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Abstract

Estimation of the second term of the Edgeworth expansion for the proba-
bility of hitting to balls in Hilbert space of the sum of independent iden-
tically distributed elements is produced. Basing on the results obtained, a
conjecture on a proper form of the error in the so-called brief Edgeworth
expansion is proposed. We suppose that information on not less than six
nonzero eigenvalues of the initial covariance operator is necessary to get
the error bound of the order O(1/n) in contrast to the well-known F. Götze
conjecture, in which five eigenvalues play the related role.
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Let H be a separable real Hilbert space with the norm | · | and the inner product
(·, ·). Let X,X1,X2, . . . be H-valued i.i.d. random variables with EX = 0 and a
covariance operator T . Let Y be a centered Gaussian random variable with the same
covariance operator.
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Denote

Sn =
1√
n

n∑

j=1

Xj .

Let a ∈ H, r ∈ R. The expansion of the probability Fn(r) ≡ P
(
|Sn − a|2 < r

)
in

powers of n−1/2 is said to be the formal Edgeworth expansion of Fn(r). We write

P
(
|Sn − a|2 < r

)
= P

(
|Y − a|2 < r) +

∞∑

ν=1

Qν(r; a)

nν/2
. (1)

Define

∆n(a) = sup
r

∣∣∣P
(
|Sn − a|2 < r

)
−P

(
|Y − a|2 < r)− Q1(r; a)

n1/2

∣∣∣.

We shall call any estimate of ∆n(a) by the estimate of the remainder term in the brief
Edgeworth expansion of Fn(r).

As C.-G. Esseen noted in his famous work in 1945, this problem is closely connected
with a problem of number theory, namely with the problem of optimal bound of the
difference between the number of integer points in a multivariate ellipsoid and its
volume. The probability problem was being decided in [4; 5; 8; 14 - 16]. Some results
in the corresponding number theory problem were also obtained in [2; 3; 6].

In [4; 5; 8; 14 - 16] a proper dependence on the number of summands O(1/n) ,
and on the moments β4 and β23 is found for the error.

In connection with this we remind the following fact which is well-known to the
specialists in Gaussian approximation for multivariate distributions. The error of
Gaussian approximation on balls in a many-dimensional space is inversely proportional
to a positive power of a product of eigenvalues of the initial covariance operator. If
the space is infinite-dimensional, the sequence of the eigenvalues tends to zero. Then
an estimate of the error is so much the worse, the number of eigenvalues, incoming to
the estimate, is more. Consequently, to find the true dependence of the error from the
covariance operator is an importance problem of probability theory (see, for instance,
the works by S. Nagaev, V. Chebotarev [12], and V. Senatov [18]).

It was in [14-16] shown also that the dependence of the error on the operator T is

expressed, in particular, with the help of the factor Λ
−4/13
13 , and in [8] with the help of

the factor Λ
−1/2
12 . The following question remaines open until now: what dependence

of ∆n(a) on moments, the covariance operator and the center of the ball a, is regular
in fact?

Since the first ”rejected” term in the brief expansion is the expression Q2(r; a)/n,
by analogy with the Taylor expansion a regular bound of Q2(r; a) might approximate
us to the answer the question formulated.

In what follows we use the notations: σ21 ≥ σ22 ≥ . . . are the eigenvalues of the
operator T , e1, e2, . . . are the following eigenvectors,



Nagaev and Chebotarev: Estimation of The Edgeworth Expansion Terms 111

Λl =

l∏

j=1

σ2j , σ2 = E|X|2, βµ = E|X|µ, βµ(a) = E|(a,X)|µ.

The symbols c, ci (i = 1, 2, . . .) will denote absolute constants.

