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Abstract

In testing for the center of a distribution, the use of median is explored.
A new test using the distribution of the median is proposed. The method
is implemented for the normal (Gaussian) population. Power of the test
is compared with standard parametric and nonparametric tests using the
mean and the median as the center parameter.
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1 Introduction

The arithmetic mean has been used for such a long time and for many other reasons
became most favorite statistical parameter to the statisticians. The most commonly
identified rivals to the mean are the mode and the median. In this paper, we will
examine the tests utilizing the mean and also will develop a test utilizing the median
in testing for the center parameter. The mode does not possess essential qualities to be
considered as a good candidate as the distributions of the mode are intractable. There
can be more than one mode in one sample and the determination of the mode becomes
uncertain when the sample size becomes smaller. The median can be determined just
uniquely as the mean. The mean has been preferred over the median for the following
reasons:

• “The median is not affected by the magnitude of the values so long as a change in
the magnitude of any value does not alter its position with regard to the median,
whereas the mean depends upon the individual values ”, Savur (1937).
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• “The mean is consistent and sufficient and is the most efficient of all statistics”,
Savur (1937).

The main reason mean is considered favorable against the median is that the mean
takes into account the individual values in the sample, it is more representative of the
samples and gives more information from the sample than the median. On the other
hand we would like to explore the opportunity that in some instances the median
can provide more powerful base which can lead us to more precise decision in testing
significance involving a sample. We will discuss most commonly used parametric tests
in statistics.

2 Parametric Tests Using the Mean

Let us consider that the sample is from a population with the center parameter M ,
then the possible hypotheses are:

TestA. H0 :M =M0, H1 :M 6=M0

TestB. H0 :M ≤M0, H1 :M >M0

TestC. H0 :M ≥M0, H1 :M <M0

When we assumed that the sample is from a normal population and the population
variance (σ2) is known, the test statistic is

Z =
X̄ −M0

σ/
√
n
, (1)

where Z has a standard normal distribution, when σ is not known, is replaced by it’s
maximum likelihood estimate, but when σ is not known, an alternative test statistic
is used

T =
X̄ −M0

S/
√
n
, (2)

where S is the sample standard deviation and T follows t-distribution with n − 1
degrees of freedom. In general, when the distribution of the population is unknown
but sample size n ≥ 30 then also in practice, the test statistic (2) is used as the Central
Limit Theorem applies and T is equivalent to Z. Some modifications of T test are
studied by Chen (1995) and the references there in.

For smaller samples and when the population distribution is not known, nonpara-
metric procedures are used. In the following section we describe two commonly used
nonparametric procedures.
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3 Nonparametric Tests for the Center Parameter

Since populations do not always meet the assumptions of underlying parametric tests,
we frequently need inferential procedures whose validity does not depend on rigid as-
sumptions. Nonparametric statistical procedures meet this need in many instances.
Nonparametric methods require minimal assumptions about the form of the distribu-
tion of the population. For instance, it might be assumed that the data are randomly
selected from a population that has a continuous distribution, but no other assump-
tions are made. The simplicity of nonparametric methods, the widespread availability
of such methods in statistical packages and the desirable statistical properties of such
methods make them powerful tools in data analysis.

In general, two main types of statistical procedures are treated as nonparametric
which are Truly Nonparametric methods and Distribution-free procedures. True non-
parametric procedures are not concerned with population parameters. The distribution-
free procedures do not depend on the functional form of the population from which
the samples are drawn.

The following are some situations where nonparametric methods are appropriate.

1. The hypothesis to be tested does not involve a population parameter.

2. The data has been measured on a scale weaker than required for the parametric
procedure that would otherwise be applied.

3. The assumptions necessary for validity of the parametric procedures are not met.

Here we will discuss nonparametric procedures regarding the center parameter
of a distribution. In standard parametric tests, mean is considered as the location
parameter, but in nonparametric tests, usually, the median is considered as the location
parameter.

3.1 One Sample Sign Test

The sign test is designed to test a hypothesis about the location of a population
distribution. It is most often used to test the hypothesis about a population median.
The hypotheses can be formulated as given in Section 2 and will be referred throughout.

The procedure is, record the sign of the difference obtained by subtracting the
hypothesized median M0 from each sample value as Xi − M0. So, there will be n
signed differences i = 1, 2, . . . , n.

If the null hypothesis is true - that is, if the population median is in fact equal to
M0 - we expect a random sample from the population to have about as many as plus
signs as many as minus signs when the n differences Xi −M0 have been computed.
If we observe a sufficiently small number of either plus or minus signs, we reject null
hypothesis A. If we observe a sufficiently small number of minus signs, we reject null
hypothesis B, and if we observe a sufficiently small number of plus signs, we reject null
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hypothesis C. This test is very simple to administer as it requires Binomial probabilities
to compute the P -values which are readily available in almost all elementary statistics
textbooks and also easy to compute using a scientific calculator.

Decision Rule:

Test A: Reject H0 at the α level of significance if the probability, when H0 is true, of
observing as few (or fewer) of the less frequently occurring sign in a random sample
of size n is less than or equal to α/2.

Test B: Reject H0 at the α level of significance if the probability, when H0 is true, of
observing as few (or fewer) minus signs as are actually observed in a random sample
of size n is less than or equal to α.

Test C: Reject H0 at the α level of significance if the probability, when H0 is true, of
observing as few (or fewer) plus signs as are actually observed in a random sample of
size n is less than or equal to α.

For small sample, this test is 95% efficient. The relative efficiency of sign test
decreases as the population size increases. For further details and power comparisons
the readers are referred to Daniel (1990) and the references therein.

3.2 Wilcoxon Signed Rank Test

The Wilcoxon Signed Rank test is designed to test a hypothesis about the location
(median) of a population distribution. Wilcoxon test uses the magnitude of differences
Xi −M0 as given in Section 3.1. We need to know whether a sample measurement
falls above or below the average.

To use the Wilcoxon procedure, we first rank the differences in order of absolute
size. Then we assign the original signs of the differences to the ranks and compute
two sums: the sum of the ranks with negative signs and the sum of the ranks with
positive signs. Since the Wilcoxon signed-rank test uses more information than the
sign test, it is often a more powerful test. The Wilcoxon signed-rank test assumes
that the sampled population is symmetric. When the sampled population meets this
assumption, then the conclusions about the population median also applies to the
population mean. When the population is not symmetric, sign test is preferred over
the Wilcoxon test.

To obtain the test statistic, we use the following procedure:

1. Subtract the hypothesized median from each observation; that is for each ele-
ment, find Di = Xi −M0 If any Di is equal to zero, that element is eliminated
from calculation and sample size is reduced accordingly.

2. Rank the differences |Di| from the smallest to the largest.

3. Assign the sign to each rank according to the sign of the difference of which it
is the rank.
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4. Obtain the sum of the ranks with positive signs T+ and obtain the sum of the
ranks with negative signs T−. We take the smaller of this two - T+ and T−,
as the test statistic. Then we compare this value to the critical value from the
Table A.3 given in Daniel (1990).

The table for the critical values for this test is also readily available in the textbooks
where the method is introduced. A good number of elementary statistics textbooks, all
nonparametric textbooks, and almost all applied statistics textbooks would introduce
the method.
Decision rule:
Test A: We reject H0 at the level of significance α if the calculated value of T is
smaller than or equal to tabulated T for n and pre-selected α/2.
Test B: Reject H0 at the level of significance α if T+ is less than or equal to tabulated
T for n and pre-selected α.
Test C: Reject H0 at the level of significance α if T− is less than or equal to tabulated
T for n and pre-selected α.

Wilcoxon signed rank test is very efficient. However, the efficiency depends on
the distribution of Di. The best efficiency occurs if Di is normally distributed. For
further details and power comparisons the readers are referred to Daniel (1990) and
the references therein.

