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Abstract

Estimation of the second term of the Edgeworth expansion for the proba-
bility of hitting to balls in Hilbert space of the sum of independent iden-
tically distributed elements is produced. Basing on the results obtained, a
conjecture on a proper form of the error in the so-called brief Edgeworth
expansion is proposed. We suppose that information on not less than six
nonzero eigenvalues of the initial covariance operator is necessary to get
the error bound of the order O(1/n) in contrast to the well-known F. Gotze
conjecture, in which five eigenvalues play the related role.
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Let H be a separable real Hilbert space with the norm | - | and the inner product
(,1). Let X,X;,Xo,... be H-valued ii.d. random variables with EX = 0 and a
covariance operator 1. Let Y be a centered Gaussian random variable with the same
covariance operator.
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Denote
1 n
S, = % ;:1 X;.

Let a € H, r € R. The expansion of the probability F,(r) = P(|S, —al* < r) in

powers of n~1/2 is said to be the formal Edgeworth expansion of Fj,(r). We write
2 _ 2 — Qu(r;a)
(IS —aff <) = P(Y - aff <)+ 305, )
Define
Q1(r;a)
) =5, <) Ry o <) 2453

We shall call any estimate of A, (a) by the estimate of the remainder term in the brief
Edgeworth expansion of F,(r).

As C.-G. Esseen noted in his famous work in 1945, this problem is closely connected
with a problem of number theory, namely with the problem of optimal bound of the
difference between the number of integer points in a multivariate ellipsoid and its
volume. The probability problem was being decided in [4; 5; 8; 14 - 16]. Some results
in the corresponding number theory problem were also obtained in [2; 3; 6].

In [4; 5; 8; 14 - 16] a proper dependence on the number of summands O(1/n) ,
and on the moments (4 and ﬁ§ is found for the error.

In connection with this we remind the following fact which is well-known to the
specialists in Gaussian approximation for multivariate distributions. The error of
Gaussian approximation on balls in a many-dimensional space is inversely proportional
to a positive power of a product of eigenvalues of the initial covariance operator. If
the space is infinite-dimensional, the sequence of the eigenvalues tends to zero. Then
an estimate of the error is so much the worse, the number of eigenvalues, incoming to
the estimate, is more. Consequently, to find the true dependence of the error from the
covariance operator is an importance problem of probability theory (see, for instance,
the works by S. Nagaev, V. Chebotarev [12], and V. Senatov [18]).

It was in [14-16] shown also that the dependence of the error on the operator T is

expressed, in particular, with the help of the factor A1_34/ 13, and in [8] with the help of

the factor Al_zl/ %, The following question remaines open until now: what dependence
of A, (a) on moments, the covariance operator and the center of the ball a, is regular
in fact?

Since the first "rejected” term in the brief expansion is the expression Qs(r;a)/n,
by analogy with the Taylor expansion a regular bound of Q2(r;a) might approximate
us to the answer the question formulated.

In what follows we use the notations: o2 > 03 > ... are the eigenvalues of the
operator T', e1, ea, ... are the following eigenvectors,
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l
M=][ o2 o =BIX Bu=BIXF, Bu(a) = El(a, X).
j=1

The symbols ¢, ¢; (i =1,2,...) will denote absolute constants.
In the paper we prove

Theorem 6. The following bounds of Q2(r;a) hold,

' B4 B3 Ballal* +afc®) | B3(lal® + |al*c?)
sgp |Q2(r;a)| < C<A2/5 + N3/ NG + A6/18 ) (2)
5 7 9 13

< cB10?[1/AY" + (lal® + [alo)/A5]. (3)
Moreover,

sup](;) (7‘ a)\ <c —8 {
273 > C
r (\213/2

Ble) | )y, o 1E80) | ]

8] ey 2|
o8 04] Aiéz o2 T 56

The analysis of the estimates (2) — (4), and their proofs lead us to the following
conjecture.

