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Abstract

We consider the estimation of regression coefficients in a partitioned linear
model, shortly denoted as M12 = {y, X1β1 +X2β2, V}. We call M12 a
full model, and correspondingly, M1 = {y, X1β1, V} a small model. We
introduce a necessary and sufficient condition for the equality between the
ordinary least squares estimator (OLSE) of β1 and the best linear unbiased
estimator (BLUE) of β1 under the full model M12 assuming that they are
equal under the small model M1. This condition can then be applied to
generalize some results of Nurhonen and Puntanen (1992) concerning the
effect of deleting an observation on the equality of OLSE and BLUE.

Keywords and Phrases: Best linear unbiased estimation, BLUE,
Frisch–Waugh–Lovell theorem, Gauß–Markov model, OLSE, ordinary least
squares, orthogonal projector, partitioned linear model, reduced linear
model, Watson efficiency, weakly singular linear model, Zyskind–Martin
model.

AMS Classification: 62J05, 62H12, 62H20.



194 International Journal of Statistical Sciences, Vol. 6s, 2007

1 Introduction

In this paper we consider the partitioned linear model

y = X1β1 +X2β2 + ε, (1)

or shortly,

M12 = {y, Xβ, V} = {y, X1β1 +X2β2, V}, (2)

where E(y) = Xβ, E(ε) = 0, cov(y) = cov(ε) = V. We denote the expectation
vector and covariance matrix, respectively, by E(·) and cov(·).

In the model M12 the vector y is an n × 1 observable random vector, ε is an
n × 1 random error vector, X is a known n × p matrix, partitioned columnwise as
X = (X1 : X2) with X1 (n × p1) and X2 (n × p2), β is a p × 1 vector of unknown
parameters, andV is a known n×n nonnegative definite matrix. We omit the variance
multiplier σ2 from the covariance matrix of y since our main focus lies in the efficiency
of ordinary least squares (OLS) estimator of β and therein σ2 has no role.

We will use the symbols A′, A−, A+, C (A), C (A)⊥ and r(A) to denote, respec-
tively, the transpose, a generalized inverse, the Moore–Penrose inverse, the column
space, the orthogonal complement of the column space and the rank of the matrix A.
Furthermore we will write PA = AA+ = A(A′A)−A′ to denote the orthogonal pro-
jector (with respect to the standard inner product) onto C (A). In particular,

Pi = PXi , Mi = I−Pi, i = 1, 2; H = PX, M = I−H. (3)

In addition to M12, which we call the full model, we will consider the small model

M1 = {y, X1β1, V}, (4)

and the reduced model

M12·1 = {M1y, M1X2β2, M1VM1}. (5)

The model M12·1 is obtained by premultiplying the full model equation (1) by the
orthogonal projector M1. We define the models M2 and M12·2 similarly to the models
M1 and M12·1.

We assume the model to be consistent in that

y ∈ C (X : V) = C (X : VM). (6)

Note that whenever we have a statement in this paper that is related to the random
vector y, such a statement holds with probability 1, i.e., the statement holds for all y
satisfying (6). In particular, if the column space inclusion C (X) ⊂ C (V) holds, then
(6) becomes y ∈ C (V).
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When X has full column rank, then the vector β is estimable, and the ordinary
least squares estimator (OLSE) and the best linear unbiased estimator (BLUE) of β
under the full model M12 are, respectively,

OLSE(β) = β̂ =

(
β̂1

β̂2

)
= (X′X)

−1
X′y = β̂(M12), (7)

BLUE(β) = β̃ =

(
β̃1

β̃2

)
= (X′V−1X)−1X′V−1y = β̃(M12), (8)

when V is positive definite. The corresponding covariance matrices are

cov(β̂) = (X′X)
−1

X′VX(X′X)
−1
, cov(β̃) = (X′V−1X)−1, (9)

and hence we have the Löwner ordering

(X′X)
−1

X′VX(X′X)
−1 ≥ (X′V−1X)−1, (10)

i.e., the matrix (X′X)−1X′VX(X′X)−1 − (X′V−1X)−1 is nonnegative definite.
In this paper we consider the so-called weakly singular model (or Zyskind–Martin

model) which means that V may be singular but then the column space inclusion

C (X) ⊂ C (V) (11)

must hold; see, e.g., Zyskind and Martin (1969). Under this model, the BLUE(β) can
be expressed as

β̃ = (X′V+X)−1X′V+y (12)

(V+ being replaceable with any V−), and its covariance matrix can be written as
(X′V+X)−1 and hence, the Watson efficiency (Watson 1955, p. 330) becomes

φ12 = eff(β̂ | M12) =
|cov(β̃)|
|cov(β̂)|

=
|X′X|2

|X′VX| · |X′V+X| . (13)

All expressions in (12) and (13) are invariant for all choices of generalized inverses;
see, e.g., Rao and Mitra (1971, Lemma 2.2.4).