4 The Proposed Test for Center Using the Median

Let us consider X1,X2, . . . ,Xn be a random sample of size n from a population with
the density function f(x) and the corresponding distribution faunction is F (x). Let
the ordered sample be Y1, Y2, . . . , Yn. Let Yk be the median of the sample, then the
density function of Yk can be written as

g(y) =
n!

(k − 1)!(n − k)!
(F (y))k−1f(y)(1− F (y))n−k (3)

where k = (n+1)/2 for n is odd. For n even, densities for Yk is obtained by obtaining
for k = n/2 and for k = n/2 + 1 separately using (3) and then by finding the density
for the average of the two corresponding random variables. In equation (3), a specified
H0 can be incorporated by replacing f(x) and F (x) by f(x;M0) and F (x;M0). Then
the corresponding P -value is computed for the sample median m using g(y) in (3) as
2P (Yk ≤ m), if m < M0, 2P (Yk ≥ m), if m > M0 for the two-tailed test A. Similary,
for the one-tailed tests B and C, the P -values are computed as P (Yk ≥ m) and
P (Yk ≤ m), respectively. In cases when g(y) and G(y) are not in simpler form, that
is, the P -values could not be computed explicitly, a numerical integration would be
used as can be seen for Normal parent populations, and are described in the following
section.
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4.1 Test For The Center Using The Median: Normal Case

Let us consider the sample is from a standard normal population. Then (3) can be
written as

g(y) =
n!

(k − 1)!(n − k)!
(Φ(y))k−1φ(y)(1 − Φ(y))n−k (4)

where φ(y) is the standard normal pdf (probability density function) and Φ(y) is
the standard normal cdf (cumulative distribution function). Then the P -values can
be obtained using the procedure described in Section 4. When the data is from a
normal population with mean µ and variance σ2, the unbiased estimates are used and
standardized to facilitate the use of (4). That is, equations (1) or (2) are used along
with equation (4) in computing P -values.

In the following Section 5 we perform the Monte-Carlo simulation to study the level
of significance and the power. In Section 5.1, in the level of significance study, the
samples are from a standard normal population. In Section 5.2, samples are selected
from non-normal population to compare the quantiles of the p-values. In Section 5.3
a power study is performed using simulation. Then in Section 6 we apply the process
along with the standard procedures for two different data sets to show some real life
applications and their feasibilities.

5 Simulation Study

To study the performance of the test when H0 is true, we compute P -values when data
is obtained from a standard normal distribution and from a non-normal distribution.
Then we performed the power study to compare with the competitors.

5.1 Level of significance

Ten thousand samples are drawn from the standard normal distribution for sample
sizes n = 5, 9, 13, 17, 25, 31, 41, and 51. Here we considered odd sample sizes only to
simplify the computations. We computed the P -values for the Test A (two-tailed) with
M0 = 0 using the standard parametric Z test (1), the proposed median test (MED)
is computed using (4), using the Sign Test (BIN) described in Section 3.1., and using
the Wilcoxon Signed Rank Test (W ) described in Section 3.2. All the computations
are done using the MATLAB software.

We can see in Table 1 that in all the tests the P -values’ quantiles are closely related
to the corresponding percentages. For all sample sizes, Z and MED tests are closer
than BIN and W tests. MED test has performed better than Z test except for
sample size 31 (see Table 1a).
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5.2 Quantiles for P -values for Non-normal Samples

In real life, the practitioners rarely investigate whether the data is from the assumed
distribution or not. Here we investigate the robustness of the underlying distribution of
the population from which the samples are by considering samples from a non-normal
distribution.

Ten thousand samples are drawn from the standard exponential distribution for
sample sizes n = 9, 13, 17, 25, 31, 41, and 51. Quantiles for the P -values for the Test
A (two-tailed) with M0 = 0.6931 and M0 = 1 for the four procedures as in Section
5.1. Here we considered M0 = 0.6931 as the median of the standard exponential
distribution is 0.6931 and M0 = 1 is considered as the mean of the

Table 1: Pvalue quantiles when M0 = 0 and the samples
are from the standard normal distribution

Test q01 q05 q10 q50 q90 q95 q99
n = 5

Z 0.0078 0.0474 0.0995 0.5044 0.9064 0.9513 0.9904
MED 0.0092 0.0533 0.1047 0.5000 0.9008 0.9499 0.9903
BIN 0.0625 0.0625 0.3750 1.0000 1.0000 1.0000 1.0000
W 0.0625 0.0625 0.1250 0.6250 1.0000 1.0000 1.0000

n = 9
Z 0.0108 0.0523 0.1043 0.5010 0.8966 0.9467 0.9884

MED 0.0099 0.0519 0.1029 0.4995 0.9011 0.9519 0.9892
BIN 0.0391 0.1797 0.1797 0.5078 1.0000 1.0000 1.0000
W 0.0117 0.0547 0.1289 0.5703 0.9102 1.0000 1.0000

n = 13
Z 0.0082 0.0493 0.0985 0.4948 0.9033 0.9513 0.9915

MED 0.0096 0.0494 0.0973 0.4992 0.8962 0.9451 0.9895
BIN 0.0225 0.0923 0.2668 0.5811 1.0000 1.0000 1.0000
W 0.0105 0.0574 0.1099 0.5417 0.9460 1.0000 1.0000

n = 17
Z 0.0107 0.0514 0.0982 0.4969 0.9004 0.9515 0.9916

MED 0.0096 0.0494 0.0973 0.5034 0.9057 0.9534 0.9907
BIN 0.0127 0.0490 0.1435 0.6291 1.0000 1.0000 1.0000
W 0.0148 0.0495 0.0929 0.4925 0.9058 0.9434 0.9811

n = 25
Z 0.0096 0.0463 0.0977 0.4948 0.8973 0.9468 0.9889

MED 0.0081 0.0439 0.0977 0.4998 0.8958 0.9502 0.9887
BIN 0.0146 0.1078 0.1078 0.6900 1.0000 1.0000 1.0000
W 0.0119 0.0480 0.0980 0.4758 0.9036 0.9464 0.9893

n = 31
Z 0.0095 0.0504 0.1017 0.5030 0.9013 0.9487 0.9872

MED 0.0120 0.0525 0.0992 0.4975 0.8984 0.9482 0.9911
BIN 0.0107 0.0708 0.1496 0.7201 1.0000 1.0000 1.0000
W 0.0115 0.0500 0.0997 0.5052 0.8909 0.9531 0.9844

n = 41
Z 0.0118 0.0547 0.1086 0.5018 0.8957 0.9467 0.9891

MED 0.0113 0.0545 0.1040 0.5057 0.8998 0.9488 0.9897
BIN 0.0115 0.0596 0.1173 0.5327 1.0000 1.0000 1.0000
W 0.0124 0.0560 0.1067 0.5045 0.8969 0.9535 0.9948

n = 51

Z 0.0093 0.0537 0.1029 0.5009 0.9003 0.9521 0.9913
MED 0.0105 0.0507 0.1011 0.4939 0.9020 0.9521 0.9886
BIN 0.0110 0.0919 0.1608 0.5758 1.0000 1.0000 1.0000
W 0.0112 0.0523 0.0990 0.4997 0.8956 0.9477 0.9925
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Table 1a: Rankings of absolute differences
of P -values and the Quantiles