In the paper we prove

Theorem 6. The following bounds of Q2(r; a) hold,

sup
r

|Q2(r; a)| ≤ c
( β4

Λ
2/5
5

+
β23

Λ
3/7
7

+
β4(|a|4 + |a|2σ2)

Λ
4/9
9

+
β23(|a|6 + |a|2σ4)

Λ
6/13
13

)
(2)

≤ cβ4σ
2
[
1/Λ

3/7
7 + (|a|6 + |a|2σ4)/Λ6/13

13

]
. (3)

Moreover,

sup
r

|Q2(r; a)| ≤ c1
σ8

Λ
1/2
8

[β4(a)
σ8

+
β4
σ4

]
+ c2

σ12

Λ
1/2
12

[β23(a)
σ12

+
β23
σ6

]
. (4)

The analysis of the estimates (2) – (4), and their proofs lead us to the following
conjecture.

Conjecture 1. If H is the space of the dimension d ≥ 12 (the case d = ∞ is
considered too), and σ12 6= 0, then

∆n(a) ≤ c n−1
[
δ(0) + δ(a)

]
, (5)

where

δ(0) = β4Λ
−1/2
4 + β23Λ

−1/2
6 , δ(a) = γ1(a)Λ

−1/2
8 + γ2(a)Λ

−1/2
12 , (6)

0 < γj(a) → 0 as |a| → 0, j = 1, 2, (7)

γ1(a) ≤ β4|a|4, γ2(a) ≤ β23 |a|6, when |a| ≥ σ. (8)

In particular, this means that in the case a = 0 the error ∆n(0) depends on six (or
not less then six) the first eigenvalues of the covariance operator T , and this contradicts
to the well-known F. Götze’s conjecture [4,5], according to which ∆n(0) must depend
only on five eigenvalues of the operator T .
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Note 1. Remark some properties of the bound (5). The right-hand side of (5) is the
sum of two quantities, where the first one doesn’t depend on a, and in the second
one the dependence on a is expressed by the properties (7) and (8). The quantities
δ(0) and δ(a) depend on the covariance operator T differently. One can say that δ(0)
depends on T weaker, than δ(a): the summands, which δ(0) consists of, contain the

factors Λ
−1/2
4 and Λ

−1/2
6 while δ(a) contains as the factors, Λ

−1/2
8 and Λ

−1/2
12 . If a = 0,

then the bound (5) becomes the more simple inequality,

∆n(0) ≤ c n−1δ(0) ≡ c n−1
(
β4Λ

−1/2
4 + β23Λ

−1/2
6

)
. (9)

Comparing the summands in (6), we note that in the summands, containing the
factor β4, the dependence on the covariance operator is weaker, than in the summands,
containing β3. A balance arises: for each summand in (6) an amplification of the
dependence on the moments is accompanied with the weakening of the dependence on
the covariance operator.

As to γj(a), one can assume, they have the following form: γ1(a) = β4(a), γ2(a) =
β23(a).

Note 2. As an example of a bound, containing two parts in a sense of Note 1, we can
cite the estimate of S. V. Nagaev [11],

sup
r

∣∣∣P
(
|Sn − a|2 < r

)
−P

(
|Y − a|2 < r)

∣∣∣ ≤ cβ3√
n

( σ

Λ
1/2
4

+
|a|3 + |a|3/2σ3/2

Λ
1/2
6

)
.

improving the following known result [9;19],

sup
r

∣∣∣P
(
|Sn − a|2 < r

)
−P

(
|Y − a|2 < r)

∣∣∣ ≤ cβ3√
n

|a|3 + σ3

Λ
1/2
6

.

In what follows the symbol � will denote the end of the proof.
2. A comparison of the known results with Conjecture 1

Denote

Γµ,l = βµσ
µ
/
Λ
µ/l
l , Γµ,l(a) = βµ(a)/Λ

µ/l
l , Ll = max

1≤j≤l

E|(X, ej)|3
σ3j

.

The following bound of ∆n(a) obtained in [1;15;16], using [10;14].