We will call φ12 the total Watson efficiency. Clearly we have

0 < φ12 ≤ 1, (14)

where the upper bound is attained if and only if the OLSE equals the BLUE; see,
e.g., Puntanen and Styan (1989). There are numerous equivalent characterizations—
originating from Anderson (1948), Rao (1967) and Zyskind (1967)—for the equality
between OLSE and BLUE, i.e., equality in (10). For example, each of the following
conditions is a necessary and sufficient condition for the equality between the OLSE

and BLUE:
C (VX) ⊂ C (X), HV = VH, HVM = 0, (15)
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where H and V are replaceable with M and V+, respectively.
Chu et al. (2004, 2005) introduced a new decomposition for the total Watson effi-

ciency φ12. According to this decomposition, the total efficiency φ12 can be expressed
as a product

eff(β̂ | M12) = eff(β̂1 | M1) · eff(β̂2 | M12) · α1, (16)

where eff(· | ·) refers to the Watson efficiency of a particular parameter vector under
a particular model, and α1 is a specific determinant ratio. We will not utilize this
decomposition in this paper, but we will use the notation eff(· | ·) for the Watson
efficiency.

Taking a look at the models (X having full column rank), we can immediately
conclude that the OLS estimators of β2 under the models M12 and M12·1 coincide:

β̂2(M12) = β̂2(M12·1) = (X′
2M1X2)

−1X′
2M1y. (17)

The equality in (17) is just the result that Davidson and MacKinnon (2004, §2.4)
call the Frisch–Waugh–Lovell Theorem. Correspondingly, it can be shown (Chu et al.
2004, p. 640) that the BLUEs of β2 under the full model M12 and the reduced model
M12·1 are equal, i.e.,

β̃2(M12) = β̃2(M12·1) = (X′
2Ṁ1X2)

−1X′
2Ṁ1y, (18)

where Ṁ1 = M1(M1VM1)
−M1. Now, in view of (17) and (18) we can, following

Groß and Puntanen (2000, p. 142) and Chu et al. (2004, p. 641), conclude the following
lemma:
Lemma 1.1. Consider a partitioned linear model M12, where X2 has full column
rank and the disjointness property

C (X1) ∩ C (X2) = {0} (19)

holds. Then the following statements are equivalent:

(a) β̂2(M12) = β̃2(M12),

(b) β̂2(M12·1) = β̃2(M12·1),

(c) C (M1VM1X2) ⊂ C (M1X2),

(d) the column space C (M1X2) has a basis comprising p2 orthonormal eigenvectors
of M1VM1.

We may note that the disjointness condition (19) means that X2β2 (and thereby
X1β1) is estimable under M12. The disjointness together with r(X2) = p2 guarantee
the estimability of β2 under M12. Moreover, using the rank rule of the matrix product
(Marsaglia and Styan 1974, p. 276),

r(AB) = r(A)− dimC (A′) ∩ C (B)⊥, (20)
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we can conclude that r(X′
2M1) = p2 holds if and only if (19) holds and r(X2) = p2.

Later we will need also the following result, see, e.g.; Sengupta and Jammala-
madaka (2003, Ch. 9):
Lemma 1.2. Consider a weakly singular partitioned linear model M12 where X has
full column rank. Then

β̃1(M12) = β̃1(M1)− (X′
1V

+X1)
−1X′

1V
+X2β̃2(M12). (21)

2 Main results

In this section we shall pay particular attention to the case when β̂1 is fully efficient
under the small model M1 = {y, X1β1, V}. We then add new explanatory variables
into the model, or delete observations from the model and study the consequences.
Our particular aim is to find conditions under which β̂1 remains fully efficient in the
transformed model.

We begin with the main theorem of this paper.

Theorem 8. Consider a weakly singular partitioned linear model M12 = {y, Xβ, V},
where X has full column rank. Let us assume that β̂1 is fully efficient in the small
model M1 = {y, X1β1, V}, i.e.,

eff(β̂1 | M1) = 1, or equivalently, M1V = VM1. (22)

Then the following statement holds:

eff(β̂1 | M12) = 1 ⇐⇒ X′
1X2β̃2(M12) = X′

1X2β̂2(M12). (23)

Proof. We first note that Lemma 1.2 implies that

β̃1(M12) = β̃1(M1)− (X′
1V

+X1)
−1X′

1V
+X2β̃2(M12), (24)

β̂1(M12) = β̂1(M1)− (X′
1X1)

−1X′
1X2β̂2(M12). (25)

Assuming that β̃1(M1) = β̂1(M1), we have the equality

(X′
1V

+X1)
−1X′

1V
+ = (X′

1X1)
−1X′

1, (26)

and hence can rewrite (24) as

β̃1(M12) = β̂1(M1)− (X′
1X1)

−1X′
1X2β̃2(M12). (27)

Combining (25) and (27) yields

β̃1(M12) = β̂1(M12) ⇐⇒ X′
1X2[β̃2(M12)− β̂2(M12)] = 0, (28)
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and thus (23) is proved. �

The equality (26) may deserve a further comment. Namely, even though it is clear

that β̃1(M1) = β̂1(M1) means that

(X′
1V

+X1)
−1X′

1V
+y := Gy = (X′

1X1)
−1X′

1y = X+
1 y (29)

holds, it does not necessarily mean that G = X+
1 . This is so since in view of the

consistency condition (6), the equality (29) need to be valid only for all vectors y ∈
C (V). However, using the commutativity of P1V