Test q01 q05 q10 q50 q90 q95 q99
n = 5

Z 2 1 1 2 2 2 2

MED 1 2 2 1 1 1 1

BIN 3.5 3.5 4 4 3.5 3.5 3.5

W 3.5 3.5 3 3 3.5 3.5 3.5

n = 9

Z 2 2 2 2 2 2 2

MED 1 1 1 1 1 1 1

BIN 4 4 4 3 4 3.5 3.5

W 3 3 3 4 3 3.5 3.5

n = 13

Z 3 2 1 2 1 1 1

MED 1 1 2 1 2 2 2

BIN 4 4 4 4 4 3.5 3.5

W 2 3 3 3 3 3.5 3.5

n = 17

Z 2 4 1 1 1 1 2

MED 1 2 2 2 2 2 1

BIN 3 3 4 4 4 4 4

W 4 1 3 3 3 3 3

n = 25

Z 1 2 2.5 2 1 2 1

MED 2 3 2.5 1 3 1 2

BIN 4 4 4 4 4 4 4

W 3 1 1 3 2 3 3

n = 31

Z 1 2 3 2 1 1 2

MED 4 3 2 1 3 2 1

BIN 2 4 4 4 4 4 4

W 3 1 1 3 2 3 3

n = 41

Z 3 2 3 1 3 2 2

MED 1 1 1 3 1 1 1

BIN 2 4 4 4 4 4 4

W 4 3 2 2 2 3 3

n = 51

Z 2 3 3 2 1 1.5 1

MED 1 1 2 3 2 1.5 3

BIN 3 4 4 4 4 4 4

W 4 2 1 1 3 3 2
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Table 2: P -value Quantiles when M0 = 0.6931 and samples
are from the standard exponential distribution

Test q01 q05 q10 q50 q90 q95 q99
n = 9

Z 0.0173 0.0461 0.0780 0.3417 0.8339 0.9138 0.9844

MED 0.0007 0.0239 0.0747 0.5402 0.9118 0.95199 0.9931

BIN 0.0391 0.1797 0.1797 0.7539 1.0000 1.0000 1.0000

W 0.0195 0.0547 0.0977 0.4961 0.9102 1.0000 1.0000

n = 13

Z 0.0067 0.0246 0.0458 0.2486 0.7712 0.8742 0.9694

MED 0.0012 0.0314 0.0774 0.5381 0.9217 0.9614 0.9942

BIN 0.0225 0.0923 0.0923 0.5811 1.0000 1.0000 1.0000

W 0.0054 0.0327 0.0681 0.4143 0.8926 0.9460 1.0000

n = 17

Z 0.0072 0.0249 0.0435 0.2146 0.7355 0.8481 0.9547

MED 0.0067 0.0536 0.1017 0.5402 0.9123 0.9587 0.9933

BIN 0.0490 0.1435 0.1435 0.6291 1.0000 1.0000 1.0000

W 0.0086 0.0312 0.0684 0.3812 0.8684 0.9434 0.9811

n = 25

Z 0.0023 0.0079 0.0162 0.1338 0.6016 0.7825 0.9532

MED 0.0081 0.0665 0.1276 0.5907 0.9246 0.9630 0.9952

BIN 0.0146 0.1078 0.1078 0.6900 1.0000 1.0000 1.0000

W 0.0035 0.0128 0.0347 0.3674 0.8296 0.9250 0.9893

n = 31

Z 0.0012 0.0051 0.0108 0.1045 0.5145 0.6839 0.9297

MED 0.0142 0.0683 0.1392 0.5696 0.9126 0.9518 0.9911

BIN 0.0294 0.0708 0.1496 0.7201 1.0000 1.0000 1.0000

W 0.0023 0.0125 0.0275 0.3272 0.8446 0.9219 0.9844

n = 41

Z 0.0004 0.0021 0.0049 0.0571 0.3671 0.6305 0.9480

MED 0.0148 0.0664 0.1336 0.5841 0.9120 0.9570 0.9856

BIN 0.0115 0.0596 0.1173 0.5327 1.0000 1.0000 1.0000

W 0.0010 0.0076 0.0214 0.2679 0.8156 0.9123 0.9845

n = 51

Z 0.0003 0.0010 0.0023 0.0298 0.2571 0.4224 0.8146

MED 0.0228 0.1023 0.1704 0.5631 0.9111 0.9475 0.9886

BIN 0.0110 0.0489 0.0919 0.5758 1.0000 1.0000 1.0000

W 0.0006 0.0048 0.0139 0.2091 0.7714 0.8956 0.9813
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Table 2a: Rankings of absolute differences
of P -values and the Quantiles

Test q01 q05 q10 q50 q90 q95 q99
n = 9

Z 3 1 2 3 3 2 2

MED 1 3 3 2 2 1 1

BIN 4 4 4 4 4 3.5 3.5

W 3 2 1 1 1 3.5 3.5

n = 13

Z 3 3 4 4 4 4 4

MED 1 2 2 1 2 2 1

BIN 4 4 1 2 3 3 2.5

W 2 1 3 3 1 1 2.5

n = 17

Z 2 3 4 4 4 4 4

MED 3 1 1 1 1 2 1

BIN 4 4 3 2 3 3 3

W 1 2 2 3 2 1 2

n = 25

Z 2 4 4 4 4 4 4

MED 1 1 2 1 1 1 1

BIN 4 3 1 3 3 3 3

W 3 2 3 2 2 2 2

n = 31

Z 3 4 4 4 4 4 4

MED 1 1 1 1 1 1 1

BIN 4 2 2 3 3 3 3

W 2 3 3 2 2 2 2

n = 41

Z 4 4 4 4 4 4 4

MED 2 2 2 2 1 1 1

BIN 1 1 1 1 3 3 3

W 3 3 3 3 2 2 2

n = 51

Z 4 3 4 4 4 4 4

MED 2 4 2 1 1 1 1

BIN 1 1 1 2 2 2 3

W 3 2 3 3 3 3 2
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Table 3: P -value Quantiles when M0 = 1 and samples
are from the standard exponential distribution

Test q01 q05 q10 q50 q90 q95 q99
n = 9

Z 0.0005 0.0126 0.0533 0.4678 0.8932 0.9460 0.9926

MED 0.0000 0.0010 0.0093 0.3508 0.8661 0.9411 0.9882

BIN 0.0039 0.0391 0.0391 0.5078 1.0000 1.0000 1.0000

W 0.0039 0.0273 0.0742 0.4961 0.9102 1.0000 1.0000

n = 13

Z 0.0010 0.0263 0.0738 0.4860 0.8879 0.9489 0.9917

MED 0.0000 0.0019 0.0098 0.3065 0.8465 0.9264 0.9883

BIN 0.0129 0.0225 0.0923 0.5811 1.0000 1.0000 1.0000

W 0.0024 0.0266 0.0574 0.4548 0.8926 0.9460 1.0000

n = 17

Z 0.0006 0.0160 0.0582 0.4674 0.8978 0.9439 0.9881

MED 0.0000 0.0012 0.0064 0.2247 0.7920 0.8977 0.9814

BIN 0.0023 0.0127 0.0490 0.3323 1.0000 1.0000 1.0000

W 0.0038 0.0168 0.0395 0.3686 0.8684 0.9434 0.9811

n = 25

Z 0.0042 0.0334 0.0867 0.5156 0.9123 0.9566 0.9896

MED 0.0001 0.0019 0.0091 0.2097 0.7733 0.8863 0.9759

BIN 0.0009 0.0146 0.0146 0.2295 1.0000 1.0000 1.0000

W 0.0034 0.0144 0.0347 0.3533 0.8612 0.9250 0.9893

n = 31

Z 0.0014 0.0242 0.0917 0.4900 0.9044 0.9560 0.9879

MED 0.0000 0.0009 0.0067 0.1567 0.7387 0.8684 0.9839

BIN 0.0002 0.0033 0.0107 0.2810 1.0000 1.0000 1.0000

W 0.0018 0.0084 0.0282 0.3369 0.8293 0.9219 0.9844

n = 41

Z 0.0022 0.0241 0.0866 0.4821 0.8825 0.9497 0.9884

MED 0.0000 0.0006 0.0024 0.1068 0.5965 0.7794 0.9713

BIN 0.0001 0.0015 0.0043 0.1173 0.7552 1.0000 1.0000

W 0.0008 0.0072 0.0168 0.2679 0.8307 0.9123 0.9742

n = 51

Z 0.0025 0.0392 0.0850 0.4955 0.8923 0.9521 0.9876

MED 0.0000 0.0004 0.0016 0.0658 0.5535 0.7572 0.9475

BIN 0.0001 0.0006 0.0018 0.0919 0.5758 0.7798 1.0000

W 0.0004 0.0055 0.0154 0.2266 0.7678 0.8771 0.9626
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Table 3a: Rankings of absolute differences
of P -values and the Quantiles