Conjecture 1. If H is the space of the dimension d > 12 (the case d = oo is
considered too), and 012 # 0, then

An(a) < en L [5(0) + 8(a)], (5)

where
5(0) = Bahg 2 4+ B0, 8(a) = v (a)Ag? + ya(a)ATy (6)
0<7j(a) = 0asl|al =0,j5=1,2, (7)
(@) < Balal’, ala) < B3lal®,  when |a| > o. (8)

In particular, this means that in the case a = 0 the error A, (0) depends on siz (or
not less then six) the first eigenvalues of the covariance operator 7', and this contradicts
to the well-known F. Gotze’s conjecture [4,5], according to which A,,(0) must depend
only on five eigenvalues of the operator T
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Note 1. Remark some properties of the bound (5). The right-hand side of (5) is the
sum of two quantities, where the first one doesn’t depend on a, and in the second
one the dependence on a is expressed by the properties (7) and (8). The quantities
5(0) and d(a) depend on the covariance operator T' differently. One can say that §(0)
depends on T weaker, than 6(a): the summands, which §(0) consists of, contain the
factors A21/2 and Aglm while §(a) contains as the factors, Aglm and A1_21/2. If a =0,
then the bound (5) becomes the more simple inequality,

AR (0) < en165(0) = en~t(Bahy V2 + 820G 7). (9)

Comparing the summands in (6), we note that in the summands, containing the
factor 4, the dependence on the covariance operator is weaker, than in the summands,
containing 3. A balance arises: for each summand in (6) an amplification of the
dependence on the moments is accompanied with the weakening of the dependence on
the covariance operator.

As to yj(a), one can assume, they have the following form: v (a) = f4(a), y2(a) =

B3(a).
Note 2. As an example of a bound, containing two parts in a sense of Note 1, we can
cite the estimate of S. V. Nagaev [11],

s <0 el <ol

o |l + |a|3/203/2)
1/2 1/2 :
4/ AG/

improving the following known result [9;19],

3, .3
sup [P(|S, — af? < 7) = P(IY —af <1)| < % |a|A1J;20
r 6

In what follows the symbol [ will denote the end of the proof.
2. A comparison of the known results with Conjecture 1
Denote

_ /1 _ /1 _ E[(X,¢))*
L= Buo’ /N, Tpala) = Bu(a) /N, L= 112?%(1 05? .

The following bound of A, (a) obtained in [1;15;16], using [10;14].

Theorem 7. Let H be a Hilbert space of the dimension d > 13, and 013 # 0. There
exists an absolute constant c such that for every a € H,

IS 2
An(a) < = (Pans + T3 15+ L3 (02/A5"°) + Tusla) + 13 15(a) ). (10)
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This bound of A, (a) yields the more precise dependence on the covariance operator
T and the center a, than the following result by V. Bentkus and F. Gétze [5]: if H is
a Hilbert space of the dimension d > 13, and o135 # 0, then

602}{E [ X['1(x] < ov/n)] L E [IXPPI(X] > ov/n)] }(1+Ia|6>_

Anla) < exp {—2 o'n ady/n o6

013
Formulate also the bound proved by F. Gotze and V. Ulyanov in the preprint [8],

8 4 .4

An(a) < 5[54( of ool o >+B4(a) (a4+52(a)>]. (11)

nbUMALY AT agagt Ay

Note 3. Tt is obvious that in the case, when o, is small with respect to the previ-
ous eigenvalues o2, ..., 03, the bound (11) is better, than (10). But one can find
conditions on 7', under which the relation between these bounds is inverse. Indeed,

let 0% = lfcr]z =1, 07 =0} = 1/4, 03 = 1/Vk, 0]2- = (1/2 — 1/VE)/(k — 3) for
4 < j < k. Let k— oo. Then, as immediate calculations show, firstly, in the bound
4

(11) the quantity # majorizes the quantity ﬁ Secondly, in the bound (10)
919

9 12
2

ﬁ majorizes F§713 (we may consider that E|(X,e;)|> > ¢85, 1 <j <9, for some

4 . L2 . T
¢ > 0). And, moreover, % majorizes AQ—‘/’Q This means, that for the distribution
g

9°%9 9
of X under consideration, the bound (11) is less precise than (10).

It is shown in [8; Lemma 2.6] that in the Euclidean space R'3 there exist a distribu-
tion of X and balls with centers a: |a| > 1, such that for given values o2, ... 0%, > 0
of the eigenvalues of the operator T,

liminf nA,(a) > CA1_21/2|a|654.
n—oo
This result implies the following

Claim 1. Any explicit bound of Ay (a) has to depend on the first 12 eigenvalues

of T.
Note 4. Conjecture 1 is in accordance with Claim 1. In (11) the part, depending on a,
is regular from the point of view both of Claim 1 and Conjecture 1. From this point
of view, the part, depending on a, in (10), may be considered as almost regular. But
the inequality (10) have other advantages with respect to (11). In contrast to (11), it
reflects the property (8), and the balance property as well (see note 1, p. 112). On
the other hand, it should be noted, that the parts of the bounds (10) and (11), which
don’t depend on a, are far from the optimal in the sense of Conjecture 1.