Theorem 7. Let H be a Hilbert space of the dimension d ≥ 13, and σ13 6= 0. There
exists an absolute constant c such that for every a ∈ H,

∆n(a) ≤
c

n

(
Γ4,13 + Γ2

3,13 + L2
9

(
σ2/Λ

1/9
9

)2
+ Γ4,9(a) + Γ2

3,13(a)
)
. (10)
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This bound of ∆n(a) yields the more precise dependence on the covariance operator
T and the center a, than the following result by V. Bentkus and F. Götze [5]: if H is
a Hilbert space of the dimension d ≥ 13, and σ13 6= 0, then

∆n(a) ≤ exp
{cσ2
σ213

}{E
[
|X|4I(|X| ≤ σ

√
n)
]

σ4n
+

E
[
|X|3I(|X| > σ

√
n)
]

σ3
√
n

}(
1+

|a|6
σ6

)
.

Formulate also the bound proved by F. Götze and V. Ulyanov in the preprint [8],

∆n(a) ≤
c

n

[
β4

( σ8

Λ
1/2
12

+
σ4σ41

σ89Λ
2/9
9

+
σ9/2

σ49Λ
1/4
9

)
+
β4(a)

Λ
1/2
12

(
σ4 + β2(a)

)]
. (11)

Note 3. It is obvious that in the case, when σ213 is small with respect to the previ-
ous eigenvalues σ21, . . . , σ

2
12, the bound (11) is better, than (10). But one can find

conditions on T , under which the relation between these bounds is inverse. Indeed,
let σ2 =

∑k
1 σ

2
j = 1, σ21 = σ22 = 1/4, σ23 = 1/

√
k, σ2j = (1/2 − 1/

√
k)/(k − 3) for

4 ≤ j ≤ k. Let k → ∞. Then, as immediate calculations show, firstly, in the bound

(11) the quantity
σ4
1

σ8
9Λ

2/9
9

majorizes the quantity 1

Λ
1/2
12

. Secondly, in the bound (10)

L2
9

Λ
2/9
9

majorizes Γ2
3,13 (we may consider that E|(X, ej)|3 ≥ cβ3, 1 ≤ j ≤ 9, for some

c > 0). And, moreover,
β4σ4

1

σ8
9Λ

2/9
9

majorizes
L2
9

Λ
2/9
9

. This means, that for the distribution

of X under consideration, the bound (11) is less precise than (10).

It is shown in [8; Lemma 2.6] that in the Euclidean space R13 there exist a distribu-
tion of X and balls with centers a: |a| > 1, such that for given values σ21, . . . , σ

2
12 > 0

of the eigenvalues of the operator T ,

lim inf
n→∞

n∆n(a) ≥ cΛ
−1/2
12 |a|6β4.

This result implies the following
Claim 1. Any explicit bound of ∆n(a) has to depend on the first 12 eigenvalues

of T .

Note 4. Conjecture 1 is in accordance with Claim 1. In (11) the part, depending on a,
is regular from the point of view both of Claim 1 and Conjecture 1. From this point
of view, the part, depending on a, in (10), may be considered as almost regular. But
the inequality (10) have other advantages with respect to (11). In contrast to (11), it
reflects the property (8), and the balance property as well (see note 1, p. 112). On
the other hand, it should be noted, that the parts of the bounds (10) and (11), which
don’t depend on a, are far from the optimal in the sense of Conjecture 1.

3. Basis of Conjecture 1
The following expansion corresponds to (1),

E exp{it|Sn − a|2} = g(t; a) +
∞∑

ν=1

Q̂ν(t; a)

nν/2
, (12)
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where g(t; a) = E exp{it|Y − a|2}, Q̂ν(t; a) =
∫∞
0 eitr dQν(r; a). Note that there are

different algorithms of calculation of Q̂ν(t; a), and the proof of relative identities is a
particular problem (see [13; Subsection 1.4])

Now we shall find Q̂2(t; a).
Let H = R. It is well known [17] that in the formal Edgeworth expansion