Test q01 q05 q10 q50 q90 q95 q99
n = 9

Z 2 3 2 3 1 1 2
MED 3 4 4 4 4 2 1
BIN 1.5 1 3 2 2 3.5 3.5
W 1.5 2 1 1 3 3.5 3.5

n = 13
Z 3 2 2 1 2 1 1.5

MED 4 4 4 4 3 3 1.5
BIN 1 3 1 3 4 4 2.5
W 2 1 3 2 1 2 2.5

n = 17
Z 3 2 1 1 1 1 1

MED 4 4 4 4 4 4 2
BIN 2 3 2 3 3 3 4
W 1 1 3 2 2 2 3

n = 25
Z 1 1 1 1 1 1 1

MED 4 4 4 4 4 4 4
BIN 3 2 3 3 3 3 3
W 2 3 2 2 2 2 2

n = 31
Z 2 1 1 1 1 1 1

MED 4 4 4 4 4 4 3
BIN 3 3 3 3 3 3 4
W 1 2 2 2 2 2 2

n = 41
Z 1 1 1 1 1 1 1

MED 4 4 4 4 4 4 4
BIN 3 3 3 3 3 3 2
W 2 2 2 2 2 2 3

n = 51
Z 1 1 1 1 1 1 1

MED 4 4 4 4 4 4 4
BIN 3 3 3 3 3 3 2
W 2 2 2 2 2 2 3

standard exponential distribution and a reasonable value to be considered as a center
of the distribution. In Table 2, samples are generated from the standard exponential
distribution and M0 = 0.6931. Here we are expecting that the percentiles are not
closely estimated in case of the Z test. Which is clearly seen for larger samples.
For the MED test and the BIN test the quantiles are closer to the true percentiles
compared to the W test. For the small samples, the MED test performed better than
the BIN test. The rankings of the absolute differences for the P -values and quantile
percentages are given in Table 2a.

It is to be noted here that if the median is the center parameter, performance of
the MED test is comparable with the BIN test and even better for smaller samples
though the samples are from a non-normal population. Also to be reminded that for
a skewed data the BIN test performs better than the W test.
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In Table 3, samples are again from the standard exponential population but M0 = 1.
Here we are expecting the Z test should show closer percentile values and which is true.
But Table 3 is different than compared to Table 2 and Table 1 as the null hypothesis
is no longer true if the median is the center parameter. In the Z test, the mean is
the center parameter and hence the performance of Z as expected. The median is the
center in the other three tests and are comparable. The worst performance in terms
of the closeness to the true percentage is better as the test would be more powerful.
Here we see that the MED test is showing higher deviation and hence better. The
rankings of the deviations are given in Table 3a.

5.3 Power study

Here we generate random samples from a distribution which is not exactly specified by
the null hypothesis. Then we count the number of rejections of H0 using α = 0.01 and
α = 0.05. The proportions of rejections are reported in Table 2. We consider different
situations such as samples are from standard normal distribution andM0 = 1, samples
are from standard exponential distribution andM0 = 1, 0.69, 0.85 as we know that the
median of a standard exponential distribution is very close to 0.69. Then to represent
a totally unrecognizable distribution, we consider two distributions which are the Claw
Density and the Double Claw Density.

The Claw Density and the Double Claw Density are the following mixtures of the
normal densities:

Claw Density

1

2
N(0, 1) +

4∑

l=0

1

10
N

(
l

2
− 1,

(
1

10

)2
)

Double Claw Density

49

100
N

(
−1,

(
2

3

)2
)

+
49

100
N

(
1,

(
2

3

)2
)

+
6∑

l=0

1

350
N

(
l − 3

2
,

(
1

100

)2
)
.

In Fig 1, the pictures of the Claw Density and the Double Claw Density are dis-
played as they not commonly used.
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Figure 11: Claw and Double Claw Density

Table 4: Power Comparisons
α Z MED BIN W α Z MED BIN W

Sample from N(0, 1);H0 : M = 1;H1 : M 6= 1
n = 13

0.01 0.703 1.000 0.360 0.645 0.05 0.919 1.000 0.680 0.899
n = 25

0.01 0.977 1.000 0.808 0.970 0.05 0.998 1.000 0.969 0.998
n = 51

0.01 1.000 1.000 0.999 1.000 0.05 1.000 1.000 1.000 1.000
Sample from Exp(1);H0 : M = 1;H1 : M 6= 1

n = 13
0.01 0.038 1.000 0.017 0.024 0.05 0.092 1.000 0.091 0.108

n = 25
0.01 0.028 1.000 0.062 0.038 0.05 0.083 1.000 0.225 0.131

n = 51
0.01 0.020 1.000 0.160 0.070 0.05 0.061 1.000 0.452 0.204

Sample from Exp(1);H0 : M = 0.69;H1 : M 6= 0.69
n = 13

0.01 0.012 1.000 0.005 0.010 0.05 0.0910 1.000 0.019 0.074
n = 25

0.01 0.056 1.000 0.006 0.037 0.05 0.024 1.000 0.052 0.124
n = 51

0.01 0.291 1.000 0.008 0.082 0.05 0.610 1.000 0.044 0.241
Sample from Exp(1);H0 : M = 0.85;H1 : M 6= 0.85

n = 13
0.01 0.010 1.000 0.010 0.008 0.05 0.042 1.000 0.045 0.044

n = 25
0.01 0.011 1.000 0.014 0.008 0.05 0.059 1.000 0.012 0.049

n = 51
0.01 0.019 1.000 0.037 0.008 0.05 0.126 1.000 0.159 0.061

Sample from Claw(0, 11/20); H0 : M = 1;H1 : M 6= 1
n = 13

0.01 0.831 1.000 0.494 0.781 0.05 0.963 1.000 0.778 0.955
n = 25

0.01 0.997 1.000 0.904 0.995 0.05 1.000 1.000 0.991 1.000
n = 51

0.01 1.000 1.000 1.000 1.000 0.05 1.000 1.000 1.000 1.000
Sample from DoubleClaw(0, 34309/52500); H0 : M = 1;H1 : M 6= 1

n = 13
0.01 0.490 1.000 0.120 0.365 .05 0.790 1.000 0.321 0.717

n = 25
0.01 0.911 1.000 0.370 0.807 .05 0.987 1.000 0.726 0.959

n = 51
0.01 1.000 1.000 0.818 0.999 .05 1.000 1.000 0.960 1.000
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Table 4a: Power Rankings
α Z MED BIN W α Z MED BIN W

