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Abstract

This paper presents the Highest Posterior Density (HPD) interval for the
Pareto parameter and the associated reliability function based on natural
conjugate prior (NCP) and minimal information prior (MIP). The Bayes
predictive estimator and the HPD prediction interval for a future observa-
tion are also presented. Bessel function of the third kind and its asymptotic
expansion have been employed in order to overcome the intractability of
the integrals under the minimal information prior. A numerical example is
given to illustrate the results.
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1 Introduction

The Pareto distribution was introduced (Pareto, 1897) as a model for the distribution
of income. In addition to economics, its models in several different forms are now being
used in a wide range of fields such as insurance, business, engineering, survival analysis,
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reliability and life testing. See Nelson (1982), Lwin (1972), Lomax (1954), Cohen and
Whitten (1988), Cox and Oakes (1984), Davis and Feldstein (1979), Lawless (1982).
The probability density function (pdf) of the Pareto distribution is given by

f(x|θ0, β) = βθ0
β x−(β+1), β > 0, 0 < θ0 < x <∞ (1)

The quantity θ0 is a threshold parameter above which the distribution of income
follows the paretian law (1). The parameter β measures the degree of inequality
of income. Cramer (1971, p.57) remarked that the values of β have increased from
between 1.6 and 1.8 in the nineteenth century to between 1.9 and 2.1 in the developed
countries in the present time. The pdf (1) is also known as the Pareto distribution
of the first kind, most commonly used in economic modelling and risk analysis in
insurance and business.
A two parameter Pareto distribution with pdf

f(x|λ, β) = λ

β

(
1 +

x

β

)−(λ+1)

,x > 0; λ, β > 0

is known in the literature as the Pareto distribution of the second kind or the Lo-
max distribution or Pearson’s Type VI distribution (Johnson, Kotz & Balakrishnan
(1994)). It has been found to provide a good model in biomedical problems, such as
survival time following a heart transplant (Bain & Englehardt (1992)). Lomax (1954)
used this model in the analysis of business failure data. The length of wire between
flaws has also been found to follow a Pareto distribution of the second kind (Bain
& Englehardt (1992)). A general three parameter form was used, among others by
Charek, Moore & Coleman (1988). Arnold (1983) studied an extended four parameter
Pareto distribution that has all of the above types as special cases.
In this study, we consider only the Pareto distribution of the first kind. The objective
of this paper is to obtain and compare the Highest Posterior Density (HPD) intervals
for β and also for the associated reliability function Rt based on natural conjugate and
minimal information priors. HPD-intervals for a future observation are also derived
under the above priors.

2 Prior and Posterior Distributions

For a random sample x = (x1,x2, . . . ,xn) of size n from (1), the likelihood function
is given by

l(x|θ0, β) =
(
β

G

)n

exp(−nc0 β) (2)

where G = (
∏n

i xi)
1/n is the geometric mean of the x ’s and c0 = log(G/θ0).
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The Pareto distribution belongs to the general exponential family and that
∑
log(xi)

is a sufficient statistic for β. The likelihood function (2) can be rewritten in order to
express it in the form of the general exponential family as:

l(x|θ0, β) = βn [exp(−β c0)/G]n (3)

Natural Conjugate Prior (NCP):

The NCP is generated by replacing all the quantities in the kernel of the likelihood
function, after expressing it in the form of the general exponential family, dependent
on the sample by parameters known as prior parameters.
Thus, the NCP for β from (3) is

g1(β) ∝ βc−1exp(−pβ), p, c > 0;β > 0 (4)

where c and p are prior parameters and the normalizing constant of (4) is pc

Γ(c) . Hence,

the NCP for the Pareto distribution is a gamma distribution, G(c, p).
Combining (2) and (4), the posterior density of β is,

Π(β|θ0,x) =
(nc0 + p)(c+n)

Γ(c+ n)
βc+n−1 exp{−β(nc0 + p)}, β > 0 (5)

The posterior pdf (5) is also gamma, G(c+n, nc0 + p), showing that the posterior has
the same functional form as the prior, and hence, the gamma priors are closed under
sampling. The Bayes estimator of β under the squared error loss function (SEL)from
(5) is β∗N = (c+n)/(nc0 + p). The SEL is appropriate when large errors of estimation
are considered to be more serious, compared to, for example, an absolute loss error
function, for which large errors are not quite as serious.

