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Abstract

The aim of this paper is to derive test procedures for studies where data
consist of pairs of Bernoulli variables. Applications exist in, for example,
ophthalmology and studies on matched pairs. Score tests and likelihood
ratio tests are derived for testing the dependency between the Bernoulli
variables. Multinomial logit models are used to incorporate explanatory
variables. Test statistics for two particular models are thoroughly outlined.
Numerical illustrations of these test statistics are presented in three exam-
ples, including one with visual impairment data.
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1 Introduction

There are many applications in which pairs of Bernoulli variables are observed and
where the problem is to test whether the variables are independent or not. An example
is when testing if the occurrence of a particular disease in one eye is independent of
the occurrence of the disease in the other eye, for the same individual. For modelling
this situation we suppose that S1 and S2 are two equally distributed and possibly
dependent Bernoulli variables such that P (S1 = 0, S2 = 0) = π0, P (S1 = 1, S2 = 0) =
P (S1 = 0, S2 = 1) = π1/2 and P (S1 = 1, S2 = 1) = π2. A possible and often used
model is to consider the joint probability distribution of the bivariate vector (S1, S2)
as a log linear model. Other possibilities include the use a multinomial model (see e.g.
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(2)) and a bivariate logistic model ((8)). Reviews on models for dependent Bernoulli
variables are also in (4) and (9). Here we define the sum S = S1 + S2 and model
the random variable S by using a multinomial logit model as in (5). Independence
will then imply a particular pattern on the probabilities π0, π1, and π2. We therefore
assume we have observations si, i = 1, 2, . . . , N , on S and construct a test to see
whether data support a probability structure that is consistent with independence. In
this paper we consider two tests for independence, viz. the score test and the likelihood
ratio test, both tests being asymptotically equivalent. The performance of the score
test and the likelihood ratio test in small samples can be improved by adjusting the
critical value of the test, see (6) for a recent application. Furthermore, we consider
the case when the probabilities depend on an explanatory variable x. In the example
with an eye disease, the explanatory variable might be age.

The next section describes the model used and the test statistics are derived, while
some numerical examples are provided in the third section. The final section contains
some concluding remarks.

2 Model and test

Let Y = (Y1, Y2)
T be the trinomial response vector, such that Y1 takes the value 1

and Y2 takes the value 0 if S = 1; and Y1 takes the value 0 and Y2 takes the value
1 if S = 2. In the case S = 0 both Y1 and Y2 are 0. The vector of expectations of
Y is then E [Y ] = (P (S = 1) , P (S = 2))T = (π1, π2)

T = π, and we use the outcome
S = 0, with P (S = 0) = π0 = 1−π1 −π2, as a reference category when modelling the
distribution of Y .

In the simplest case, N observations, say yi = (y1i, y2i)
T , i = 1, 2, . . . , N , are drawn

independently from the same distribution and the log likelihood becomes

ℓ (π;y) =

N∑

i=1

y0i ln π0 + y1i lnπ1 + y2i ln π2.

The scores, Uj (π) = ∂ℓ/∂πj , j = 1, 2, are found as

Uj (π) =

N∑

i=1

(
yji
πj

− y0i
π0

)
, j = 1, 2,

and the information matrix, Ijk (π) = E
[
−∂2ℓ/∂πj∂πk

]
, j, k = 1, 2, as

I (π) = N

( 1
π1

+ 1
π0

1
π0

1
π0

1
π2

+ 1
π0

)
.

We will now derive the test statistics for the score test and the likelihood ratio test
for testing the null hypothesis that the variables S1 and S2 are independent. The test



Bruce and Nyquist: Testing for Dependency of Bernoulli Variables 153

statistic for the score test is defined as

TS = UT (π̃) I−1 (π̃)U (π̃) ,

where U (π) = (U1 (π) , U2 (π))
T and π̃ = (π̃1, π̃2)

T is the estimated vector of probabil-
ities under the null hypothesis. The independence hypothesis implies the restrictions
π0 = (1− θ)2, π1 = 2θ (1− θ), and π2 = θ2, where θ = P (S1 = 1) = P (S2 = 1) is
the marginal probability to observe a ”success”. Under this hypothesis, the maximum
likelihood estimator of θ is evidently

θ̃ = (2N)−1
N∑

i=1

(y1i + 2y2i) =
r1 + 2r2

2N
, (1)

where rj is the number of observed pairs that results in yj = 1. Hence, the estimator

θ̃ equals the total number of ”successes” divided by the number of observed variables.
Maximum likelihood estimators of π0, π1, and π2 are accordingly

π̃0 =
(
1− θ̃

)2
, π̃1 = 2θ̃

(
1− θ̃

)
, and π̃2 = θ̃2, (2)

respectively. By inserting the expressions for the scores and the information, we easily
find that

TS =

2∑

j=0

(rj −Nπ̃j)
2

Nπ̃j
, (3)

which coincides with the χ2-test statistic for testing the goodness of fit of a trinomial
distribution with probabilities restricted as described above. Asymptotically, TS has
a χ2 distribution with 1 degree of freedom, the approximation being good provided
the expected frequencies, Nπ̃j, j = 0, 1, 2, are sufficiently large.