3. Basis of Conjecture 1
The following expansion corresponds to (1),

> Qult;
Eexp{it|S, — a*} = g(t;a) + Y Qn(u/f)a (12)
v=1
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where g(t;a) = Eexp{it|]Y — a?}, Qu(t;a) = Jo~ €' dQ,(r;a). Note that there are
different algorithms of calculation of @, (t;a), and the proof of relative identities is a
particular problem (see [13; Subsection 1.4])

Now we shall find C/Q\g(t; a).
Let H = R. It is well known [17] that in the formal Edgeworth expansion

EztSn_ezt22/2< ZpthX)

nv/2

the functions p, (it; X) have the form

it X)= 3 TL L0 gsa(X) /(a4 200 g, (13)

{anqlty =1

where 7,4 2(X) is the cumulant of the order ¢+2, Z is the sum over all nonnegative

{anq}ty
integers fu1,. .., fty, such that Zgzl Qg = V.
Express the cumulants s, 2(X) via moments of X, and represent p, (it; X) as the
following sum,

. (ONE M TT v
po(it; X) = Z ay (1, - -+ s Jm) ()M H EX], (14)
q=1

where M = 7", jg, and Zﬁ( denotes the summation over all nonnegative integers
s -5 Jm such that

2<j,<v+2, M<v+2m, m<v. (15)

Let a; be independent standard Gaussian variables, which doesn’t depend on Y
and X;, j =1,...,n, too. Denote

Oé:(Oél,Oéz,---), (x7a)zzaj(x7ej)a
gi(t) = (1 - Zitajz)_lp, Ax = Zg] (z,ej)ej, s = (2it)'/2.

Let {jq}yty be a fixed sequence of nonnegative integers. Define Eb(m’{jq}) as the
summation over all matrices {vpq},’,—1 and sequences {t,}7"; of nonnegative integers,
such that for every 1 < ¢ <m

Vg + Vg +tg = Jg, (16)

_ m ~ m
where vg = 32001 vpg, Vg = D500 Vep-
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Lemma 1. The following representations of coefficients @,,(t;a) from (12) hold,

@,,(t; a) = g(t;a)Eqapy (s; (A X, a0 — sAta)) = Eeiﬂy_“FpV (s; (X, a+s(Y — a)))

v - milja}) s2(M—T)
— gty S )COS(WM)au(jl,...,jm)<qu!> i) .
q=1
x Eﬁ [(Atht, :4ta)tq ﬁ (AtXp;jAt'Xq)qu]} (17)
q=1 q p=1 'pq-

=" 0o im) (11 0)
pmoia}) 2 M0y e 1 (X Y — @)’ 1 (Xp, Xg)”
XZ Ja TEet\Y IQH{ q o a H P ! ]7

where a,(j1,-..,Jm) are the quantities from (14), r = Zz:qul Vpg-

Sketch of the proof. We suppose temporary that X is a bounded random variable.
The following equalities hold,

, > (X, )
:Eezt|5’n—a|2 — E.E es(Sn—a,a) — Eaes2(Toz,oe)—s(a,a) 1+ Pv (3’( ’
[9] or [1, p. 90] Sn 1, p. 178 ( Vz::l nv/? >
B po(s; (A X, a — sAia))
1, p._179] (1 + Z nv/2 > (19)
_ t (1 (1+Zzﬁ(l/ a”‘h’y—'/é’jm)SMEaHEXq(Ath’a_SAta)jq>
1, p 177] n o
(20)
t) ay(J1,-- -5 Jm Y —a i )
= g(t;a) +ZZ ( H%MSMEe Y ‘2HEXq(Xq,Oz—|—S(Y—a))]q.
1, p. 222] n q=1
(21)
Moreover, by (20) and [1, p. 141],
i a ()
EeitlSn—al? =g(t;a {1+Zny/2z cos(mM)ay (j1,-- - jm <qu)
q=1
b(m.{jq}) s M) (A X, Ava)le T (A X, Ay X )V
> 7 Ell [ t,) H Vo] ] - (22
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Analogously, by virtue of (21) and [1, p. 141],