EeitSn = e(it)
2σ2/2

(
1 +

∞∑

ν=1

pν(it;X)

nν/2

)

the functions pν(it;X) have the form

pν(it;X)=
∑

{q µq}ν1

ν∏

q=1

[
(it)q+2

κq+2(X)/(q + 2)!
]µq

/µq!, (13)

where κq+2(X) is the cumulant of the order q+2,
∑

{q µq}ν1

is the sum over all nonnegative

integers µ1, . . . , µν , such that
∑ν

q=1 qµq = ν.
Express the cumulants κq+2(X) via moments of X, and represent pν(it;X) as the

following sum,

pν(it;X) =
∑♯(ν)

aν(j1, . . . , jm)(it)M
m∏

q=1

EX
jq
q , (14)

where M =
∑m

q=1 jq, and
∑♯(ν) denotes the summation over all nonnegative integers

j1, . . . , jm such that

2≤jq≤ν + 2, M≤ν + 2m, m≤ν. (15)

Let αj be independent standard Gaussian variables, which doesn’t depend on Y
and Xj , j = 1, . . . , n, too. Denote

α = (α1, α2, . . .), (x, α) =

∞∑

j=1

αj(x, ej),

gj(t) = (1− 2itσ2j )
−1/2, Atx =

∞∑

j=1

gj(t)(x, ej)ej , s = (2it)1/2.

Let {jq}mq=1 be a fixed sequence of nonnegative integers. Define
∑♭(m,{jq}) as the

summation over all matrices {νpq}mp,q=1 and sequences {tq}mq=1 of nonnegative integers,
such that for every 1 ≤ q ≤ m

νq + ν̃q + tq = jq, (16)

where νq =
∑m

p=1 νpq, ν̃q =
∑m

p=1 νqp.
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Lemma 1. The following representations of coefficients Q̂ν(t; a) from (12) hold,

Q̂ν(t; a) = g(t; a)Eαpν
(
s; (AtX,α− sAta)

)
= Eeit|Y−a|2pν

(
s;
(
X,α + s(Y − a)

))

= g(t; a)
∑♯(ν)

cos(πM)aν(j1, . . . , jm)
( m∏

q=1

jq!
)∑♭(m,{jq}) s2(M−r)

2r

×E

m∏

q=1

[(AtXq, Ata)
tq

tq!

m∏

p=1

(AtXp, AtXq)
νpq

νpq!

]}
(17)

=
∑♯(ν)

aν(j1, . . . , jm)
( m∏

q=1

jq!
)

×
∑♭(m,{jq}) s2(M−r)

2r
Eeit|Y−a|2

m∏

q=1

[(Xq, Y − a)tq

tq!

m∏

p=1

(Xp,Xq)
νpq

νpq!

]
,

(18)

where aν(j1, . . . , jm) are the quantities from (14), r =
∑m

p,q=1 νpq.

Sketch of the proof. We suppose temporary that X is a bounded random variable.
The following equalities hold,

Eeit|Sn−a|2 =
[9] or [1, p. 90]

EαESne
s(Sn−a,α) =

[1, p. 178]
Eαe

s2(Tα,α)−s(a,α)
(
1 +

∞∑

ν=1

pν
(
s; (X,α)

)

nν/2

)

=
[1, p. 179]

g(t; a)Eα

(
1 +

∞∑

ν=1

pν
(
s; (AtX,α− sAta)

)

nν/2

)
(19)

=
[1, p. 177]

g(t; a)
(
1 +

∞∑

ν=1

∑♯(ν) aν(j1, . . . , jm)

nν/2
sMEα

m∏

q=1

EXq(AtXq, α− sAta)
jq
)

(20)

=
[1, p. 222]

g(t; a) +

∞∑

ν=1

∑♯(ν) aν(j1, . . . , jm)

nν/2
sMEeit|Y−a|2

m∏

q=1

EXq (Xq, α+ s(Y −a))jq.