The test statistic for the likelihood ratio test is

TLR = 2 (ℓ (π̂;y)− ℓ (π̃;y))

= 2
2∑

j=0

rj ln
π̂j
π̃j
,

where π̂ is the unrestricted maximum likelihood estimator of π,π̂j =
rj
N , j = 0, 1, 2.

This simple case generalizes straightforwardly to the case with several, say K,
groups with Nk observations in each group. The distribution of the trinomial response
vector in each group is here defined by the vector (π0k, π1k, π2k)

T , k = 1, 2, . . . ,K, of
probabilities. The test statistic for the score test now becomes

TS =
K∑

k=1

2∑

j=0

(rjk −Nkπ̃jk)
2

Nkπ̃jk
, (4)
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where rjk is the observed frequency of category j, j = 0, 1, 2, in group k, k =
1, 2, . . . ,K,

π̃0k =
(
1− θ̃k

)2
, π̃1k = 2θ̃k

(
1− θ̃k

)
, π̃2k = θ̃2k, (5)

and

θ̃k = (r1k + 2r2k) / (2Nk) . (6)

Similarly, the test statistic for the likelihood ratio test becomes

TLR = 2

K∑

k=1

2∑

j=0

rjk ln
π̂jk
π̃jk

. (7)

where the unrestricted estimator π̂ is

π̂jk =
rjk
Nk

.

The test statistics TS and TLR are asymptotically equivalent and has a χ2 dis-
tribution with K degrees of freedom, asymptotically. Here it is important for the
approximation to be good that each Nkπ̃jk is sufficiently large.

A more structured model is obtained if the vector of probabilities π is governed
by a vector of explanatory variables x. For example, in a multinomial logit model the
probabilities are defined by the vector valued logit link function

g

(
π1
π2

)
=

(
ln π1

π0

ln π2
π0

)
=

(
η1
η2

)
= η,

where η = (η1, η2)
T is the vector valued linear predictor with

ηj = xTj βj , j = 1, 2,

xj and βj being vectors of explanatory variables and associated parameters used for
determining the probability πj . By defining the block diagonal matrix x = diag (x1, x2)

and the parameter vector β = (β1, β2)
T the linear predictor can be written more

compactly as
η = xβ.

The probabilities for the response categories are

π0 (x) =
1

1 + eη1 + eη2

π1 (x) =
eη1

1 + eη1 + eη2

π2 (x) =
eη2

1 + eη1 + eη2
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With N independent observations on Y , say yi = (y1i, y2i)
T , i = 1, 2, . . . , N , the

log likelihood function becomes

l (β;y) =

N∑

i=1

(y1iη1i + y2iη2i − ln (1 + eη1i + eη2i)) .

The score vector, U (β) = ∂l (β) /∂β, is readily found to be

U (β) =

N∑

i=1

xT
i (yi − π (xi))

and the Fisher information matrix, I (β) = E
[
U (β)UT (β)

]
is

I (β) =
N∑

i=1

xT
i D (xi)xi

where

D (x) =

(
∂π1
∂η1

∂π1
∂η2

∂π2
∂η1

∂π2
∂η2

)
=

(
π1 (x) (1− π1 (x)) −π1 (x) π2 (x)
−π1 (x)π2 (x) π2 (x) (1− π2 (x))

)
,

for details, see (5). Maximum likelihood estimation of this model can be done by using
ordinary algorithms for estimating multivariate logit models.

We now consider two particular models within this framework. The first being
the model where the two vectors of explanatory variables are identical and consist of
dummy variables x1 = x2 = (d1, d2, . . . , dK)T , where each dk is either 1 or 0, indicating
if an observation comes from response group k or not, respectively, j = 1, 2, . . . ,K. In
this case the model reduces to the case with K response groups discussed above and
the test statistics for independence are (4) and (7), respectively.

The second particular case we consider appears when the linear predictors consist
of an intercept and a single explanatory variable, z, the same variable in both linear
predictors, so that ηj = xTβj , x = (1, z)T and βj = (βj0, βj1)

T , j = 1, 2. In this
model, the explanatory variable z may influence the success probabilities π1 and π2
differently. However, the odds ratio of S1 and S2 does not depend on z if β21 = 2β11,
i.e. the dependence of S1 and S2 is constant over different values of z. If, in addition,
β20 = 2β10 − ln 4, then S1 and S2 are independent as well, making their sum S to a
binomially distributed random variable with parameters (2, θ). For details, see (5). It
is therefore of interest to test whether data give enough support to reject the hypothesis

H0 : β20 = 2β10 − ln 4 and β21 = 2β11.