Minimal Information Prior (MIP):

A class of non-informative priors called Minimal Information Priors (MIP) was pro-
posed by Zellner (1971) by using information theoretic approach. These priors are
dependent upon a particular parametrization used. In order to generate an MIP, let
f(x|θ) be the pdf of X, and g(θ) be a prior density of θ. Define,

Ix(θ) =

∫
f(x|θ) log f(x|θ)dx,

as a measure of information in f(x|θ), and
∫
g(θ) log g(θ) dθ,
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as a measure of information in the prior g(θ). Define,

∫
Ix(θ)g(θ)dθ,

as measuring the prior average information in the data. Then,

G =

∫
Ix(θ)g(θ)dθ −

∫
g(θ) log g(θ) dθ (6)

represents the gain in information associated with an observation x over the informa-
tion in the prior g(θ).
The MIP is defined as the prior that maximizes G by varying g(θ) subject to

∫
g(θ) d(θ) = 1.

Using the Lagrange multiplier, it can be easily shown that the MIP is

g(θ) ∝ exp{Ix(θ)}.

For the Pareto pdf (1), Ix(β) = log β − 1
β − 1− log θ, and hence, the MIP,

g2(β) ∝ β exp(− 1

β
), β > 0 (7)

Combining (2) and (7), the posterior distribution of β under the MIP is given by

Π(β|θ0, x) =
βn+1 exp

{
−(n c0 β + 1

β )
}

∫∞
0 βn+1 exp

{
−(n c0 β + 1

β )
}
dβ
, β > 0 (8)

We evaluate the denominator of (8) by using the modified Bessel function of the third
kind of order ν (Erdelyi,et.al., 1953) given by

2

aν
Kν(az) =

∫ ∞

0
t−(ν+1) exp

{−z
2

(
t+

a2

t

)}
dt (9)

where
Kν(az) = K−ν(az).

Replacing z, a and ν in (9), respectively by 2nc0, (nc0)
− 1

2 and −(n+2), we have from
(8),

Π(β|θ0,x) =
(nc0)

n+2
2

2Kn+2(2
√
nc0)

βn+1 exp{−(nc0β +
1

β
)}, β > 0 (10)
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The Bayes estimator of β from (10) under the SEL can be shown to be

β∗M = E[β|θ0,x] =
Kn+3(2

√
nc0)

Kn+2(2
√
nc0)

√
nc0

.

In order to assess the performance of β∗M , we perform a Monte Carlo simulation study
for different true values of β and different n. In each case, 10, 000 random samples
were generated from (1) using θ0 = 100. The estimates and their corresponding mean
squared errors (MSE’s) in parentheses are presented in Table 1. It is clear from Table 1
that the MIP somewhat overestimates β for all sample sizes, especially for small n.

Table 1: Posterior means and MSE’s (in parentheses) of β under MIP.

β n =20 n = 40 n = 60 n= 100

1.0 1.201 1.100 1.067 1.040
(0.115) (0.041) (0.023) (0.013)

1.5 1.785 1.638 1.594 1.555
(0.250) (0.085) (0.052) (0.027)

2.0 2.353 2.178 2.122 2.074
(0.413) (0.156) (0.092) (0.049)

2.5 2.954 2.705 2.645 2.585
(0.675) (0.225) (0.140) (0.075)

3.0 3.502 3.257 3.164 3.099
(0.908) (0.338) (0.200) (0.107)

3 Numerical Example

In order to illustrate our results, we use the Dyer (1981) annual wage data (in multiples
of 100 U.S. dollars) of a random sample of 30 production line workers in a large
industrial farm as follows:

112 154 119 198 112 156 123 103 115 107
125 119 128 132 106 151 103 104 116 140
108 105 158 104 119 111 101 157 112 115

As in Dyer (1981) we assume the minimum wage θ0 for these workers as 100 U.S.
dollars. The Pareto model was found to adequately fit the data with a p-value of 0.25.