Sample from N(0, 1);H0 : M = 1;H1 : M 6= 1

n = 13

0.01 3 1 4 2 0.05 2 1 4 3

n = 25

0.01 2 1 4 3 0.05 2.5 1 4 2.5

n = 51

0.01 2 2 4 2 0.05 2.5 2.5 2.5 2.5

Sample from Exp(1);H0 : M = 1;H1 : M 6= 1

n = 13

0.01 2 1 4 3 0.05 3 1 4 2

n = 25

0.01 4 1 2 3 0.05 4 1 2 3

n = 51

0.01 4 1 2 3 0.05 4 1 2 3

Sample from Exp(1);H0 : M = 0.69;H1 : M 6= 0.69

n = 13

0.01 2 1 4 3 0.05 2 1 4 3

n = 25

0.01 2 1 4 3 0.05 4 1 3 2

n = 51

0.01 2 1 4 3 0.05 2 1 4 3

Sample from Exp(1);H0 : M = 0.85;H1 : M 6= 0.85

n = 13

0.01 2.5 1 4 2.5 0.05 4 1 2 3

n = 25

0.01 3 1 2 4 0.05 2 1 4 3

n = 51

0.01 3 1 2 4 0.05 3 1 2 4

Sample from Claw(0, 11/20); H0 : M = 1;H1 : M 6= 1

n = 13

0.01 2 1 4 3 0.05 2 1 4 3

n = 25

0.01 2 1 4 3 0.05 2 2 4 2

n = 51

0.01 2.5 2.5 2.5 2.5 0.05 2.5 2.5 2.5 2.5

Sample from DoubleClaw(0, 34309/52500); H0 : M = 1;H1 : M 6= 1

n = 13

0.01 2 1 4 3 .05 2 1 4 3

n = 25

0.01 2 1 4 3 .05 2 1 4 3

n = 51

0.01 1.5 1.5 4 3 .05 2 2 4 2

In both cases we have used M0 = 1. Here we have considered samples of sizes
n = 13, 25, 51. As the samples are drawn from distributions with mean and stan-
dard deviation different that the standard normal distribution, data needed to be
transformed. In the transformations we have used M0 as the center and estimate of
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the standard deviation as the scale. In equation (1) σ is replaced by the maximum
likelihood estimate and then MED test is computed and denoted as MED.

In Table 4, in all cases, theMED test shows the highest power. When the samples
are from the exponential distribution, the MED test outperforms all the tests. In
non-exponential samples, the Z test and theW test performed pretty well. The power
rankings are given in Table 4a.

6 Application

Here we considered two examples to demonstate the application of the proposed
method for both odd and even sample sizes. We also computed the P -values for
the competing statistics mentioned in this paper. In Section 6.1. we give an example
for odd sample size and in Section 6.2. we give an example for even sample size.

6.1 A Study of Myocardial Transit Times

In a study of myocardial transit times, Liedtke et al. (1973) measured appearance
transit times in a series of subjects with angiographically normal right coronary arter-
ies. The median appearance time for this group was 3.50 seconds. Another research
team repeated the procedure on a sample of 11 patients with significantly occluded
right coronary arteries and obtained the results shown in the following Table 5. The
data is obtained from Daniel (1990, p.35). Could this research be concluded that the
median of appreance transit time in the population from which its sample was drawn
is different from 3.5 seconds?

Table 5: Appreance transit times for 11 patients with
significantly occluded right coronary arteries

Sub. 1 2 3 4 5 6 7 8 9 10 11

Time 1.8 3.3 5.65 2.25 2.5 3.5 2.75 3.25 3.1 2.7 3.0

Here M0 = 3.5, then using (1), (2), and (4) are used to compute P -values for
Z, T (here, T test is used to satisfy the curiosity of a general audience), and MED
tests as 0.1719, 0.1824, and 0.1719, respectively. While P -values for the Sign test
and the Wilcoxon Signed Rank test are 0.0215 and 0.0840. We notice that using the
standard 5% level of significance, only for the Sign test, the decision would be different.
According to literature, for such continuous data, the Wilcoxon Signed Rank test is
more reliable than the Sign test. We also notice that the P -values for all the parametric
tests are similar.

6.2 A Study of Sleep Patterns

Agnew et al. (1967) in a study of sleep patterns, reported the data shown in Table 6
and obtained from Daniel (1990, p.47) shows the percentage of total sleep time spent
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in stage 0 sleep by 16 mentally and physically healthy males between the ages of 50
and 60. We want to test that the median percentage of the sleep time spent in stage
0 is 5 percent.

Table 6: Data showing percentage of sleep time spent
in stage 0 by 16 mentally and physically healthy

males between the ages of 50 and 60
Subject 1 2 3 4 5 6 7 8

Percentage 1.90 3.08 9.10 3.53 1.99 3.10 10.16 0.69

Subject 9 10 11 12 13 14 15 16

Percentage 1.74 2.41 4.01 3.71 8.11 8.23 0.07 3.07

Here M0 = 5, then using (1), (2), and (4) are used to compute P -values for Z,
T , and MED tests as 0.2083, 0.2419, and 0.0532, respectively. While P -values for
the Sign test and the Wilcoxon Signed Rank test are 0.0768 and 0.3520. We notice
that using the standard 5% level of significance, the decision would be same for all the
tests. The P -value for the MED test is the closest to 5% but comparable with the
value for the Sign test.

Acknowledgements

We thank the referee for constructive comments and suggestions which improved the
earlier version of the paper.

References

Agnew, H. W., Jr., W. W. Webb, and R. L. Williams (1967). “Sleep Patterns in Late
Middle Age Males: An EEG Study,” Electroencephalog. Clin. Neurophysiol., 23,
168-171.

Chen, L. (1995). “Testing the Mean of Skewed Distributions,” Journal of the Amer-
ican Statistical Association, 90(430), 767-772.

Daniel, Wayne W. (1990). Applied Nonparametric Statistics, Duxbury, Thomson
Learning, California, USA.

Liedtke, A. J., H. G. Kemp, D. M. Borkenhagen, and R. Gorlin (1973). “Myocardial
Transit Times from Intra-Coronary Dye–Dilution Curves in Normal Subjects
and Patients with Coronary Artery Disease,” American Journal of Cardiology,
32, 831-839.

Savur, S. R.(1937). “The Use of Median in Tests of Significance,” Proc. Indian Acad.
Science, A5, 564-576.



International Journal of Statistical Sciences ISSN 1683–5603

Vol. 6 (Special Issue), 2007, pp 181-192

c© 2007 Dept. of Statistics, Univ. of Rajshahi, Bangladesh

On Fixed Critical Value for Preliminary Test Estimator

B. M. Golam Kibria

Dept. of Statistics
Florida International University
Miami, Florida 33199, USA

E-mail:kibriag@fiu.edu

Saralees Nadarajah

Dept. of Statistics
University of Nebraska

Lincoln, Nebraska 68583, USA
E-mail: snadaraj@unlserve.unl.edu

[Received October 14, 2005; Revised June 17, 2007; Accepted August 19, 2007]

Abstract

The performance of pre-test estimator depends on the level of significance.
Since the existing max-min rule and minimax regret procedure are com-
puter intensive, we propose one simpler alternative method for optimal
level of significance. We perform a numerical comparison among these three
methods. Numerical results suggest that the proposed and Brook methods
are conservative for fixed sample size, whereas Han and Bancroft is flexible.
If the researchers are very conservative about the minimum guaranteed ef-
ficiency, they might select our proposed or Brook’s method. If they want to
have the higher minimum guaranteed efficiency, they should select Han and
Bancroft method. However, in later case the researchers have to accept the
risk for the higher size of the test. The proposed method is easy to compute
compared to Han and Bancroft and Brook methods.
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1 Introduction

One common problem encountered with general linear regression models is to deter-
mine whether to place restrictions on the parameters or not. This leads to a choice
of considering either restricted or unrestricted least squares estimator. For selecting
either estimator, F-test statistic is used to make the decision. This encourages one
to define a pre-test estimator. To describe the problem, consider the following linear
regression model, Y ∼ N(Xβ, σ2I), where Y is an n× 1 vector of observations on the
dependent variable, which follows a normal distribution with fixed mean vector Xβ
and known variance σ2I, β is a p × 1 vector of unknown regression parameters, and
X is an n × p known design matrix of rank p (n ≥ p). We are interested to estimate
the regression coefficients β when it is a priori suspected that β may be restricted to
the subspace