(21)

Moreover, by (20) and [1, p. 141],

Eeit|Sn−a|2 = g(t; a)

{
1 +

∞∑

ν=1

1

nν/2

∑♯(ν)
cos(πM)aν(j1, . . . , jm)

( m∏

q=1

jq!
)

×
∑♭(m,{jq}) s2(M−r)

2r
E

m∏

q=1

[(AtXq, Ata)
tq

tq!

m∏

p=1

(AtXp, AtXq)
νpq

νpq!

]}
. (22)
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Analogously, by virtue of (21) and [1, p. 141],

Eeit|Sn−a|2 = g(t; a) +

∞∑

ν=1

1

nν/2

∑♯(ν)
aν(j1, . . . , jm)

( m∏

q=1

jq!
)

×
∑♭(m,{jq}) s2(M−r)

2r
Eeit|Y−a|2

m∏

q=1

[(Xq, Y − a)tq

tq!

m∏

p=1

(Xp,Xq)
νpq

νpq!

]
. (23)

Lemma 1 follows from (19) – (23). �

Denote
ξq(a) = (AtXq, Ata), ξpq = (AtXp, AtXq), ηq(a) = (Xq, Y − a), ηpq = (Xp,Xq),

I(A) =

{
1, if a condition A is fulfilled,

0, otherwise.

We shall say that the condition Aν is fulfilled (or pν(it;X) satisfies the condition
Aν), if for some sequence j1, . . . , jm from (15) there exists a matrix {νpq}mp,q=1, such
that in the equalities (16) we have t1 = · · · = tm = 0, i.e.

νq + ν̃q = jq, q = 1, . . . ,m.

Notice that p1(it; ξ) =
(it)3

3! EX3 doesn’t satisfy the condition A1, but

p2(it;X) =
(it)6

2(3!)2

2∏

j=1

EX3
j +

(it)4

4!

(
EX4

1 − 3

2∏

j=1

EX2
j

)
(24)

satisfies A2. We introduce this definition to select cases when Q̂ν(t; a) may be splitted
on two parts: a part depending on a, and the second one not depending on a.

Lemma 2. The following inequality holds,

|Q̂ν(t; a)| ≤
c(ν)βν+2

σν+2
|g(t; a)|

{(
(|t|σ2)3ν + |t|σ2

)

×
[(

|a|

σ

)3ν
+

|a|

σ

]
+ I(Aν)

(
(|t|σ2)3ν/2 + |t|σ2

)}
.

Proof. Notice that
∣∣ξq(a)tqξνpqpq

∣∣ ≤ |Xq|tq+νpq |Xp|νpq |a|tq .

Since νq + ν̃q + tq = jq, M =
∑m

q=1 jq,

∣∣∣∣E
m∏

q=1

ξq(a)
tq

m∏

p=1

ξ
νpq
pq

∣∣∣∣ ≤ |a|M−2r
m∏

q=1

βjq .
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Now we shall use the Liapunov inequality: if 2 ≤ µ ≤ N and E|ξ|N <∞ then

E|ξ|µ ≤
(
Eµ−2|ξ|N EN−µ|ξ|2

)1/(N−2)
, (25)

where Ekζ ≡
(
Eζ
)k
. Putting in (25) µ = jq, N = ν + 2, we obtain

E|X|jq ≤
(
Ejq−2|X|ν+2 Eν+2−jq |X|2

)1/ν
.

It follows from here and the condition (15), that

m∏

q=1

βjq ≤ β
(M−2m)/ν
ν+2 σ2(νm+2m−M)/ν = βν+2

σ2(νm+2m−M)/ν

β
(ν−M+2m)/ν
ν+2

≤ βν+2σ
M−ν−2.