25t g+ 5 ([l
v=1 =

o(m.{jg}) s2M=T) (X, Y— (X X
X Z ( {]q}) S 5 Ee’lt‘Y—alz H |: q» a H D> ] (23)
q=1 p=1
Lemma 1 follows from (19) — (23). O

Denote
fq(a) = (Ath,Ata), Epg = (AtXp,Ath), nq(a) = (Xq’Y - a), Nlpqg = (Xanq)a

I(A) = {17 if a condition A is fulfilled,

0, otherwise.

We shall say that the condition 4, is fulfilled (or p,(it; X) satisfies the condition

Ay), if for some sequence ji, ..., jm from (15) there exists a matrix {vp,};’,—, such
that in the equalities (16) we have t; = --- =t,, =0, i.e.
I/q—l—ﬁq:jq, g=1,...,m.
Notice that py(it;€) = EX 3 doesn’t satisfy the condition A;, but
2
pa(it; X) E HEX3 (E X4 3HEX]2> (24)
j=1

satisfies As. We introduce this definition to select cases when @V(t; a) may be splitted
on two parts: a part depending on a, and the second one not depending on a.

Lemma 2. The following inequality holds,

Qultsal < O ot (1o +14?)

[(E)” 2] ) (0% + o )}

Proof. Notice that
[€a(a) 7y | < 1 X[ 7P| X 70 af"

Since vy + Vg +tg = jg, M = Z;n:l Ja»

'E T] @ T] e
q=1 p=1

m
<l ] 85,
q=1
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Now we shall use the Liapunov inequality: if 2 < < N and E[¢|V < oo then

B < (B2 VY He) (25)
where EF¢ = (EC)k Putting in (25) u = j4, N = v + 2, we obtain

E|X | < (qu—2’X‘u+2 Eu+2—jq‘X’2>1/

It follows from here and the condition (15), that
2(vm+2m—M)/v

(M—-2 g _y_
Hﬁjq §5V+2 m) u0_2(um+2m M) /v = Buio G TeE YD §5u+2UM =
v+42
Consequently, by Lemma 1,
~ c(v) Byt 1(v) _ _
1Qu(t;a)| < Tﬁglg(t; a)d Mo Ma MR (26)

Notice that by the condition (16), 2r + > /", t; = M. Write up

Zﬁ(u) ’t’M—rO,M‘a’M—% _ Zﬁ(”) ([(27’ _ M) + [(27’ < M)) ’t’M_TO'M‘CL’M_zr.
It is not hard to see that

S (e = M M M a2 = 5 o = a)j) ¥ oM
<T(A)e() (o™ ¥ +[t]0?),

S Hor < MY M M2 = () S 12 < M) (tlo) M ((lal /o) + lal/o)
<a1(v) (o)™ + tlo?) ((lal /o)™ + lal/7 ).

Thus, Lemma 2 follows from (26). O
Lemma 3. The following equalities hold,
Qa(t;a) = g(t; @)K (t; a), (27)
where
1[s"™ 5.3 s' 2 2 3
K(tia) = § |5 ) + - (3800306 + 286 ()6 Bel(@)

+ 5 (B (a)én + Baa(@)()eh, + sBel(a) - E2§%<a>)]
6

+ 5 (5Bené06n + 3 BEL + BE(@)En - 2B ()6 ()6 — B (0)Bé )

%(Esn 2 - B&h)),
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and

. . . 12 10
Os(t:a) = Bt~ {% [% (@) (a) + 3 (3nt(@nd (@ma + 2m (@i (@)

1
5 (m @@ + m@m(ai + 3ot - @B )]
s8 /1 1
+ (5771177127722 + g?fﬁ + 03 (@)m1 — 2 (a)n2(a)mz — 77%(@)7722)
84
+ (77%1 — M1M22 — ?7%2)) } (28)

Moreover, the following inequalities hold,

@a(t:0)] < c|g<t;a>|{54 (1l + 1t1al + £2) + 83 (#91al® + af* + |11

< Sl (o + 1) [(5)" ()] + ot + 07}

Proof. Using Lemma 1, we obtain from (24), that

(29)

