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Abstract

The performance of pre-test estimator depends on the level of significance.
Since the existing max-min rule and minimax regret procedure are com-
puter intensive, we propose one simpler alternative method for optimal
level of significance. We perform a numerical comparison among these three
methods. Numerical results suggest that the proposed and Brook methods
are conservative for fixed sample size, whereas Han and Bancroft is flexible.
If the researchers are very conservative about the minimum guaranteed ef-
ficiency, they might select our proposed or Brook’s method. If they want to
have the higher minimum guaranteed efficiency, they should select Han and
Bancroft method. However, in later case the researchers have to accept the
risk for the higher size of the test. The proposed method is easy to compute
compared to Han and Bancroft and Brook methods.
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1 Introduction

One common problem encountered with general linear regression models is to deter-
mine whether to place restrictions on the parameters or not. This leads to a choice
of considering either restricted or unrestricted least squares estimator. For selecting
either estimator, F-test statistic is used to make the decision. This encourages one
to define a pre-test estimator. To describe the problem, consider the following linear
regression model, Y ∼ N(Xβ, σ2I), where Y is an n× 1 vector of observations on the
dependent variable, which follows a normal distribution with fixed mean vector Xβ
and known variance σ2I, β is a p × 1 vector of unknown regression parameters, and
X is an n × p known design matrix of rank p (n ≥ p). We are interested to estimate
the regression coefficients β when it is a priori suspected that β may be restricted to
the subspace

H0 : Hβ = h, (1)

where H is a q × p known matrix of full rank q(< p) and h is a q × 1 vector of known
constants. The choice of estimator for β whether restricted or unrestricted will depend
on the outcome of the test. If we reject the null hypothesis, the unrestricted least
squares estimator (URLSE) β̂UE = C−1X ′Y will be used. Here, C = X ′X is called
the information matrix. On the other hand, if the null hypothesis is true, the restricted
least squares estimator (RLSE) β̂RE = β̂UE −C−1H ′(HC−1H ′)−1(Hβ̂UE −h) will be
used. As a result, one might combine the URLSE and RLSE to obtain a better
performance of the estimator in presence of the uncertain prior information Hβ = h.
This leads to the well known preliminary test least squares estimator (PTLSE) of β
given by

β̂PT
α = β̂UE − (β̂UE − β̂RE)I(L < Lα), (2)

where I(A) is the indicator function of the set A and Lα is the upper 100α% point of
the test statistic

L =
(Hβ̂UE − h)′(HC−1H ′)−1(Hβ̂UE − h)

qs2
, (3)

where s2 = (n−p)−1(y−Xβ̂UE)′(y−Xβ̂UE) is an unbiased estimator of σ2. Under the
null hypothesis, the test statistic L is distributed as central F distribution with q and
n− p degrees of freedoms. Under the non-null case, it has non-central F distribution
with q and n− p degrees of freedom and non-centrality parameter 1

2∆, where

∆ =
η′(HC−1H ′)−1η

σ2
,

and η = Hβ − h is called the departure parameter.
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The preliminary test estimation has application in applied econometric analysis. It
has been pioneered by Bancroft (1944), followed by Bancroft (1964), Han and Bancroft
(1968), Judge and Bock (1978), Benda (1996), Chiou and Han (1999), Han (2002),
Kibria and Saleh (2003) and very recently Kibria and Saleh (2005, 2006). A detailed
review of the preliminary test estimation procedures is given by Han at al. (1988) and
Gilies and Gilies (1993).

It follows from above that the performance of PTLSE depends on the unknown pa-
rameter ∆ and the size of the test α. Indeed, the choice of α or critical value for F
test is an important issue for the users of the PT estimator. Han and Bancroft (1968)
proposed the max-min rule based on relative efficiency and Brook (1976) proposed the
minimax regret procedure based on risk to determine the optimal significance level for
the usual pre-test estimator. Since both procedures are computer intensive, a fixed
critical value for PTLSE is proposed in this paper. A numerical comparison among
these three procedure are given and discussed their relative merits.

The plan of the paper is as follows. In Section 2, we provide the risk functions of the
estimators. The determination of optimal significance level is discussed in section 3.
A summary of the paper is added in Section 4.

