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Abstract

In this paper we discuss the problem of predicting the unobserved lifetimes
in a type II censored random sample from the Weibull life distribution,
using the Bayesian approach. We also attempt to predict the time to the
first failure in a future sample based on information from previous samples.
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1 Introduction

Prediction problems arise in many real life situations. Various disciplines in which
prediction finds importance are medicine, engineering, and business, among others.
In the context of reliability theory, one may be interested in predicting the time to
the next failure or in predicting the failure times in a new experiment. Statistical
prediction uses data from an informative experiment in order to make some statement
about the future outcome.

In the problem of estimating the predictive probabilities of an unobserved random
variable, whose distribution is dependent on an unknown finite dimensional parameter,
a crude procedure would be to substitute a point estimate of the parameter, obtained
from past data, in the predictive distribution. However, this fails to take into account
any uncertainty that may be present in the parameter. A better method, therefore,
would be to adopt the Bayesian approach, which assigns a suitable prior distribution
to explain the uncertainty. There have been many studies in the area of predictive
inference. The pioneering works include Aitchison (1964), Aitchison and Sculthorpe
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(1965) among others. Some recent studies in this area are due to Abd Ellah (2003),
Khan and Chattopadhyay (2003), Khan (1996, 2004, 2006), who carried out predictive
analyses under different set-ups.

In this paper we attempt to predict the failure times, which are precisely the order
statistics in a sample, on the basis of a set of available lifetime data from the Weibull
distribution. The Weibull distribution is an important lifetime distribution having the
p.d.f.

f(t)=apt® e P a,8>0,t > 0. (1)

where [ is the scale parameter and « the shape parameter.

The two-parameter Weibull distribution is one of the most commonly used lifetime
distributions in survival analysis. The survival function and failure rate of the dis-
tribution have very simple and easy-to-study forms. In recent years, the Weibull
distribution has become rather popular in analyzing lifetime data and, in the presence
of censoring, it is found to be very easy to handle.

In Section 2 we consider a type II censored sample of size n from the Weibull dis-
tribution with r observations available, and predict the remaining (n-r) unobserved
lifetimes. In Section 3 we predict the time to the first failure in a future sample
based on information from previous samples. The Bayesian approach is used for the
predictions.

2 Bayesian one Sample Prediction
Let x1,x9,...,x, be the ordered failure times in a sample of n items whose failure

times are independently and identically distributed with p.d.f. given by (1).
Based on the first r observations, the likelihood function becomes

’n' " a «
L(a, B, x) = mo/ﬂr <Hmf‘_16_ﬁxi) e—("—”ﬁmr,o <z <T9< ...< Ty,
’ i=1
x = (21,22,...,2,)
T
ol —BZxa,—(n—r)xa, r
! — _1
B (n—r)'(aﬁ)re = [=57"
’ i=1
For the remaining (n-r) items let ys = z,45, the time to failure of the sth item,

1<s<n-r.
Then, the conditional p.d.f. of the failure time of the sth item, 1 < s < n — r, given
that r items have already failed, is given by
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—Bya N\ k(s.4)
. s—1 e Bys
= D(s)aBys™ Z ( > <e—Tm?> 1y Ys > Ty

where

),m(s)zn—s—T—Fl,k(s,j):n—s—r+j+1.

Now, in choosing the prior for («, 3), we note that for the one parameter exponen-
tial family, the most popular choice of prior is the conjugate prior gamma distribu-
tion. More generally, one can use a non-conjugate prior, but this does not change the
qualitative conclusion that if the value to be predicted is sufficiently large, the max-
imum likelihood estimator performs better than the Bayes estimator under squared
error loss (see Bernardo et al., 1998). Following the above argument, we consider the
exponential-exponential prior density for (a, 3), given by

g(a, B) = q1(B | a)g2(v),
where

q1(Bla)=Lte Pl a,8>0

g2(a) = e/ a0 > 0,
so that

g(a, B) = %e_(%Jrg),a,ﬂ,H > 0.
The joint density of x, o and 3 therefore is g(«a, 8)L(c, B, x ).
Hence the density of x comes out as

n! 1

(n—r)
sz

B—l

where
r
. e=/00r ] [
Bl=T(r+ 1)/ - =1 — da.
0 <Zazf‘ +(n—r)zd + 1/a>
i=1

The posterior joint density of o and 3 given x is therefore given by
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—Bgm—nrmfr

gl 8] x)=Bar'gre (i 0)e sz,a,ﬁm

Hence the Bayes predictive density of y; is

flys| x) = he(ys | a, B)q(e, B | x)dadB
[

s—1
= (r+1)D(s)> Aj(s)slys | x)/To( x),
§=0
where
A= 57
J
0o y?ilnx?
Lty | x) = faremolt— = = da
0 [g+ng+<s—j—1>wg+k<s,j>yz]
i—1
Ip(x)= /O‘He_a/e — T da

