497 3.60133 3.80916 3.88195