First, we investigate the conditions under which the posteriors (5) and (10) under
NCP and MIP, respectively, are close. The prior (7) is improper, as its mass increases
with the increasing values of β. Intuitively, we should reach the best agreement with
NCP in equation (4) when its density is also improper, that is p ≈ 0. One can consider
it a limiting case when the parameter p becomes small, and more and more mass is
assigned to higher values of β. If we set p = 0, the Gamma prior (4) does not make
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Figure 6: Posteriors under MIP and NCP (virtually indistinguishable) with p = 0,
c = 2.19. Broken line shows the difference in posteriors magnified by a factor of 10.

sense, but setting p = 0 in (5) still gives us a valid posterior.

Next, we choose the value of c. This can be done simply by equating the posterior
mean under MIP, β∗M , with that under NCP, β∗N , resulting in c = β∗M (nc0 + p)− n.

Empirically, we observed that the absolute difference between (5) with above choice
of p and c, and (10) decreases when n gets large. Fig. 1 shows the two posterior den-
sities, computed for the above annual wage data. They are extremely close, actually,
indistinguishable on the graph.

4 HPD Intervals for β

A highest posterior density (HPD) interval is one in which the posterior density for
every point inside the interval is greater than that for every point outside of it so that
the interval includes the more probable values of the parameter and excludes the less
probable ones. For a uni-modal posterior pdf, a (1 − α) HPD interval (h1, h2) for θ
must satisfy the following two equations simultaneously:

∫ h2

h1

Π(θ|x)dθ = 1− α

and

Π(h1|x) = Π(h2|x).
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Since the pdf (5) is unimodal, the HPD interval for β under the NCP can be shown
to be the simultaneous solution of the equations (11) and (12):

Γ(c+ n, q2)− Γ(c+ n, q1) = 1− α (11)

(
h1
h2

)c+n−1

=

(
eh1

eh2

)nc0+p

(12)

where qi = (nc0 + p)hi, i = 1, 2 and

Γ(c+ n, qi) =
1

Γ(c+ n)

∫ qi

0
e−y y(c+n−1) dy, (13)

the incomplete gamma function ratio or the gamma cdf.
Similarly, the HPD interval (h′1, h

′
2) for β under the MIP from the unimodal pdf (10)

is the simultaneous solution of the equations (14) and (15):

(
h′1
h′2

)n+1

=
exp

(
nh′1c0 +

1
h′
1

)

exp
(
nh′2c0 +

1
h′
2

) (14)

d1[u2 − u1] = 1− α (15)

where

d1 =
(nc0)

n+2
2

2Kn+2{2(nc0)
1
2 }

u1 =

∫ h′
1

0
βn+1 exp{−(nc0β +

1

β
)}dβ

u2 =

∫ h′
2

0
βn+1 exp{−(nc0β +

1

β
)}dβ

Numerical estimates for wage data of Section 3 were obtained using R statistical
package, via Newton-Raphson method. The resulting HPD intervals for MIP tend
to be close to those for NCP with prior parameters chosen as discussed above (see
Table 2).
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Table 2: HPD intervals for β (95%) under NCP (matching the MIP mean
β∗M = 5.3970) and MIP.

p c HPD interval

2.0 12.9851 (3.8309, 7.0344)

1.0 7.5881 (3.7268, 7.1490)

0.5 4.8896 (3.6662, 7.2160)

0.1 2.7308 (3.6127, 7.2755)

0.0 2.1911 (3.5985, 7.2913)

MIP – (3.6040, 7.2857)