2 The Risk Analysis

2.1 The Risk Functions

Here, we present the quadratic risk functions of the estimators. Suppose β̂ denotes an
estimator of β, then for a given positive semi definite matrix M , the loss function of
the estimator β̂ is defined as

L(β̂;M) = (β̂ − β)′M(β̂ − β)

and the corresponding risk function of the estimator β̂ is

R(β̂;M) = E(β̂ − β)′M(β̂ − β) = tr(U),

where U is the mean-squared error matrix of the estimator β̂. The quadratic risk
functions of the proposed estimators are (see Judge and Bock (1978)):

R(β̂UE;M) = σ2tr(C−1M),

R(β̂RE ;M) = σ2tr(C−1M)− σ2tr(A) + η′Dη,

R(β̂PT ;M) = σ2tr(C−1M)− σ2tr(A)Gq+2,n−p(l1;∆)
+ η′Dη{2Gq+2,n−p(l1;∆)−Gq+4,n−p(l2;∆)}, (4)

where D = (HC−1H ′)−1A, A = HC−1MC−1H ′(HC−1H ′)−1, l1 = q
q+2Fα,q,n−p, l2 =

q
q+4Fα,q,n−p and Ga,b(∗;∆) is the cdf of non-central F distribution with a and b degrees
of freedom and non-centrality parameter ∆.
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2.2 Risk Analysis

From equation (4) and under the null hypothesis, the dominance picture is

β̂RE ≥ β̂PT ≥ β̂UE, ∀ α

where ≥ denotes the domination in the sense of smaller quadratic risk. Now we com-
pare the estimators under the alternative hypothesis. The RLSE dominates the ULSE

when ∆ ≤ tr(A)
λ1

and the URLSE dominates RLSE when ∆ > tr(A)
λ2

, where λ1 and λ2
are the smallest and the largest characteristic roots, respectively, of the matrix A′ =
(HC−1H ′)−1HC−1MC−1H ′. When we compare between URLSE and PTLSE, we

see that the PTLSE dominates the ULSE when ∆ ≤ tr(A)
λ1{2Gq+2,n−p(l1;∆)−Gq+4,n−p(l2;∆)} ,

and the URLSE dominates the PTLSE when ∆ > tr(A)
λ2{2Gq+2,n−p(l1;∆)−Gq+4,n−p(l2;∆)} .

Similarly, when we compare between RLSE and PTLSE, we see that RLSE dominated

PTLSE when ∆ ≤ tr(A)(1−Gq+2,n−p(l1;∆))
λ1{1−2Gq+2,n−p(l1;∆)+Gq+4,n−p(l2;∆)} , otherwise PTLSE dominates

RLSE when, ∆ >
tr(A)(1−Gq+2,n−p(l1;∆))

λ2{1−2Gq+2,n−p(l1;∆)+Gq+4,n−p(l2;∆)} . Figures 1 and 2 show how the

risk functions vary with respect to ∆. From these figures, we observe that the per-
formance of PTLSE depends on α and ∆. In practice, ∆ is unknown. The following
section discusses the estimation of ∆ and the optimal value of α.

 

Figure 12: Risk plots for n = 10 and different values of p, q and α.
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3 Optimal Size of the Test

We have seen that the performance of PTLSE depends on the size of the test. In this
section, we consider the optimal level of significance proposed by Han and Bancroft
(1968) and Brook (1976) and compare them with proposed method numerically.

 
Figure 13: Risk plots for p = 4, q = 2 and different n and α.

3.1 Han and Bancroft’s Method

Here we describe the maximum and minimum (Max & Min) rule proposed by Han
and Bancroft (1968) for the optimal choice of the level of significance of the PTLSE
for testing the null hypothesis (1). For fixed values of p and q, the relative efficiency

of the PTLSE (β̂PT ) compared to the URLSE is a function of α and ∆. Let us denote
this relative efficiency by

E(α,∆) =
R(β̂UE, Cσ−2)

R(β̂PT , Cσ−2)

=

[
1− 1

p
{qGq+2,n−p(l1;∆)−∆(2Gq+2,n−p(l1;∆)−Gq+4,n−p(l2;∆))}

]−1

.(5)