H0 : Hβ = h, (1)

where H is a q × p known matrix of full rank q(< p) and h is a q × 1 vector of known
constants. The choice of estimator for β whether restricted or unrestricted will depend
on the outcome of the test. If we reject the null hypothesis, the unrestricted least
squares estimator (URLSE) β̂UE = C−1X ′Y will be used. Here, C = X ′X is called
the information matrix. On the other hand, if the null hypothesis is true, the restricted
least squares estimator (RLSE) β̂RE = β̂UE −C−1H ′(HC−1H ′)−1(Hβ̂UE −h) will be
used. As a result, one might combine the URLSE and RLSE to obtain a better
performance of the estimator in presence of the uncertain prior information Hβ = h.
This leads to the well known preliminary test least squares estimator (PTLSE) of β
given by

β̂PT
α = β̂UE − (β̂UE − β̂RE)I(L < Lα), (2)

where I(A) is the indicator function of the set A and Lα is the upper 100α% point of
the test statistic

L =
(Hβ̂UE − h)′(HC−1H ′)−1(Hβ̂UE − h)

qs2
, (3)

where s2 = (n−p)−1(y−Xβ̂UE)′(y−Xβ̂UE) is an unbiased estimator of σ2. Under the
null hypothesis, the test statistic L is distributed as central F distribution with q and
n− p degrees of freedoms. Under the non-null case, it has non-central F distribution
with q and n− p degrees of freedom and non-centrality parameter 1

2∆, where

∆ =
η′(HC−1H ′)−1η

σ2
,

and η = Hβ − h is called the departure parameter.
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The preliminary test estimation has application in applied econometric analysis. It
has been pioneered by Bancroft (1944), followed by Bancroft (1964), Han and Bancroft
(1968), Judge and Bock (1978), Benda (1996), Chiou and Han (1999), Han (2002),
Kibria and Saleh (2003) and very recently Kibria and Saleh (2005, 2006). A detailed
review of the preliminary test estimation procedures is given by Han at al. (1988) and
Gilies and Gilies (1993).

It follows from above that the performance of PTLSE depends on the unknown pa-
rameter ∆ and the size of the test α. Indeed, the choice of α or critical value for F
test is an important issue for the users of the PT estimator. Han and Bancroft (1968)
proposed the max-min rule based on relative efficiency and Brook (1976) proposed the
minimax regret procedure based on risk to determine the optimal significance level for
the usual pre-test estimator. Since both procedures are computer intensive, a fixed
critical value for PTLSE is proposed in this paper. A numerical comparison among
these three procedure are given and discussed their relative merits.

The plan of the paper is as follows. In Section 2, we provide the risk functions of the
estimators. The determination of optimal significance level is discussed in section 3.
A summary of the paper is added in Section 4.

2 The Risk Analysis

2.1 The Risk Functions

Here, we present the quadratic risk functions of the estimators. Suppose β̂ denotes an
estimator of β, then for a given positive semi definite matrix M , the loss function of
the estimator β̂ is defined as

L(β̂;M) = (β̂ − β)′M(β̂ − β)

and the corresponding risk function of the estimator β̂ is

R(β̂;M) = E(β̂ − β)′M(β̂ − β) = tr(U),

where U is the mean-squared error matrix of the estimator β̂. The quadratic risk
functions of the proposed estimators are (see Judge and Bock (1978)):

R(β̂UE;M) = σ2tr(C−1M),

R(β̂RE ;M) = σ2tr(C−1M)− σ2tr(A) + η′Dη,

R(β̂PT ;M) = σ2tr(C−1M)− σ2tr(A)Gq+2,n−p(l1;∆)
+ η′Dη{2Gq+2,n−p(l1;∆)−Gq+4,n−p(l2;∆)}, (4)

where D = (HC−1H ′)−1A, A = HC−1MC−1H ′(HC−1H ′)−1, l1 = q
q+2Fα,q,n−p, l2 =

q
q+4Fα,q,n−p and Ga,b(∗;∆) is the cdf of non-central F distribution with a and b degrees
of freedom and non-centrality parameter ∆.
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2.2 Risk Analysis

From equation (4) and under the null hypothesis, the dominance picture is

β̂RE ≥ β̂PT ≥ β̂UE, ∀ α

where ≥ denotes the domination in the sense of smaller quadratic risk. Now we com-
pare the estimators under the alternative hypothesis. The RLSE dominates the ULSE

when ∆ ≤ tr(A)
λ1

and the URLSE dominates RLSE when ∆ > tr(A)
λ2

, where λ1 and λ2
are the smallest and the largest characteristic roots, respectively, of the matrix A′ =
(HC−1H ′)−1HC−1MC−1H ′. When we compare between URLSE and PTLSE, we

see that the PTLSE dominates the ULSE when ∆ ≤ tr(A)
λ1{2Gq+2,n−p(l1;∆)−Gq+4,n−p(l2;∆)} ,

and the URLSE dominates the PTLSE when ∆ > tr(A)
λ2{2Gq+2,n−p(l1;∆)−Gq+4,n−p(l2;∆)} .

Similarly, when we compare between RLSE and PTLSE, we see that RLSE dominated

PTLSE when ∆ ≤ tr(A)(1−Gq+2,n−p(l1;∆))
λ1{1−2Gq+2,n−p(l1;∆)+Gq+4,n−p(l2;∆)} , otherwise PTLSE dominates

RLSE when, ∆ >
tr(A)(1−Gq+2,n−p(l1;∆))

λ2{1−2Gq+2,n−p(l1;∆)+Gq+4,n−p(l2;∆)} . Figures 1 and 2 show how the

risk functions vary with respect to ∆. From these figures, we observe that the per-
formance of PTLSE depends on α and ∆. In practice, ∆ is unknown. The following
section discusses the estimation of ∆ and the optimal value of α.

 

Figure 12: Risk plots for n = 10 and different values of p, q and α.
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3 Optimal Size of the Test

We have seen that the performance of PTLSE depends on the size of the test. In this
section, we consider the optimal level of significance proposed by Han and Bancroft
(1968) and Brook (1976) and compare them with proposed method numerically.

 
Figure 13: Risk plots for p = 4, q = 2 and different n and α.

3.1 Han and Bancroft’s Method

Here we describe the maximum and minimum (Max & Min) rule proposed by Han
and Bancroft (1968) for the optimal choice of the level of significance of the PTLSE
for testing the null hypothesis (1). For fixed values of p and q, the relative efficiency

of the PTLSE (β̂PT ) compared to the URLSE is a function of α and ∆. Let us denote
this relative efficiency by

E(α,∆) =
R(β̂UE, Cσ−2)

R(β̂PT , Cσ−2)

=

[
1− 1

p
{qGq+2,n−p(l1;∆)−∆(2Gq+2,n−p(l1;∆)−Gq+4,n−p(l2;∆))}

]−1

.(5)

For known p and q, the relative efficiency is a function of α and ∆. For a given α,
E(α,∆) is a decreasing function of ∆ in the interval [0,∆Min(α)] and an increasing
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function of ∆ in the interval [∆Min(α),∞] and E(α,∆) → 1 as ∆ → ∞. For α 6= 0,
it has maximum at ∆ = 0 with the value

EMax(α, 0) =

[
1− q

p
Gq+2,n−p(l1;∆)

]−1

(≥ 1)

= [1−Gq+2,n−p(l1;∆)]−1 (≥ 1) if p = q. (6)

If we consider the value of E(α,∆) at α = 0, we have E(0,∆) = [1 − q
p + ∆]−1 and

E(0,∆) = 1 when ∆ = q
p . Thus, the efficiency is maximum for 0 ≤ ∆ ≤ q

p and selects

β̂RE as the PTLSE of β.