+ [see (15)], we obtain

(X′
1V

+X1)
−1X′

1V
+ = (X′

1V
+X1)

−1X′
1P1V

+

= (X′
1V

+X1)
−1X′

1V
+P1

= (X′
1V

+X1)
−1X′

1V
+X1X

+
1

= X+
1 = (X′

1X1)
−1X′

1. (30)

It is noteworthy that if the columns of X1 and X2 are orthogonal to each other,
i.e., X′

1X2 = 0, [and eff(β̂1 | M1) = 1] then adding new regressors (columns in X2)

keeps β̂1 fully efficient in M12.

Consider next some further properties of (23). First, we observe that the implica-
tion

X′
1X2[β̃2(M12)− β̂2(M12)] = 0 =⇒ β̃2(M12) = β̂2(M12) (31)

holds whenever the matrix X′
1X2 has full column rank:

r(X′
1X2) = r(X2) = p2. (32)

Hence we have the following result.

Corollary 2.1. Consider a weakly singular partitioned linear model M12 = {y, Xβ, V},
where X has full column rank. Assume that

(i) eff(β̂1 | M1) = 1, and (ii) r(X′
1X2) = p2. (33)

Then the following statements are equivalent:

(a) β̃1(M12) = β̂1(M12), i.e., eff(β̂1 | M12) = 1,

(b) β̃2(M12) = β̂2(M12), i.e., eff(β̂2 | M12) = 1,

(c) β̃(M12) = β̂(M12), i.e., eff(β̂ | M12) = 1.
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3 The situation when X2 = xp

It is of interest to comment on a special case of Corollary 2.1, where X2 comprises just
one column and so p2 = 1. We write X2 = xp. The result is presented in the following
corollary.

Corollary 3.1. Consider a weakly singular partitioned linear model M12 = {y, Xβ, V},
where X = (X1 : xp) has full column rank. Assume that

(i) eff(β̂1 | M1) = 1, and (ii)X′
1xp 6= 0. (34)

Then the following statements are equivalent:

(a) β̃1(M12) = β̂1(M12),

(b) β̃p(M12) = β̂p(M12),

(c) β̃(M12) = β̂(M12),

(d) M1VM1xp = λ2M1xp for some nonzero λ ∈ R.

Proof. Corollary 2.1 implies immediately the equivalence of (a), (b) and (c). The
last statement (d) comes from part (d) of Lemma 1.1. This is so because in view of
part (d) of Lemma 1.1, the vector M1xp must be an eigenvector of M1VM1, i.e., the
equality

M1VM1xp = λ2M1xp (35)

must hold for some λ. It is easy to see that the scalar λ in (35) is necessarily nonzero
once we require M1xp 6= 0 and C (X) ⊂ C (V). Note that M1xp 6= 0 is equivalent to
xp /∈ C (X1) which of course holds since we assume X to have full column rank. �

There is one particular choice of xp that deserves special attention,

xp = ei = ith column of In. (36)

Let us now consider three (weakly singular) linear models:

M = {y, Xβ, V}, M(i) = {y(i), X(i)β, V(i)}, MZ = {y, Zγ, V}, (37)

where

Z = (X : ei), γ =

(
β

δ

)
. (38)

By M(i) we mean such a version of M in which the ith case (ith observation) is
deleted; thus y(i) has n − 1 elements, X(i) has n− 1 rows, and cov(y(i)) = V(i). The
partitioned model MZ is an extended version of M . The extended model MZ appears
to be very useful in calculating regression diagnostics; see, e.g., Beckman and Cook
(1983), and Chatterjee and Hadi (1986).
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We assume that the model MZ is a weakly singular model and that Z has full
column rank. Then, as pointed out by Puntanen (1996, Th. 3), the model M(i) is a
reduced version of MZ ; in other words, if MZ corresponds to M12, then M(i) and M

correspond to M12·2 and M1, respectively. Hence we have, in short notation,

β̂(MZ) = β̂(M(i)) = β̂(i), β̃(MZ) = β̃(M(i)) = β̃(i). (39)

Using Corollary 3.1, we now obtain immediately the following result, which is a gen-
eralized version of a result of Nurhonen & Puntanen (1992, p. 133) who assumed V
to be positive definite and used a different approach.

Corollary 3.2. Consider a weakly singular linear model

MZ = {y, Zγ, V} = {y, Z
(
β

δ

)
, V}, (40)

where Z = (X : ei) has full column rank, and denote M = {y, Xβ, V}, and let
M(i) = {y(i), X(i)β, V(i)} be such a version of M in which the ith observation is
deleted. Assume X′ei 6= 0 (i = 1, . . . , n), and that OLSE(β) equals BLUE(β) under
M . Then

β̂(M(i)) = β̃(M(i)) holds for all i = 1, . . . , n, (41)

if and only if V satisfies

MVM = λ2M, for some nonzero scalar λ. (42)
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