For known p and q, the relative efficiency is a function of α and ∆. For a given α,
E(α,∆) is a decreasing function of ∆ in the interval [0,∆Min(α)] and an increasing
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function of ∆ in the interval [∆Min(α),∞] and E(α,∆) → 1 as ∆ → ∞. For α 6= 0,
it has maximum at ∆ = 0 with the value

EMax(α, 0) =

[
1− q

p
Gq+2,n−p(l1;∆)

]−1

(≥ 1)

= [1−Gq+2,n−p(l1;∆)]−1 (≥ 1) if p = q. (6)

If we consider the value of E(α,∆) at α = 0, we have E(0,∆) = [1 − q
p + ∆]−1 and

E(0,∆) = 1 when ∆ = q
p . Thus, the efficiency is maximum for 0 ≤ ∆ ≤ q

p and selects

β̂RE as the PTLSE of β.

From Figures 1 and 2, we observed that the PTLSE is not uniformly best compared to
URLSE or RLSE. Moreover, if ∆ is unknown then one follows the minimum guaranteed
efficiency procedures proposed by Han and Bancroft (1968) which in turn determine
the optimal level of significance for given minimum guaranteed efficiency say EMin.
One looks for a suitable α from the set Sα = {α|E(α,∆) ≥ EMin}. The PTLSE is
chosen for which E(α,∆) is maximized over all α ∈ Sα and ∆. Thus, one solves the
equation

min
∆

E(α,∆Min(α)) = EMin. (7)

From (7), we obtain the optimal significance level α∗ for the PTLSE with minimum
guaranteed efficiency EMin.

3.2 Brook’s Optimal Critical Values

This section discusses the Brook (1976) regret criterion based on quadratic risk func-
tion to obtain the optimal critical value, which is also available in Kibria and Saleh
(2005). For a given critical value cα, the risk function of β̂PT with M = σ−2C is
obtained as

R(β̂PT ;σ−2C) = p− qGq+2,n−p(cα;∆) + ∆{2Gq+2,n−p(cα;∆)−Gq+4,n−p(cα;∆)}.(8)

Notice that

R(β̂UE ;σ−2C) = p, and R(β̂RE ;σ−2C) = p− q +∆.

Then β̂RE is better than β̂UE if ∆ < q and β̂UE is better than β̂RE if ∆ ≥ q. Since
∆ is unknown, we want to have an optimal value of cα, which provides a reasonable
value for the risk function for all ∆.

It is clear that

inf
cα
R(β̂PT ;σ−2C) = R(β̂RE ;σ−2C) if ∆ < q
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= R(β̂UE ;σ−2C) if ∆ ≥ q

Now, consider the regret function

Reg(∆, cα) = R(β̂PT ;σ−2C)− inf
cα
R(β̂PT ;σ−2C)

= q(1−Gq+2,n−p(cα;∆))
− ∆(1− 2Gq+2,n−p(cα;∆) +Gq+4,n−p(cα;∆)) if ∆ < q
= −qGq+2,n−p(cα;∆)
+ ∆(2Gq+2,n−p(cα;∆)−Gq+4,n−p(cα;∆)) if ∆ ≥ q. (9)

We find

sup
0<∆<q

Reg(δ, cα) = Reg(∆L, cα),

sup
∆≥q

Reg(δ, cα) = Reg(∆U , cα).

Then solve for c∗α for which

Reg(∆L, c
∗
α) = Reg(∆U , c

∗
α), (10)

where ∆L and ∆U are the values of ∆ for which Reg(∆, cα) is the maximum for
∆ < q and Reg(∆, cα) is the maximum for ∆ ≥ q, respectively. The relative efficiency
corresponding to the optimal c∗α can be determined from Section 3.1. The optimal
critical value c∗α for different numerator and denominator degrees of freedoms have
been tabulated by Brook (1976). We define the PTLSE based on optimal critical
value c∗α as

β̂PT
Brook = β̂UE − (β̂UE − β̂RE)I(L < c∗α). (11)

3.3 Fixed Critical Value

As we have seen both Han and Bancroft and Brook methods are computer intensive
to obtain an optimal size of the test. Now we define the PT estimator based on fixed
critical value, which is easy to calculate. Note that the test statistic