Suppose now that the variable z takes K different values, and that Nk observations
are made at z = zk, so that

∑K
k=1Nk = N . Furthermore, let r1k =

∑
y1i and
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r2k =
∑
y2i, the sums being taken over all the observations with z = zk, be the

observed frequencies of the two possible responses Y1 = 1 and Y2 = 1, respectively.
Then, r1k ∼ bin (Nk, π1k) and r2k ∼ bin (Nk, π2k).

Under H0, the model reduces to an ordinary logit model. Denoting the maximum
likelihood estimator of the parameter vector β under H0 by β̃, the score test statistic
becomes

TS = UT
(
β̃
)
I−1

(
β̃
)
U
(
β̃
)
. (8)

which is asymptotically χ2-distributed with 2 degrees of freedom, provided that the

number of observations at each zk tends to infinity. This follows since U
(
β̃
)
is ap-

proximately normal with zero mean and variance I (β) if H0 is true. Furthermore,
the hypothesis H0 is rejected on the α · 100% level if the observed value of TS exceeds
the critical value c = χ2

2,1−α, the (1− α) · 100th percentile of a χ2 distribution with 2
degrees of freedom.

When computing the test statistic for the likelihood test, the model needs to be
estimated both under the restrictions imposed by H0, yielding the univariate logit
estimator β̃, and without these restrictions, yielding the bivariate logit estimator β̂.
The test statistic is then obtained by evaluating the log likelihood function at these
two estimates

TLR = 2
(
l
(
β̂;y

)
− l
(
β̃;y

))
. (9)

Asymptotically, both TS and TLR are equivalent. In particular, also TLR is asymp-
totically χ2-distributed with 2 degrees of freedom and the null hypothesis is rejected
at the level α · 100% for observed values exceeding the critical value c.

3 Examples

This section presents three examples to illustrate the test procedures described above.
Example 1 is a visual impairment data, while the other two examples are artificially
created data materials. Dependency is tested using the score test and the likelihood
ratio test for all these data materials. Significance level is chosen to be 5%.

Example 1

The data material on visual impairment data is taken from (7). 5199 people are subject
to a visual examination, measuring if the left eye and/or the right eye has a visual
impairment or not. The outcome for each eye is binary, where ” + ” indicates visual
impairment and ” − ” no visual impairment. Age is used as explanatory variable in
this example, see Table 1. In the table there are, for example, 3627 out of 3958 people
in age 40-70 that have no visual impairment.

Before a model can be fitted to the data an assumption has to be made. The prob-
ability that the left eye is visually impaired is assumed to be equal to the probability
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Left Right Age: 40− 70 Age: 71+ Total

− − 3627 913 4540
+ − 122 89 211
− + 133 104 237
+ + 76 135 211

Total 3958 1241 5199

Table 1: Joint distribution of visual impairment for both eyes, for the two age groups
40− 70 and over 70, respectively. Data are taken from Liang et al.(1992).

that the right eye is visually impaired. This assumption is reasonable since the risk of
visual impairment (in percent) is similar for the left and the right eye in both groups.

Let S1 and S2 be Bernoulli variables for visual impairment of the left eye and
the right eye, respectively. The elements of the response vector yi = (y1i, y2i)

T , i =
1, 2, . . . , 5199, are indicator variables. For a given person Y1 = 1 if only one eye is
visually impaired and Y2 = 1 if both eyes have a visual impairment. The vector
of explanatory variables consists of dummy variables d1 and d2 since there are two
independent groups. The link function is therefore

η =

(
η1
η2

)
=

(
β11d1 + β12d2
β21d1 + β22d2

)
.

Suppose now that primary interest is in the possible dependency between S1 and S2.
In this model S1 and S2 are independent if the parameter restrictions

β2j = 2β1j , j = 1, 2

are satisfied. As stated previously the score test statistic for independence is given by
(4). The test statistic has a χ2 distribution with 2 degrees of freedom, asymptotically.
The observed test statistic for the data material in Table 1 becomes, using (4),

TS ≈ 751.22

Hence the hypothesis about independence is rejected since the critical value on 5%
level is 5.991. The observed likelihood ratio test statistic can be derived by estimating
the model both under the restrictions imposed by H0 and without these restrictions.
Alternatively, the test statistic in (7) give an equivalent result. The value on the test
statistic is

TLR ≈ 465.35,

so the hypothesis about independence is rejected when using the likelihood ratio test
as well.
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Example 2

Data consist of 100 pairs of Bernoulli variables. Each pair is associated with a single
covariate, z, ranging between zero and ten, see Figure 9. This example refers to the
second particular case above where the restrictions β20 = 2β10 − ln 4 and β21 = 2β11
are tested. Ignoring the covariate z, the observed frequencies for S = 0, 1, 2 are 49, 17,
and 34, respectively. S1 and S2 seem dependent by only looking at these observed
frequencies. The goodness of fit test given in (3) confirms this. The observed test
statistic is

χ2
obs ≈ 42.54.