Consequently, by Lemma 1,

|Q̂ν(t; a)| ≤
c(ν)βν+2

σν+2
|g(t; a)|

∑♯(ν) |t|M−rσM |a|M−2r. (26)

Notice that by the condition (16), 2r +
∑m

q=1 tq =M. Write up

∑♯(ν) |t|M−rσM |a|M−2r =
∑♯(ν) (

I(2r =M) + I(2r < M)
)
|t|M−rσM |a|M−2r.

It is not hard to see that
∑♯(ν)

I(2r=M)|t|M−rσM |a|M−2r=
∑♯(ν)

I(2r=M)|t|M2 σM

≤I(Aν)c(ν)
(
(|t|σ2) 3ν

2 + |t|σ2
)
,

∑♯(ν)
I(2r<M)|t|M−rσM |a|M−2r=c(ν)

∑♯(ν)
I(2r < M)(|t|σ2)M−r

(
(|a|/σ)3ν + |a|/σ

)

≤c1(ν)
(
(|t|σ2)3ν + |t|σ2

)(
(|a|/σ)3ν + |a|/σ

)
.

Thus, Lemma 2 follows from (26). �

Lemma 3. The following equalities hold,

Q̂2(t; a) = g(t; a)K(t; a), (27)

where

K(t; a) =
1

8

[
s12

9
E2ξ31(a) +

s10

3

(
3Eξ21(a)ξ

2
2(a)ξ12 + 2Eξ1(a)ξ11Eξ

3
1(a)

)

+ s8
(
E2ξ1(a)ξ11 +Eξ1(a)ξ2(a)ξ

2
12 +

1

3
Eξ41(a)−E2ξ21(a)

)]

+
s6

4

(1
2
Eξ11ξ12ξ22 +

1

3
Eξ312 +Eξ21(a)ξ11 − 2Eξ1(a)ξ2(a)ξ12 −Eξ21(a)Eξ11

)

+
s4

8

(
Eξ211 −E2ξ11 −Eξ212)

)
,
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and

Q̂2(t; a) = Eeit|Y−a|2
{
1

8

[
s12

9
η31(a)η

3
2(a) +

s10

3

(
3η21(a)η

2
2(a)η12 + 2η1(a)η11η

3
2(a)

)

+ s8
(
η1(a)η11η2(a)η22 + η1(a)η2(a)η

2
12 +

1

3
η41(a)− η21(a)η

2
2(a)

)]

+
s6

4

(1
2
η11η12η22 +

1

3
η312 + η21(a)η11 − 2η1(a)η2(a)η12 − η21(a)η22

)

+
s4

8

(
η211 − η11η22 − η212)

)}
. (28)

Moreover, the following inequalities hold,

|Q̂2(t; a)| ≤ c |g(t; a)|
{
β4

(
t4|a|4 + |t|3|a|2 + t2

)
+ β23

(
t6|a|6 + t4|a|2 + |t|3

)}
(29)

≤ c β4
σ4

|g(t; a)|
{(

(tσ2)6 + (|t|σ2)3
)[(

|a|

σ

)6
+
(
|a|

σ

)2]
+ (|t|σ2)3 + (tσ2)2

}
.

Proof. Using Lemma 1, we obtain from (24), that

Q̂2(t; a) = g(t; a)

{
1

2

∑♭(2,(3,3)) s2(6−r)

2r
E

2∏

q=1

[ξtqq (a)

tq!

m∏

p=1

ξ
νpq
pq

νpq!

]
+
∑♭(1,(4)) s2(4−r)Eξt11 (a)ξν1111

2r t1! ν11!

− 3 · 2! 2!
4!

∑♭(2,(2,2)) s2(4−r)

2r
E

2∏

q=1

[ξtqq (a)

tq!

m∏

p=1

ξ
νpq
pq

νpq!