L =
(Hβ̂UE − h)′(HC−1H ′)−1(Hβ̂UE − h)

qs2

has a central F distribution with q and n − p degrees of freedoms under the null
hypothesis. The mean of the F distribution is µF = E(F ) = n−p

n−p−2 . We would like to

use this mean as a fixed critical value of the test statistic. If we consider µF = n−p
n−p−2

as the critical value of the test statistic (2) we obtain conservative size of the test (see
Table 1) that works well compared to critical values suggested by Han and Bancroft



188 International Journal of Statistical Sciences, Vol. 6s, 2007

Table 1: Probability of F for quantiles µF and for different degrees of freedom

n p q
1 2 3 4 5 8 10 15 20 30

10 2 0.282 0.316 0.330 0.337 0.341 0.347 0.349 0.351 0.351 0.352
3 0.275 0.308 0.320 0.327 0.330 0.335 0.337 0.338 0.339 0.340
4 0.267 0.296 0.307 0.313 0.316 0.320 0.321 0.322 0.323 0.323
5 0.253 0.279 0.288 0.292 0.294 0.297 0.298 0.299 0.300 0.300
6 0.230 0.250 0.256 0.259 0.261 0.263 0.263 0.264 0.264 0.264
7 0.182 0.192 0.196 0.197 0.197 0.198 0.198 0.199 0.199 0.199

20 2 0.303 0.346 0.365 0.376 0.383 0.393 0.397 0.401 0.403 0.405
3 0.302 0.345 0.364 0.374 0.381 0.391 0.394 0.399 0.401 0.403
4 0.301 0.344 0.362 0.372 0.378 0.388 0.392 0.396 0.398 0.399
5 0.300 0.342 0.360 0.370 0.376 0.385 0.389 0.393 0.394 0.396
8 0.295 0.335 0.352 0.360 0.366 0.374 0.377 0.380 0.382 0.383
10 0.290 0.328 0.343 0.351 0.356 0.363 0.366 0.368 0.369 0.370
12 0.282 0.316 0.330 0.337 0.341 0.347 0.349 0.351 0.351 0.352
15 0.253 0.279 0.288 0.292 0.294 0.297 0.298 0.299 0.300 0.300

30 2 0.308 0.354 0.375 0.387 0.394 0.407 0.411 0.417 0.421 0.423
3 0.308 0.354 0.374 0.386 0.394 0.406 0.410 0.416 0.419 0.422
5 0.307 0.353 0.373 0.384 0.392 0.404 0.408 0.414 0.417 0.419
8 0.306 0.350 0.370 0.381 0.389 0.400 0.404 0.409 0.412 0.414
10 0.304 0.349 0.368 0.379 0.386 0.397 0.401 0.406 0.408 0.410
15 0.300 0.342 0.360 0.370 0.376 0.385 0.389 0.393 0.394 0.396
20 0.290 0.328 0.343 0.351 0.356 0.363 0.366 0.368 0.369 0.370
25 0.253 0.279 0.288 0.292 0.294 0.297 0.298 0.299 0.300 0.300

40 2 0.311 0.358 0.379 0.392 0.400 0.414 0.419 0.426 0.429 0.433
3 0.311 0.358 0.379 0.391 0.400 0.413 0.418 0.425 0.429 0.432
5 0.310 0.357 0.378 0.391 0.399 0.412 0.417 0.424 0.427 0.430
8 0.309 0.356 0.377 0.389 0.397 0.410 0.415 0.421 0.425 0.428
10 0.309 0.355 0.376 0.388 0.396 0.409 0.413 0.420 0.423 0.426
15 0.307 0.353 0.373 0.384 0.392 0.404 0.408 0.414 0.417 0.419
20 0.304 0.349 0.368 0.379 0.386 0.397 0.401 0.406 0.408 0.410
25 0.300 0.342 0.360 0.370 0.376 0.385 0.389 0.393 0.394 0.396
30 0.290 0.328 0.343 0.351 0.356 0.363 0.366 0.368 0.369 0.370
35 0.253 0.279 0.288 0.292 0.294 0.297 0.298 0.299 0.300 0.300