From Figures 1 and 2, we observed that the PTLSE is not uniformly best compared to
URLSE or RLSE. Moreover, if ∆ is unknown then one follows the minimum guaranteed
efficiency procedures proposed by Han and Bancroft (1968) which in turn determine
the optimal level of significance for given minimum guaranteed efficiency say EMin.
One looks for a suitable α from the set Sα = {α|E(α,∆) ≥ EMin}. The PTLSE is
chosen for which E(α,∆) is maximized over all α ∈ Sα and ∆. Thus, one solves the
equation

min
∆

E(α,∆Min(α)) = EMin. (7)

From (7), we obtain the optimal significance level α∗ for the PTLSE with minimum
guaranteed efficiency EMin.

3.2 Brook’s Optimal Critical Values

This section discusses the Brook (1976) regret criterion based on quadratic risk func-
tion to obtain the optimal critical value, which is also available in Kibria and Saleh
(2005). For a given critical value cα, the risk function of β̂PT with M = σ−2C is
obtained as

R(β̂PT ;σ−2C) = p− qGq+2,n−p(cα;∆) + ∆{2Gq+2,n−p(cα;∆)−Gq+4,n−p(cα;∆)}.(8)

Notice that

R(β̂UE ;σ−2C) = p, and R(β̂RE ;σ−2C) = p− q +∆.

Then β̂RE is better than β̂UE if ∆ < q and β̂UE is better than β̂RE if ∆ ≥ q. Since
∆ is unknown, we want to have an optimal value of cα, which provides a reasonable
value for the risk function for all ∆.

It is clear that

inf
cα
R(β̂PT ;σ−2C) = R(β̂RE ;σ−2C) if ∆ < q
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= R(β̂UE ;σ−2C) if ∆ ≥ q

Now, consider the regret function

Reg(∆, cα) = R(β̂PT ;σ−2C)− inf
cα
R(β̂PT ;σ−2C)

= q(1−Gq+2,n−p(cα;∆))
− ∆(1− 2Gq+2,n−p(cα;∆) +Gq+4,n−p(cα;∆)) if ∆ < q
= −qGq+2,n−p(cα;∆)
+ ∆(2Gq+2,n−p(cα;∆)−Gq+4,n−p(cα;∆)) if ∆ ≥ q. (9)

We find

sup
0<∆<q

Reg(δ, cα) = Reg(∆L, cα),

sup
∆≥q

Reg(δ, cα) = Reg(∆U , cα).

Then solve for c∗α for which

Reg(∆L, c
∗
α) = Reg(∆U , c

∗
α), (10)

where ∆L and ∆U are the values of ∆ for which Reg(∆, cα) is the maximum for
∆ < q and Reg(∆, cα) is the maximum for ∆ ≥ q, respectively. The relative efficiency
corresponding to the optimal c∗α can be determined from Section 3.1. The optimal
critical value c∗α for different numerator and denominator degrees of freedoms have
been tabulated by Brook (1976). We define the PTLSE based on optimal critical
value c∗α as

β̂PT
Brook = β̂UE − (β̂UE − β̂RE)I(L < c∗α). (11)

3.3 Fixed Critical Value

As we have seen both Han and Bancroft and Brook methods are computer intensive
to obtain an optimal size of the test. Now we define the PT estimator based on fixed
critical value, which is easy to calculate. Note that the test statistic

L =
(Hβ̂UE − h)′(HC−1H ′)−1(Hβ̂UE − h)

qs2

has a central F distribution with q and n − p degrees of freedoms under the null
hypothesis. The mean of the F distribution is µF = E(F ) = n−p

n−p−2 . We would like to

use this mean as a fixed critical value of the test statistic. If we consider µF = n−p
n−p−2

as the critical value of the test statistic (2) we obtain conservative size of the test (see
Table 1) that works well compared to critical values suggested by Han and Bancroft
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Table 1: Probability of F for quantiles µF and for different degrees of freedom

n p q
1 2 3 4 5 8 10 15 20 30

10 2 0.282 0.316 0.330 0.337 0.341 0.347 0.349 0.351 0.351 0.352
3 0.275 0.308 0.320 0.327 0.330 0.335 0.337 0.338 0.339 0.340
4 0.267 0.296 0.307 0.313 0.316 0.320 0.321 0.322 0.323 0.323
5 0.253 0.279 0.288 0.292 0.294 0.297 0.298 0.299 0.300 0.300
6 0.230 0.250 0.256 0.259 0.261 0.263 0.263 0.264 0.264 0.264
7 0.182 0.192 0.196 0.197 0.197 0.198 0.198 0.199 0.199 0.199

20 2 0.303 0.346 0.365 0.376 0.383 0.393 0.397 0.401 0.403 0.405
3 0.302 0.345 0.364 0.374 0.381 0.391 0.394 0.399 0.401 0.403
4 0.301 0.344 0.362 0.372 0.378 0.388 0.392 0.396 0.398 0.399
5 0.300 0.342 0.360 0.370 0.376 0.385 0.389 0.393 0.394 0.396
8 0.295 0.335 0.352 0.360 0.366 0.374 0.377 0.380 0.382 0.383
10 0.290 0.328 0.343 0.351 0.356 0.363 0.366 0.368 0.369 0.370
12 0.282 0.316 0.330 0.337 0.341 0.347 0.349 0.351 0.351 0.352
15 0.253 0.279 0.288 0.292 0.294 0.297 0.298 0.299 0.300 0.300

30 2 0.308 0.354 0.375 0.387 0.394 0.407 0.411 0.417 0.421 0.423
3 0.308 0.354 0.374 0.386 0.394 0.406 0.410 0.416 0.419 0.422
5 0.307 0.353 0.373 0.384 0.392 0.404 0.408 0.414 0.417 0.419
8 0.306 0.350 0.370 0.381 0.389 0.400 0.404 0.409 0.412 0.414
10 0.304 0.349 0.368 0.379 0.386 0.397 0.401 0.406 0.408 0.410
15 0.300 0.342 0.360 0.370 0.376 0.385 0.389 0.393 0.394 0.396
20 0.290 0.328 0.343 0.351 0.356 0.363 0.366 0.368 0.369 0.370
25 0.253 0.279 0.288 0.292 0.294 0.297 0.298 0.299 0.300 0.300

40 2 0.311 0.358 0.379 0.392 0.400 0.414 0.419 0.426 0.429 0.433
3 0.311 0.358 0.379 0.391 0.400 0.413 0.418 0.425 0.429 0.432
5 0.310 0.357 0.378 0.391 0.399 0.412 0.417 0.424 0.427 0.430
8 0.309 0.356 0.377 0.389 0.397 0.410 0.415 0.421 0.425 0.428
10 0.309 0.355 0.376 0.388 0.396 0.409 0.413 0.420 0.423 0.426
15 0.307 0.353 0.373 0.384 0.392 0.404 0.408 0.414 0.417 0.419
20 0.304 0.349 0.368 0.379 0.386 0.397 0.401 0.406 0.408 0.410
25 0.300 0.342 0.360 0.370 0.376 0.385 0.389 0.393 0.394 0.396
30 0.290 0.328 0.343 0.351 0.356 0.363 0.366 0.368 0.369 0.370
35 0.253 0.279 0.288 0.292 0.294 0.297 0.298 0.299 0.300 0.300