5 HPD Interval for the Reliability Function

The reliability function of (1) is given by

Rt =

(
θ0
t

)β

, t ≥ θ0

Substituting β = − logRt

r in (5), where r = log(t/θ0), we obtain the posterior pdf of
Rt as

Π(Rt|θ0,x) =
(nc0 + p)c+n

Γ(c+ n)
r−(c+n) (−log Rt)

c+n−1R
nc0+p

r
−1

t , 0 < Rt < 1

The Bayes estimator of Rt under the squared error loss function and the NCP is

R∗
t,N = E(Rt|θ0,x) =

(
1 +

r

nc0 + p

)−(c+n)

=

(
1 +

log(t/θ0)

nc0 + p

)−(c+n)

(16)

The (1 − α) HPD interval (I1,N , I2,N ) for Rt is given by the simultaneous solution of
the equations (17) and (18):

Γ(c+ n, b2)− Γ(c+ n, b1) = 1− α (17)

and (
log I1,N
log I2,N

)c+n−1

=

(
I2,N
I1,N

)nc0+p

r
−1

(18)

where bj = −
(nc0+p

r

)
log Ij,N , j = 1, 2 and Γ(c+ n, bj), j = 1, 2 is the incomplete

gamma function ratio as in (13).

Again, substituting β = −log Rt

r and r = log(t/θ0) in (10), we obtain the posterior pdf
of Rt under the MIP as:

Π(Rt|θ0,x) = d2 (−log Rt)
n+1 exp

{
(
−nc0
r

+ 1)(−log Rt) +
r

logRt

}
, 0 < Rt < 1

(19)
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The normalizing constant d2 of (19) is evaluated by using (9) with

ν = −(n+2), z = 2(nc0+2r)
r and a = r(nc0+2r)−1/2 as d2 =

d1
rn+2 . The Bayes estimator

of Rt under the squared error loss function and the MIP is

R∗
t,M = E(Rt|θ0,x) =

(
1 +

r

nc0

)−(n+2
2

) Kn+2 {2(nc0 + r)1/2}
Kn+2{2(nc0)1/2}

Using an asymptotic expansion (Copland(1965)), namely,

Kν(y) ∼=
2ν−

1
2 νν−

1
2
√
π exp(−ν)

yν
(20)

we obtain R∗
t,M as

R∗
t,M =

(
nc0

nc0 + r

)n+2

(21)

The (1− α) HPD interval (I1,M , I2,M ) for Rt is given by the simultaneous solution of
the equations (22) and (23):

d2

∫ I2,M

I1,M

(−logRt)
n+2 exp

{(
−nc0

r
+ 1
)
(−logRt) +

r

log Rt

}
dRt = 1− α (22)

and (
logI1,M
logI2,M

)n+1
{
e
r

(
1

I1,M
− 1

I2,M

)}
=

(
I2,M
I1,M

)nc0
r

+1

(23)

Fig. 2 shows the bounds of HPD intervals for different values of t for our numerical
example of Section 3. The nonparametric (empirical) estimate of Rt is also shown.
The estimates for t = 120 and the HPD intervals are given in Table 3.

Table 3: Estimates of Rt, t = 120 and 95% HPD-intervals under NCP and MIP.

p c Posterior Mean and HPD interval
0.3780

2.0 12.9851 (0.2703, 0.4879)
0.3786

1.0 7.5881 (0.2636, 0.4960)
0.3789

0.5 4.8896 (0.2598, 0.5008)
0.3793

0.1 2.7308 (0.2564, 0.5050)
0.3794

0.0 2.1911 (0.2555, 0.5061)

0.3793
MIP – (0.2558, 0.5057)
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Figure 7: Estimates of R∗
t,M , bounds of 95% HPD interval and empirical reliability

function.