PN 1 =0(2.(3.3) s206-1) 2 rela(q) [ grm b(1,4)) s2A—EEN (a)ET
CECNIED DR | (RS I EE5S

2 a=1 tq! p=1 Vpq! 27 1 vy !
3-2121 b(2,(2,2)) 82(477”) 2 é‘éq (a) m Zl)/gq B
Y Z or EH [T H ﬁ}} =g(t;a)K(t;a). (30)
q=1 p=1

At first we consider K (¢;0). Note that K(t;0) coincides with the sum of those
products, which depend on zero-sequences {t,}. Write up the sums Zb@’(g’?’)) cee
S L and S322) L in the case a = 0 in detail.

In what follows, 1v,, are nonnegative integers.

There are exactly six matrices
vy Vv e ”
< - y12>’ satisfying the condition
22

V21

v+ o1 v Hrvig =3, Vi + Voo + oy + og = 3.
—— N — ———

V1 U

1%1% v2 2
11 10 0 1 0 2 0 0 0 3 . & _
They are (O 1), (1 1), <2 0>, (1 0), <3 O>’ <0 0). Since here r:p%lupq—&
§EE L 8—6(2E£ 1o + 2251260 +2E5§2> = K35 (t;0) (31)
=53 11812822 ol 31 ) = BBl
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Analogously, there are only 3 matrices {qu}%q:l, such that

2v11 + o1 2 =2, vig + oy + 2r00 = 2.

10 00 0 2 .
They are <0 1>, <2 O>’ <0 O>' Since here r = 2,

(2,(2,2)) st E¢}
3 =5 (E2§11 +2 2!12> = K(3,2(£;0). (32)
Moreover, it is easily seen that
b(1,(4)) sSTEE
Z =g = K4)(t;0). (33)

It follows from (30) — (33) that

1 1
K(t;0) = §K(3,3) (t;0) + K4)(t;0) — §K(2,2) (t;0)

g6

=——%ﬁgm&waé}+f@%2—E% ~E&)|. (39)
16 3 12 ] 11 11 127+

Let a # 0. There are exactly 8 matrices {vpq}2 1, such that

2v11 H o1 e+t =3, vig ey + 2000+t =3

with some nonnegative integers ¢y, ta, t1 +t2 > 0. Let us enumerate all such matrices,
at the same time calculating corresponding values of r, t1, ta:

0 0 r=0, (0 0 r=1, (0 1 r=1, (1 0 r=1,
0 0/ ti=t2=3 \1 0) t1i=t2=2" \0 0) t1=t2=2 \0 0/ t1=1,t=3
0 0 r=1, (1 0 r=2 (0 0 r=2, (0 2 r=2,

0 1) t1=3,t2=1 \0 1) t1=ta=1 \2 1) t1i=ta=1 \0 0) " t1i=to=1

Hence, in view of (30) and (31),

b33 . 12E*E(a) s"  E&(a)(a)ér2 E&(a)énEE (a)
2 = Kigay (50)+5 =50 55 (20 0 3| )
s® E¢ (a)é2(a)é?
+ 5 (Ba@en + 22RO _ k). (39)
Next, there are exactly 5 matrices {qu}z%,q:h such that

211 + 91 + Vi + 11 =2, Vg + Vo + 2190 +tg = 2
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with some nonnegative integers t1, to, t1 + to > 0. They are
0 0 r=0, (0 O r=1,
0 0)°t1=t2=2"\1 0) t1=ty=1
01 r=1, (1 0 r=1, (0 0 r=1,
0 0) t1=ta=1 0 0/ t1=0,t=2 0 1) t1=2,t3=0.
In view of (30) and (32),
Ef%(a)Eﬁll)

2!
= K(Q_’Q) (t;a). (36)

b(2,(2,2)) E2 2 a 86
3 o= Ko9)(t;0) + s° ;;12(, )4 ) (2E§1(a)§2(a)f12 +2

It follows from (30), (35), (36) and the equality

4 6 2
Zb(l,(4)) o — Ky (5:0) +38Ei!(a) N %Eﬁl(;!z)in — K (t:a),
that
1 1
K(t;a) = §K(3,3) (t;a) + K (t;a) — §K(2,2) (t;a)
1 812 810
= K(t0) + 3 [FEQG”(a) + 2 (3EgH (@) (0)¢12 + 2B ()61 EE] ()
4
+ (B + B g + 25 - Béw)]

56
+ 5 (Bt - 2B6 (@2(0)62 ~ B (@EL ). (37)

The equality (27) follows from (30), (34) and (37). The formula (28) arises from
(27) and the last equality in (18). The bound (29) follows from the immediate estimate
of (37).