]}
≡ g(t; a)K(t; a). (30)

At first we consider K(t; 0). Note that K(t; 0) coincides with the sum of those

products, which depend on zero-sequences {tq}. Write up the sums
∑♭(2,(3,3)) · · · ,∑♭(1,(4)) · · · and

∑♭(2,(2,2)) · · · in the case a = 0 in detail.
In what follows, νpq are nonnegative integers. There are exactly six matrices(

ν11 ν12
ν21 ν22

)
, satisfying the condition

ν11 + ν21︸ ︷︷ ︸
ν1

+ ν11 + ν12︸ ︷︷ ︸
ν̃1

= 3, ν12 + ν22︸ ︷︷ ︸
ν2

+ ν21 + ν22︸ ︷︷ ︸
ν̃2

= 3.

They are

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
2 0

)
,

(
0 2
1 0

)
,

(
0 0
3 0

)
,

(
0 3
0 0

)
. Since here r≡

m∑
p,q=1

νpq=3,

∑♭(2,(3,3)) · · · =
s6

23

(
2Eξ11ξ12ξ22 + 2

Eξ12ξ
2
21

2!
+ 2

Eξ312
3!

)
≡ K(3,3)(t; 0). (31)



Nagaev and Chebotarev: Estimation of The Edgeworth Expansion Terms 119

Analogously, there are only 3 matrices {νpq}2p,q=1, such that

2ν11 + ν21 + ν12 = 2, ν12 + ν21 + 2ν22 = 2.

They are

(
1 0
0 1

)
,

(
0 0
2 0

)
,

(
0 2
0 0

)
. Since here r = 2,

∑♭(2,(2,2)) · · · =
s4

22

(
E2ξ11 + 2

Eξ212
2!

)
≡ K(2,2)(t; 0). (32)

Moreover, it is easily seen that

∑♭(1,(4)) · · · =
s4

22
Eξ211
2!

≡ K(4)(t; 0). (33)

It follows from (30) – (33) that

K(t; 0) =
1

2
K(3,3)(t; 0) +K(4)(t; 0) −

1

2
K(2,2)(t; 0)

=
s6

16

[
2Eξ11ξ12ξ22 +

4

3
Eξ312

]
+
s4

8

[
Eξ211 −E2ξ11 −Eξ212)

]
. (34)

Let a 6= 0. There are exactly 8 matrices {νpq}2p,q=1, such that

2ν11 + ν21 + ν12 + t1 = 3, ν12 + ν21 + 2ν22 + t2 = 3

with some nonnegative integers t1, t2, t1+ t2 > 0. Let us enumerate all such matrices,
at the same time calculating corresponding values of r, t1, t2:

(
0 0
0 0

)
,

r = 0,
t1 = t2 = 3

;

(
0 0
1 0

)
,

r = 1,
t1 = t2 = 2

;

(
0 1
0 0

)
,

r = 1,
t1 = t2 = 2

;

(
1 0
0 0

)
,

r = 1,
t1 = 1, t2 = 3

;

(
0 0
0 1

)
,

r = 1,
t1 = 3, t2 = 1

;

(
1 0
0 1

)
,

r = 2,
t1 = t2 = 1

;

(
0 0
2 1

)
,

r = 2,
t1 = t2 = 1

;

(
0 2
0 0

)
,

r = 2,
t1 = t2 = 1

.

Hence, in view of (30) and (31),

∑♭(2,(3,3)) · · · = K(3,3)(t; 0)+s
12E

2ξ31(a)

3! 3!
+
s10

2

(
2
Eξ21(a)ξ

2
2(a)ξ12

2! 2!
+2

Eξ1(a)ξ11Eξ
3
1(a)

3!

)

+
s8

22

(
E2ξ1(a)ξ11 + 2

Eξ1(a)ξ2(a)ξ
2
12

2!

)
≡ K(3,3)(t; a). (35)

Next, there are exactly 5 matrices {νpq}2p,q=1, such that

2ν11 + ν21 + ν12 + t1 = 2, ν12 + ν21 + 2ν22 + t2 = 2
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with some nonnegative integers t1, t2, t1 + t2 > 0. They are
(
0 0
0 0

)
,

r = 0,
t1 = t2 = 2

;

(
0 0
1 0

)
,

r = 1,
t1 = t2 = 1

;

(
0 1
0 0

)
,

r = 1,
t1 = t2 = 1

;

(
1 0
0 0

)
,

r = 1,
t1 = 0, t2 = 2

;

(
0 0
0 1

)
,

r = 1,
t1 = 2, t2 = 0.