0 é—i—Zz?-ﬁ-(n—T’)x%
i—1

A 1006% prediction interval for ys = z,45,1 < s < (n — ), will therefore be given by
[[(x),u( x)] where Prli( x ) < z,+s <u( x)] =0, and 1( x ) and u( x ) satisfy

L40 nd Prfys > u( x)] = =2, (2)

Priys > 1(x)] =

As the Bayes predictive distribution of ys is absolutely continuous, I( x ) and u( x )
will be uniquely determined from (2).

To find /( x ) and u( x ) we note that for any A > 0,
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Priys> A x) = /f*(ys! x)dys

[e.e]
= (r+1)D ZIO /I]Sys|xdys,
A

1
= i d
/ s, x ) + k(s, HAa]r 1o
0
where
a]s( :_"’_Zw +3_j_1)
Special Cases
(i) For s =1,
Przep >2A | x) = (y1=2A] x)
= /f*(zn | x )dy
A
~ -1 —a/OH:L,
= d
/a01 (a, x) n—r))\a]T’H “
0
I(x) ~’ Y
where

(ii) For s =n —r,

131
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Przn 2 Al x) = (Un—r2A] x)

|
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*
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—
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”
arflefa/GHxlq
i=1

G+ Dlagn—r(a, )+ G+ DA

da.

Simulated Illustration

We generated a random sample of size 20 from Weibull («, 8) with (a, 8) generated
from exponential-exponential prior having prior parameter § = 2. The ordered ob-
servations are 0.1454, 0.1579, 0.1636, 0.1745, 0.2013, 0.2295, 0.2375, 0.25583, 0.2646,
0.2671, 0.2710, 0.2725, 0.2746, 0.2804, 0.2959, 0.3207, 0.3261, 0.3261, 0.3582, 0.3748.
Suppose censoring is done at r = 8 so that the available ordered failure times are
0.1454, 0.1579, 0.1636, 0.1745, 0.2013, 0.2295, 0.2375, 0.25583.

Then a 95% Bayesian prediction interval for the next failure time viz. xg is obtained as
(0.257, 0.401), and a 95% Bayesian prediction interval for the time to last failure viz.
x90 18 (0.378, 0.700). We note that the actual failure times lie within these intervals.

3 Bayesian Multi-Sample Prediction

Let z1,x9,...,z,, be the ordered failure times of the first ry items failing in an initial
sample of size ng taken from Weibull (o, 3) distribution, given by (1). Let subse-
quent samples of sizes nq,nog, ..., ng respectively be chosen. We shall use the Bayesian
approach to predict the first failure time in a sample based on the earlier samples.
Let z(;) denote the smallest order statistic in the jth sample and, for simplicity sake,
let us write

Yj :ZEj(l),j = 1,2,... ,k‘.
The p.d.f. of y; is given by
hi(y; | o, B) = mjaBys ™ e ™y > 0,5 =1,2,... k.

Based on available data x= (21, z2,. .., zy,)" from initial sample of size ng, the posterior
density of (a, 3) is given by
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where

ro+1

Therefore, for sample 1, Bayes predictive density of ¥ is

fion ] x) //m (11 | @ B)qo(e, B | x )dfda
00

ro
% i [
= Bonlf(ro + 2)/ ro —a/@ =1 ro+2 da
0 14 Z:L’Za + (no — ro)x2 + niyf
= Bl_l, say
where
_ L(x)
Byt = 1(ro+1 —,
1 ( )[0( X )
T0
0 ol | 5
6 i=1
ILi(x) = /ofoe a/ - L g do
0 1y fo‘ + (no — ro)x +n1yf
i=1

For sample 2, the posterior density of («, 3) given x and y; is given by

qi(c, B x,y1)ooh1(y1 | o, B)go(e, B x).