O

Notice that the bound (29) is more precise than Lemma 2 for v = 2.

Note 5. For the sake of comparison, we give the representation of @,,(t; a) by F. Got-
ze [7],

; (38)

~ n 2
Q.(t;a) = p,(D)Eexp {it‘Y —a-+ Z /\qu‘ }
e AL ==X, =0

where p,(D) is the differential operator, defined by the formula (14), in which the
moments E&;? are replaced by the partial derivatives Di\‘;, and the expression it is
replaced by 1.

Notice that the calculation of @g(t; a) in detail, using (38), is not simpler the proof
of Lemma 3.
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Lemma 4. Let d > 0 and an integer | > 2d + 3. Then for every a € H,
o
_ —(d+1)/1
/ 119]9(t; @) dt < 22 AT D/ (39)
—00

One can find the proof of (39) in [15;16].
Lemma 5. The following bounds hold,

' B B3 Ballal* +a0®) | B3(al® + |al*c?)
SUP |Q2(r;a)] < C(Az/s + A3 + I T A6/13 > (40)
5 7 9 13

< 810 [1/A77 + (lal® + la*o*) /AR,
Proof. Using the inversion formula, the estimate (29) and Lemma 4, we obtain

’@2(?5;601

dt
1

o
sup |Q2(r;a)| < ¢ /
" —0oQ

gq/wmwm&%w+m%ﬁmw%w@+ﬂmMﬂw@+wma

2|6 2 2, 32 2, 32
< Blol PGP+ ) | Bl g,
Ajs Ag A7 A
Lemma 5 follows from (41). O

Note 6. Apparently, more refined methods (see, for instance, [8, Lemma 2.2]) allow to
obtain, instead of Lemma 5, the following bound,

Bs B3 | Balla* +al*o®)  B3(al° + |a]*c?)
sup |@2(r; a)| < C( izt ae T 172 + 172 (42)
" AVZ Al A AL
< ¢410* [1/Ag* + (af° + [ao") /A1),

Conjecture 1 is based just on the inequalities (40) and (42).

The folowing statement is proved in [8].

Lemma 6 [8; Lemma 2.2]. Let 7 > 0, b € R, b # 0. Let M be a positive
integer, Z = (Z1, ... , Zan) be Gaussian random vector with independent coordinates,
EZ; =0, EZ]2 = 0j2-, 0?2 >02> .- >02,>0 acR*™. Then there exists a positive
constant ¢(M), such that

c(M)

1/2 °
Ashs

.
‘/ tM=1E exp {z’t|Z—|—a|2}e’tbdt‘ <
-7

The next lemma is a consequence of Lemma 6.
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Lemma 7. Let M be a positive integer, r € R, a € H. If the dimension d of the space
H satisfies the condition d > 2M then for every T > 0,

= ‘/T (M—1 —itr g it]Y —af? dt‘ < C(M)‘
- AY

2M

(43)

Lemma 8. For every sequence of nonnegative integers {tp}]f, and elements x, € H,
p=1,...,k, we have

. k
I= ‘ / tM_le_mE<eit|Y_a2 H(Y — a,$p)tp> dt‘
c(M;{tp})o (a, )] |2p | |(aa$j)|tj
< AL H T2t Z tp H o2t

g
1<p<k 1<j<k

2M
J#p
n Z |2, |71 ) |25 |72 H |(a,z;)| H |33;n|t”
oter otra o2t
1<p1<p2<k 1<5<k
J#p1,p2
where J = 22:1 tp
1
Proof. Let Y1,...,Y 11 be independent copies of the random variable ——Y,
1f 1 J+1 p p NoES)

aqg = a, q=1,...,J 4+ 1. We have
1T T * v

k J+1

k t t
pl;[l(Y —a,xy)"” = Z Z (H S, ({mqp}J—l—l)) pl;[ 1;{ gz,

{mql}J+1 { Mgk }]+1 p= 1

where Sy, ({mqp q‘];rll> are the polynomial coefficients, where for each collection of the
sequences
(mi1,ma1,. .. ,myy11),  (mar,maz, ..., myg12), ooy (Mag, Mok, .-, Myy1k),