100 1 0.315 0.364 0.387 0.401 0.410 0.426 0.432 0.441 0.446 0.452
2 0.315 0.364 0.387 0.400 0.410 0.426 0.432 0.441 0.446 0.451
5 0.315 0.364 0.387 0.400 0.409 0.425 0.431 0.441 0.446 0.451
10 0.315 0.364 0.386 0.400 0.409 0.425 0.431 0.440 0.445 0.450
20 0.314 0.363 0.386 0.399 0.408 0.424 0.430 0.439 0.443 0.449
30 0.314 0.363 0.385 0.398 0.407 0.423 0.428 0.437 0.441 0.446
40 0.313 0.362 0.384 0.397 0.406 0.421 0.426 0.435 0.439 0.444
50 0.312 0.360 0.382 0.395 0.404 0.418 0.424 0.431 0.436 0.440
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Table 2: Maximum & Minimum Guaranteed Efficiency of PTLSEs

n p q α Brook Fixed
2.5% 5% 10% 15% 20% 30% 40% 50% 23.8% 23.0%

6 2 1 EMax 1.81 1.68 1.49 1.37 1.28 1.16 1.09 1.05 1.23 1.24
EMin 0.29 0.40 0.54 0.64 0.72 0.82 0.89 0.94 0.76 0.75
∆Min 12.69 8.96 6.28 5.11 4.45 3.64 3.22 2.95 4.09 4.15

2.5% 5% 10% 15% 20% 30% 40% 50% 20.5% 28.2%
10 2 1 EMax 1.77 1.63 1.44 1.33 1.25 1.14 1.08 1.04 1.24 1.16

EMin 0.39 0.49 0.61 0.70 0.76 0.85 0.91 0.95 0.76 0.84
∆Min 8.03 6.31 4.93 4.24 3.82 3.31 3.01 2.83 3.79 3.40

2.5% 5% 10% 15% 20% 30% 40% 50% 18.8% 30.1%
18 2 1 EMax 1.74 1.60 1.42 1.31 1.23 1.13 1.07 1.04 1.25 1.13

EMin 0.45 0.54 0.65 0.72 0.78 0.86 0.92 0.95 0.77 0.86
∆Min 6.55 5.41 4.42 3.91 3.58 3.16 2.92 2.77 3.64 3.16

2.5% 5% 10% 15% 20% 30% 40% 50% 20.4% 31.6%
12 4 2 EMax 1.84 1.73 1.57 1.45 1.37 1.24 1.16 1.10 1.36 1.23

EMin 0.48 0.58 0.69 0.76 0.81 0.87 0.92 0.95 0.81 0.88
∆Min 11.69 9.35 7.36 6.37 5.71 4.90 4.36 4.00 5.68 4.81

2.5% 5% 10% 15% 20% 30% 40% 50% 17.9% 34.4%
20 4 2 EMax 1.82 1.70 1.54 1.43 1.34 1.22 1.15 1.09 1.37 1.18

EMin 0.56 0.64 0.73 0.79 0.83 0.89 0.93 0.95 0.82 0.91
∆Min 9.05 7.61 6.31 5.59 5.14 4.51 4.12 3.82 5.32 4.33

2.5% 5% 10% 15% 20% 30% 40% 50% 16.8% 35.2%
28 4 2 EMax 1.81 1.69 1.53 1.42 1.33 1.22 1.14 1.09 1.38 1.17

EMin 0.58 0.66 0.74 0.80 0.84 0.89 0.93 0.96 0.82 0.92
∆Min 8.33 7.12 5.98 5.35 4.96 4.39 4.03 3.76 5.20 4.18

2.5% 5% 10% 15% 20% 30% 40% 50% 15.8% 36.2%
64 4 2 EMax 1.80 1.68 1.51 1.40 1.32 1.21 1.14 1.09 1.39 1.16

EMin 0.61 0.68 0.76 0.81 0.85 0.90 0.93 0.96 0.82 0.92
∆Min 7.58 6.58 5.62 5.11 4.75 4.24 3.91 3.67 5.02 4.03

2.5% 5% 10% 15% 20% 30% 40% 50% 13.6% 38.3%
30 6 4 EMax 2.62 2.38 2.05 1.83 1.67 1.45 1.30 1.20 1.88 1.32