Therefore,

qi(a,B| x,y1) = Bihi(y1 | @, B)qo(e, B | x).

Hence, Bayes predictive density for ys is



134 International Journal of Statistical Sciences, Vol. 6s, 2007

f;(yQ | X 7y1)

To
= ngny B1T(ro + 3)/04T0+1e_°‘/9 =1
0

:E.
o 2

é—i— E z3+(no—ro)wg + E niyy
i=1 i=1

73 da

j Sy
[2( X ) — /am-l-le—a/G ( i=1

0 [4—5 ' +(no—ro)x +E nzyll

Proceeding this way we get, in general, Bayes predlctlve p.d.f. of y; as

ro+3 da.

. B L Ii(x)
fj (y] | X 7y17y27"'7yj—1) _nJ(TO +J)mv
where
o
~ Hy (H)
Ij(g):/a"oﬂ_le—o‘/@ = o de, j=1,2,... k.
o
0

1
E+ g -’E?‘l' no— 7‘0 -'Ea + g myl

=1
Hence, for any A > 0,
P?"(y]| X7y17y27"'7yj1) = /f] y] _7y17y27"'7yj—1)dyj
_ j 1(5)
Ig—1(§)

—da, j=1,2,... k.

j—1 0
- (H) (Hw?)
Ta(x) = farii el s
0 |i1 +Z & +(no—ro)wd +Z"191 +njAe
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Clearly, Tj1(x)=1Ii—1(x)at A=0.

To obtain 100% Bayesian prediction interval for the first failure time in the jth sample
we therefore solve for A in the equations

T (
I

It is noteworthy that based on the available information, prediction is done at any
stage by just knowing the sample size at that stage.

)_1+5an X
) 2 Iia(x) 2

X
X

Simulated Illustration

We generate 8 independent samples each of size 20 from Weibull (a, 8) distribution,
with («, 3) generated from the exponential-exponential prior distribution having 6 = 2.
For the first sample, which is marked as the initial sample, suppose censoring is done
at rg = 8. The following table shows the first rq ordered observations of the initial
sample and the first order statistic in each of the subsequent 7 samples :

Sample (0) 0.2029 0.2069 0.2080 0.2139 0.2208 0.2211 0.2251 0.2301
Sample (1) 0.1881
Sample (2) 0.1810
Sample (3) 0.1838
Sample (4) 0.1968
Sample (5) 0.1666
Sample (6) 0.1941
Sample (7) 0.2080

The 95% Bayesian prediction bounds for y; = T;1),J = 1(1)8, are shown in Table 1
below :

Table 1

j Lower Bound Upper Bound
1 0.153 0.361
2 0.183 0.355
3 0.132 0.365
4 0.173 0.402
5
6
7
8

0.162 0.321
0.172 0.421
0.210 0.382
0.165 0.362




136 International Journal of Statistical Sciences, Vol. 6s, 2007

Acknowledgement

The authors thank the anonymous referee for fruitful suggestions, which immensely
helped to improve the presentation of the paper.

References

Abd Ellah, A. H. (2003) : Bayesian one sample prediction bounds for the Lomax
distribution, Indian Journal of Pure € Applied Maths., 34(1), pp. 101-110.

Aitchison, J. (1964) : Bayesian tolerance regions, Journal of Royal Statistical Society,
B, 26, pp. 161-175.

Aitchison, J. and Sculthorpe, D. (1965) : Some problems of statistical prediction,
Biometrika, 55, pp. 469-483.

Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1992) : A First Course in Order
Statistics. John Wiley & Sons, New York.

Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M. (1998) : Bayesian
Statistics. Oxford University Press.

Khan, S. and Chattopadhyay, A. K. (2003) : Predictive analysis of occupational mo-
bility based on number of jobs offered, Journal of Applied Statistical Sciences, 12(1),
pp- 11-22.

Khan, S. (2004) : Predictive distribution of regression vector and residual sum of
squares for normal multiple regression model, Communications in Statistics : Theory
and Methods, 33(10), pp. 2423-2443.

Khan, S. (2006) : Prediction distribution of future regression and residual sum of
squares matrices for multivariate simple regression model with correlated normal re-
sponses, Journal of Applied Probability and Statistics, 1, pp. 15-30.

Lingappaiah, G. S. (1986) : Bayes prediction in exponential life-testing when sample
size in random variable. IEEE Transactions on Reliability, 35(1), pp. 106-110.