6 Bayes Predictive Interval For a Future Observation

The prediction problems of the Pareto life time models are very important and have
been studied, among others, by Arnold & Press (1989), Madi & Raqab (2004), Nigm
& Hamdy (1987) and Soliman (2000). For other prediction problems, see Khan (2004,
2006), Khan & Chattopadhyay (2003) and Geisser (1984).
Let y be a future observation from (1). Given the data x, the conditional joint pdf of
y and β is

h(y, β|θ0,x) = f(y|θ0, β,x) Π(β|θ0,x)

= f(y|θ0, β) Π(β|θ0,x) (24)

since y and x are independent.
Using (1) and the posterior pdf (5) under the NCP, the equation (24) takes the form:

h(y, β|θ0,x) ∝
1

y
βc+n exp

{
−β(nc0 + p+ log(

y

θ0
))

}
(25)

Integrating out β from (25) and restoring the normalizing constant, the predictive
density of y is

p(y|θ0,x) =
c+ n

nc0 + p

1

y

(
1 +

log(y/θ0)

nc0 + p

)−(c+n+1)

, θ0 < y <∞
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Since p(y|θ0,x) is strictly decreasing (see Figure 3), the HPD-prediction interval
is [θ0, y

∗], where y∗ is obtained from the given equation (26)

P (Y > y∗) =

(
1 +

log(y/θ0)

nc0 + p

)−(c+n)

= α (26)

and hence the upper end of the (1− α)100% HPD interval under NCP is

y∗N = θ0 exp
[
(nc0 + p)(α− 1

n+c − 1)
]

(27)

Again using (1) and the posterior pdf (10) under the MIP, the equation (24) takes the
form:

f(y, β|θ0,x) ∝
1

y
βn+2 exp

{
−(nc0β + β log(y/θ0) +

1

β
)

}
,

Thus, the corresponding predictive density of y is:

p(y|θ0,x) ∝
∫ ∞

0

1

y
βn+2 exp

{
−(nc0β + β log(y/θ0) +

1

β
)

}
dβ
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Figure 8: Predictive density for NCP (p = 0, c = 2.19).

Using the modified Bessel function of the third kind given in (9) with
ν = −(n+3), z = 2(nc0+ log(y/θ0)) and a = (nc0+ log(y/θ0))

−1/2, the above integral
takes the form:

p(y|θ0,x) ∝
1

y

{
(nc0 + log(y/θ0))

−n+3
2

}
Kn+3

{
2(nc0 + log(y/θ0))

1/2
}
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Using the asymptotic result (20) and restoring the normalizing constant the predictive
density under the MIP is

p(y|θ0,x) =
(
n+ 2

nc0

)
1

y

(
1 +

log y/θ0
nc0

)−(n+3)

, θ0 < y <∞

The upper end of the (1− α)100% HPD interval under MIP is

y∗M = θ0 exp
[
nc0(α

− 1
n+2 − 1)

]
(28)

Using the above wage data, the upper ends of a 95 percent HPD prediction interval
for both NCP (for p = 0, c = 2.19) and MIP are computed as 178.91 and 179.56,
respectively.

7 Conclusion

In this study we considered natural conjugate and minimal information priors for
Bayesian estimation and prediction from Pareto distribution of the first kind. It is
evident from the results that:

1. There were no computational difficulties or extreme behavior with either of the
priors. There were also no gross over- or underestimation by either of these two
sets of Bayes estimators.

2. The simulation study (Table 1) indicated some overestimation of the Pareto
parameter, especially for small sample sizes, by the minimal information prior
(MIP). The estimates under MIP are positively biased making them less appeal-
ing with respect to both bias and MSE.

3. For certain values of the prior parameters p and c (p ≈ 0 and c = 2.19) the NCP
is seen to produce HPD interval for β almost coinciding with that under MIP
(Table 2). A similar pattern can be observed from Table 3 for HPD interval for
the reliability function.

4. The length of the HPD interval for β (Table 2) decreases as the values of the
prior parameters p and c under NCP get larger, therefore reducing uncertainties
in estimation and prediction. The above is also true for HPD intervals for the
reliability function (Table 3).

5. The Bayes estimators for the reliability function (Table 3) are extremely robust
on the choice of the values of the prior parameters. It implies that the prior is
dominated by the likelihood function, a situation known in literature (Box &
Tiao, 1973, p.22) as the principle of ”stable estimation”.

6. The posterior density under NCP is gamma, which is easily amenable, and hence
this prior might be preferred over MIP for Bayesian estimation and prediction
from Pareto distribution of the first kind.
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