100 1 0.315 0.364 0.387 0.401 0.410 0.426 0.432 0.441 0.446 0.452
2 0.315 0.364 0.387 0.400 0.410 0.426 0.432 0.441 0.446 0.451
5 0.315 0.364 0.387 0.400 0.409 0.425 0.431 0.441 0.446 0.451
10 0.315 0.364 0.386 0.400 0.409 0.425 0.431 0.440 0.445 0.450
20 0.314 0.363 0.386 0.399 0.408 0.424 0.430 0.439 0.443 0.449
30 0.314 0.363 0.385 0.398 0.407 0.423 0.428 0.437 0.441 0.446
40 0.313 0.362 0.384 0.397 0.406 0.421 0.426 0.435 0.439 0.444
50 0.312 0.360 0.382 0.395 0.404 0.418 0.424 0.431 0.436 0.440
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Table 2: Maximum & Minimum Guaranteed Efficiency of PTLSEs

n p q α Brook Fixed
2.5% 5% 10% 15% 20% 30% 40% 50% 23.8% 23.0%

6 2 1 EMax 1.81 1.68 1.49 1.37 1.28 1.16 1.09 1.05 1.23 1.24
EMin 0.29 0.40 0.54 0.64 0.72 0.82 0.89 0.94 0.76 0.75
∆Min 12.69 8.96 6.28 5.11 4.45 3.64 3.22 2.95 4.09 4.15

2.5% 5% 10% 15% 20% 30% 40% 50% 20.5% 28.2%
10 2 1 EMax 1.77 1.63 1.44 1.33 1.25 1.14 1.08 1.04 1.24 1.16

EMin 0.39 0.49 0.61 0.70 0.76 0.85 0.91 0.95 0.76 0.84
∆Min 8.03 6.31 4.93 4.24 3.82 3.31 3.01 2.83 3.79 3.40

2.5% 5% 10% 15% 20% 30% 40% 50% 18.8% 30.1%
18 2 1 EMax 1.74 1.60 1.42 1.31 1.23 1.13 1.07 1.04 1.25 1.13

EMin 0.45 0.54 0.65 0.72 0.78 0.86 0.92 0.95 0.77 0.86
∆Min 6.55 5.41 4.42 3.91 3.58 3.16 2.92 2.77 3.64 3.16

2.5% 5% 10% 15% 20% 30% 40% 50% 20.4% 31.6%
12 4 2 EMax 1.84 1.73 1.57 1.45 1.37 1.24 1.16 1.10 1.36 1.23

EMin 0.48 0.58 0.69 0.76 0.81 0.87 0.92 0.95 0.81 0.88
∆Min 11.69 9.35 7.36 6.37 5.71 4.90 4.36 4.00 5.68 4.81

2.5% 5% 10% 15% 20% 30% 40% 50% 17.9% 34.4%
20 4 2 EMax 1.82 1.70 1.54 1.43 1.34 1.22 1.15 1.09 1.37 1.18

EMin 0.56 0.64 0.73 0.79 0.83 0.89 0.93 0.95 0.82 0.91
∆Min 9.05 7.61 6.31 5.59 5.14 4.51 4.12 3.82 5.32 4.33

2.5% 5% 10% 15% 20% 30% 40% 50% 16.8% 35.2%
28 4 2 EMax 1.81 1.69 1.53 1.42 1.33 1.22 1.14 1.09 1.38 1.17

EMin 0.58 0.66 0.74 0.80 0.84 0.89 0.93 0.96 0.82 0.92
∆Min 8.33 7.12 5.98 5.35 4.96 4.39 4.03 3.76 5.20 4.18

2.5% 5% 10% 15% 20% 30% 40% 50% 15.8% 36.2%
64 4 2 EMax 1.80 1.68 1.51 1.40 1.32 1.21 1.14 1.09 1.39 1.16

EMin 0.61 0.68 0.76 0.81 0.85 0.90 0.93 0.96 0.82 0.92
∆Min 7.58 6.58 5.62 5.11 4.75 4.24 3.91 3.67 5.02 4.03

2.5% 5% 10% 15% 20% 30% 40% 50% 13.6% 38.3%
30 6 4 EMax 2.62 2.38 2.05 1.83 1.67 1.45 1.30 1.20 1.88 1.32

EMin 0.63 0.70 0.78 0.83 0.86 0.91 0.94 0.96 0.82 0.94
∆Min 11.93 10.37 8.93 8.12 7.55 6.76 6.22 5.77 8.30 6.28

2.5% 5% 10% 15% 20% 30% 40% 50% 11.7% 39.7%
66 6 4 EMax 2.59 2.34 2.01 1.80 1.64 1.43 1.29 1.19 1.93 1.30

EMin 0.67 0.74 0.81 0.85 0.88 0.92 0.95 0.96 0.82 0.94
∆Min 10.52 9.35 8.21 7.55 7.06 6.40 5.95 5.56 7.94 5.95

2.5% 5% 10% 15% 20% 30% 40% 50% 11.0% 40.1%
126 6 4 EMax 2.58 2.33 2.00 1.79 1.63 1.42 1.29 1.19 1.95 1.28

EMin 0.69 0.75 0.81 0.85 0.88 0.92 0.95 0.97 0.82 0.95
∆Min 10.10 9.02 7.97 7.33 6.91 6.31 5.86 5.50 7.82 5.86
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(1968) and Brook (1976). The size of the test for different degrees of freedom and
quantiles are presented in Table 1.

We propose the PTLSE based on critical value µF as

β̂PT
F ixed = β̂UE − (β̂UE − β̂RE)I(L < µF ). (12)

The proposed estimator is to change the way that researchers undertake the prelimi-
nary test.

Table 2 compares β̂PT
α , β̂PT

Brook and β̂PT
F ixed under the quadratic risk function and min-

imum and maximum guaranteed efficiency criteria. The last two columns of the table
provide the maximum and minimum guaranteed relative efficiencies for optimal critical
values provided by Brook (1976) and fixed critical value, respectively. For given q and
n − p, one enters the table and looks for the smallest relative efficiency EMin he/she
wishes to accept. For example, suppose q = 2, n−p = 12 and the experimenter wishes
to have an estimator with a minimum guaranteed efficiency of 0.75. From the table, we
recommend him/her to select α = 0.15, corresponding to β̂PT , because such a choice
of α would yield an estimator with a minimum efficiency of 0.76 and a maximum ef-
ficiency of 1.45. Note that with this condition the minimum guaranteed efficiency of
β̂PT using Brook’s optimal critical value is 0.81 with a maximum efficiency of 1.36.
By fixed critical value, the minimum guaranteed efficiency is 0.88 with a maximum
efficiency of 1.23.

4 Summary

In this paper, we have compared the methods of Han Bancroft (1968) and Brook
(1976) along with a proposed fixed critical value for obtaining an optimal significance
level to formulate a PTLSE. To determine the Han Bancroft’s level one has to specify
a value which is the smallest relative efficiency the investigator is willing to accept.
However, the Brook’s level balances the loss and gain to determine a level based on
a regret function. Since, a theoretical comparison among these three methods is hard
to make, a numerical comparison has been performed.

From Table 2, it is observed that the minimum guaranteed efficiency by Brook’s
method vary between 0.76 and 0.82 and the maximum efficiency vary between 1.23
and 195.0 for α (0.11 < α < 0.24). The minimum guaranteed efficiency by Fixed
critical method vary between 0.75 and 0.95 and the maximum efficiency vary between
1.24 and 1.32 for α (0.23 < α < 0.40). The corresponding minimum and maximum
guaranteed efficiencies by Han Bancroft method’s are between 0.29 and 0.97 and 1.05
and 2.59, respectively, for 0.025 < α < 0.50. Both Fixed and Brook methods are
conservative for fixed sample size, whereas Han Bancroft method is flexible because
a higher minimum guaranteed efficiency can be chosen to determine the significance
level. In either method, the researchers have to take some risk. If the researchers are
concerned or very conservative about the minimum guaranteed efficiency, they might
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select Fixed or Brook’s method. However, if they are willing to accept higher size of
the test but want to have higher guaranteed minimum efficiency, they should select
Han Bancroft’s method. The proposed method is easy to compute compared to Han
and Bancroft or Brook’s method.
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