EMin 0.63 0.70 0.78 0.83 0.86 0.91 0.94 0.96 0.82 0.94
∆Min 11.93 10.37 8.93 8.12 7.55 6.76 6.22 5.77 8.30 6.28

2.5% 5% 10% 15% 20% 30% 40% 50% 11.7% 39.7%
66 6 4 EMax 2.59 2.34 2.01 1.80 1.64 1.43 1.29 1.19 1.93 1.30

EMin 0.67 0.74 0.81 0.85 0.88 0.92 0.95 0.96 0.82 0.94
∆Min 10.52 9.35 8.21 7.55 7.06 6.40 5.95 5.56 7.94 5.95

2.5% 5% 10% 15% 20% 30% 40% 50% 11.0% 40.1%
126 6 4 EMax 2.58 2.33 2.00 1.79 1.63 1.42 1.29 1.19 1.95 1.28

EMin 0.69 0.75 0.81 0.85 0.88 0.92 0.95 0.97 0.82 0.95
∆Min 10.10 9.02 7.97 7.33 6.91 6.31 5.86 5.50 7.82 5.86
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(1968) and Brook (1976). The size of the test for different degrees of freedom and
quantiles are presented in Table 1.

We propose the PTLSE based on critical value µF as

β̂PT
F ixed = β̂UE − (β̂UE − β̂RE)I(L < µF ). (12)

The proposed estimator is to change the way that researchers undertake the prelimi-
nary test.

Table 2 compares β̂PT
α , β̂PT

Brook and β̂PT
F ixed under the quadratic risk function and min-

imum and maximum guaranteed efficiency criteria. The last two columns of the table
provide the maximum and minimum guaranteed relative efficiencies for optimal critical
values provided by Brook (1976) and fixed critical value, respectively. For given q and
n − p, one enters the table and looks for the smallest relative efficiency EMin he/she
wishes to accept. For example, suppose q = 2, n−p = 12 and the experimenter wishes
to have an estimator with a minimum guaranteed efficiency of 0.75. From the table, we
recommend him/her to select α = 0.15, corresponding to β̂PT , because such a choice
of α would yield an estimator with a minimum efficiency of 0.76 and a maximum ef-
ficiency of 1.45. Note that with this condition the minimum guaranteed efficiency of
β̂PT using Brook’s optimal critical value is 0.81 with a maximum efficiency of 1.36.
By fixed critical value, the minimum guaranteed efficiency is 0.88 with a maximum
efficiency of 1.23.

4 Summary

In this paper, we have compared the methods of Han Bancroft (1968) and Brook
(1976) along with a proposed fixed critical value for obtaining an optimal significance
level to formulate a PTLSE. To determine the Han Bancroft’s level one has to specify
a value which is the smallest relative efficiency the investigator is willing to accept.
However, the Brook’s level balances the loss and gain to determine a level based on
a regret function. Since, a theoretical comparison among these three methods is hard
to make, a numerical comparison has been performed.

From Table 2, it is observed that the minimum guaranteed efficiency by Brook’s
method vary between 0.76 and 0.82 and the maximum efficiency vary between 1.23
and 195.0 for α (0.11 < α < 0.24). The minimum guaranteed efficiency by Fixed
critical method vary between 0.75 and 0.95 and the maximum efficiency vary between
1.24 and 1.32 for α (0.23 < α < 0.40). The corresponding minimum and maximum
guaranteed efficiencies by Han Bancroft method’s are between 0.29 and 0.97 and 1.05
and 2.59, respectively, for 0.025 < α < 0.50. Both Fixed and Brook methods are
conservative for fixed sample size, whereas Han Bancroft method is flexible because
a higher minimum guaranteed efficiency can be chosen to determine the significance
level. In either method, the researchers have to take some risk. If the researchers are
concerned or very conservative about the minimum guaranteed efficiency, they might
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select Fixed or Brook’s method. However, if they are willing to accept higher size of
the test but want to have higher guaranteed minimum efficiency, they should select
Han Bancroft’s method. The proposed method is easy to compute compared to Han
and Bancroft or Brook’s method.
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