there exists 1 < qo < J + 1, such that mg,, = 0 for all 1 < p < k. Let for simplicity
qgo = 1. Then

k J+1 k J+1
2 2
e [T TL0 = agory)™ = B [T T[ 0~ agoy) ™
p=1gq=1 p=1 q=2

k J+1
it| Y1412
KHH — ag,z,)™ )Eyle’ 1+y1] ]7

p=1 q=2
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where y1 = —a + Z;];l Y;. It follows from here and Lemma 7 that

51 ty
1:‘

SRS <H5tp<{mqp}J+1)> [(HH o2y

{ ql}JJrl { qk}JJrl p=lg=1

X /T Ey, itV pM—1 o —itr dt} ‘ < a{t})
1 —
-7

Ashi
J+1 J+1
: E[<Z<|<Yj,x1>|“ Fla)™) - (00wl + |<a,:ck>|tk>)]. (44)
j=1 Jj=1

Using the inequality E|(Y}, z,)|" < ¢(J)o'|z,|™, and carrying out the square brackets
the expression 02/ in (44), we arrive at the statement of Lemma 8. 0

Lemma 9. The following estimate holds,

Bl | ), 0 1 B

+ co— .
o8 Aié2 o2 6

sup Qa(ria)] < 1=z | (45)
r AS

Proof. The function Q2(r;a) is defined only for » > 0. Let us extend it onto
the negative semiaxis in the even way. Since Q2(—00;a) = Q2(+00;a) = 0, by the
invertion formula (see [5, p. 381]), we have

y ) ~ t. y T . A t.
Qa(r;a) = 21 Jim_lim e_mM dt = 2i im / e_mM dt. (46)
T 1T —o00 e T 1 —o0 J_
e<|t|<T r

The expression (28) for Qs(t;a) contains of 15 summands. As a result we need to
estimate the following 15 integrals:

T T
b= [erend i@, = [ B o ) @ms di
-T =T
T T
, Iy = /e_mtEemY_“'znlmgg dt, Ii5 = / e_itrtEeit|Y_“‘2n%2 dt.
“r “r
We have

T
[1 _ /e—itrt5Eeit|Y—a|2(Y o a,X1)3(Y o a,X2)3 dt.
-T
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For the sake of brevity we introduce the following notations,

o= (B9 (B)) =80 5

o6 o3 o8 o

Using Lemma 8, we find that

o (B) ) (BYT] c0rt ) <D s T )

6 37 6 3 1/2 1/2 1/2
g g g g /\ A A
12 12 8

Now we prove the inequality

10 12 8

co g
’,[2‘ < 1/2 B (CL) < W Bg(a) + W B4(CL). (47)
10 12 8

We have with the help of Lemma 8,

T
|12|_' / it B MY~ 2(0) 2 (a) o dt

co'® (e, X1)% (0, X2)* X1 (0, X0)® | X0 X [ X0 [ Xol
= A2 E[ o8 * o6 * ot } o2 (48)
10
Denote Uj(a) = ‘(a’);j)‘, U; = M, 7 =1,2. It is easily seen that
o o
U} (a)U3(a)UhUs < (U7 (a) + UF) (U3 (a) + U3).
Then
20 \172 Bs(a)\2  B3(a) B3 | (B3
EU2(a)U2(a)U Uy < ( > ) +22 0 ( ) < 3Bs(a). (49)
In the same way we get
Bs(a)\? | (B3)\?
BUSU,U2(a) < B(URUS + USUS(a)) < 2[( S ) + (F) ] (50)
The bound (47) follows from (48) — (50).
Analogously,
L 8 8 12
—itry3 it|]Y —a co co
|I6| = ‘/e R = pt(a )dt‘ 7 Ba(@) < 57 Bala) + 75 Bs(a)

8 8 12
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and for the rest I, we have

12 8
Cc10 Co O
Ip < F Bg(a) + W B4(a).

12 8

The statement of the lemma follows from (46), (28) and the bounds, obtained for
L, p=1,...,15.

The proof of Theorem 6. Theorem 6 follows from Lemmas 3 and 9.
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