Clearly, the conclusion based only on this test would be that S1 and S2 are dependent.
It is not sufficient to look at observed marginal frequencies only. When testing for
independency one has to study how the probabilities π0 (z) , π1 (z) , and π2 (z) change
when taking account of the covariate, z. The relative low frequency of pairs where
S = 1 is explained by the fact that many observations are taken at z−values where
π1 (z) is small.

The score test statistic and the likelihood ratio test statistic given in (8) and (9),
take covariates into account in the test procedures. The observed test statistics for
the two tests become

TS ≈ 0.0340

and

TLR ≈ 0.0338,

respectively. Because the critical value is 5.991 the hypothesis of independence can
not be rejected in either of the tests.

Another good indicator of the possible dependency between S1 and S2 is the esti-
mated probability distribution of S, given in Figure 9
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Figure 9: a) The 100 observations on S for Example 2. b) Probabilities π0, π1, and π2
as functions of z. The parameter values used are the bivariate logit estimates β̂.
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The probability distribution closely resembles the appearance of a distribution for
independent Bernoulli variables. A model for independent data has several symmetry
properties, see (5) for a more comprehensive discussion. Two of these properties are
clearly shown in Figure 9. First the maximum value of π1 (z) is close to 0.5, and sec-
ondly π1 (z) is a symmetric function around argmax

z
π1 (z). This example emphasizes

the importance of including existing covariates in the analysis.

Example 3

The data in the third example have a similar structure as the data in Example 2.
Data are given by 100 pairs of Bernoulli variables, where each pair is associated with
a single covariate. Thus, the same model can be fitted to this data material as to
the previous data material. Figure 10 shows that the data in Example 3 resemble the
data in Example 2. Nevertheless, the score test statistic and the likelihood ratio test
statistic are given by

TS ≈ 6.3066

and

TLR ≈ 7.7791,

respectively. The hypothesis of independence is rejected in both tests because the
observed test statistics exceed the critical value. Figure 10 presents the probability
distribution of S based on the bivariate logit estimator β̂.
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Figure 10: a) The 100 observations on S for Example 3. b) Probabilities π0, π1, and
π2 as functions of z. The parameter values used are the bivariate logit estimates β̂.

The probability distribution does not share the symmetry properties that indepen-
dent Bernoulli variables would have generated. Maximum value of π1 (z) is relatively
far from 0.5 and π1 (z) is not a symmetric function around argmax

z
π1 (z).
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4 Concluding remarks

Models for equally distributed and possibly dependent binary variables are examined in
this paper. In particular, test procedures for testing the possible dependence between
the binary variables, S1 and S2, are derived. The test procedures are important
since the complexity of the model is greatly reduced if the variables are independent.
In these situations where the bivariate logit model is difficult to estimate, a score
test is preferable since the model only need to be estimated under the restrictions of
independence.

A limitation with the models is that they are only applicable to data where equally
distributed binary variables exist. The models are inappropriate in situations where
P (S1 = 1) differ from P (S2 = 1). Nevertheless, in examples with eye data like the
one above, the assumption of equally distributed variables (eyes) is often fulfilled. It
remains to investigate how poorly the models fit when the assumption is not valid.

In some situations, where it is possible to conduct an experiment, the values of
the covariate can be controlled. The distributions of the test statistics depend on
the values of the covariate. Hence, different set of values on the covariate generates
different powers of the tests. In this framework, a favourable power function can be
generated if the values of the covariate, i.e. the design, are chosen in an optimal way.
The design consists of the choice of values for the covariate (design points) and the
corresponding proportion of observations (design weights), see (3). Finding the design
that maximizes the power is not trivial. The optimal design depends on the design
criterion, the unknown parameters, and the alternative hypothesis.

It should be noted that the test statistics are sensitive against small expected
frequencies. The performance of the test statistics are like other asymptotically χ2

distributed test statistics for contingency tables, affected by too small expected fre-
quencies.

The models do not account for variations among individuals with the same covari-
ates. A further development would be to include, for example random effect parame-
ters in the linear predictor. These parameters would then account for the individual
effects. Parameters for modelling the heterogeneity among individuals are included in
the general model for dependent binary response given in (1).
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