In view of (30) and (32),

∑♭(2,(2,2))
· · · = K(2,2)(t; 0) + s8

E2ξ21(a)

2! 2!
+
s6

2

(
2Eξ1(a)ξ2(a)ξ12 + 2

Eξ21(a)Eξ11
2!

)

≡ K(2,2)(t; a). (36)

It follows from (30), (35), (36) and the equality

∑♭(1,(4)) · · · = K(4)(t; 0) + s8
Eξ41(a)

4!
+
s6

2

Eξ21(a)ξ11
2!

≡ K(4)(t; a),

that

K(t; a) =
1

2
K(3,3)(t; a) +K(4)(t; a) −

1

2
K(2,2)(t; a)

= K(t; 0) +
1

8

[
s12

9
E2ξ31(a) +

s10

3

(
3Eξ21(a)ξ

2
2(a)ξ12 + 2Eξ1(a)ξ11Eξ

3
1(a)

)

+ s8
(
E2ξ1(a)ξ11 +Eξ1(a)ξ2(a)ξ

2
12 +

Eξ41(a)

3
−E2ξ21(a)

)]

+
s6

4

(
Eξ21(a)ξ11 − 2Eξ1(a)ξ2(a)ξ12 −Eξ21(a)Eξ11

)
. (37)

The equality (27) follows from (30), (34) and (37). The formula (28) arises from
(27) and the last equality in (18). The bound (29) follows from the immediate estimate
of (37).

�

Notice that the bound (29) is more precise than Lemma 2 for ν = 2.

Note 5. For the sake of comparison, we give the representation of Q̂ν(t; a) by F. Göt-
ze [7],

Q̂ν(t; a) = pν(D)E exp

{
it
∣∣∣Y − a+

m∑

q=1

λqXq

∣∣∣
2
}∣∣∣∣

λ1=···=λν=0

, (38)

where pν(D) is the differential operator, defined by the formula (14), in which the

moments Eξ
jq
q are replaced by the partial derivatives D

jq
λq
, and the expression it is

replaced by 1.
Notice that the calculation of Q̂2(t; a) in detail, using (38), is not simpler the proof

of Lemma 3.
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Lemma 4. Let d ≥ 0 and an integer l ≥ 2d+ 3. Then for every a ∈ H,
∫ ∞

−∞
|t|d|g(t; a)| dt < 2−d+2Λ

−(d+1)/l
l . (39)

One can find the proof of (39) in [15;16].

Lemma 5. The following bounds hold,

sup
r

|Q2(r; a)| ≤ c
( β4

Λ
2/5
5

+
β23

Λ
3/7
7

+
β4(|a|4 + |a|2σ2)

Λ
4/9
9

+
β23(|a|6 + |a|2σ4)

Λ
6/13
13

)
(40)

≤ cβ4σ
2
[
1/Λ

3/7
7 + (|a|6 + |a|2σ4)/Λ6/13

13

]
.

Proof. Using the inversion formula, the estimate (29) and Lemma 4, we obtain

sup
r

|Q2(r; a)| ≤ c

∞∫

−∞

|Q̂2(t; a)|
|t| dt

≤ c1

∞∫

−∞

|g(t; a)|
[
|t|5β23 |a|6 + |t|3|a|2(β4|a|2 + β23) + t2(β4|a|2 + β23) + |t|β4

]
dt

≤ β23 |a|6

Λ
6/13
13

+
|a|2(β4|a|2 + β23)

Λ
4/9
9

+
β4|a|2 + β23

Λ
3/7
7

+
β4

Λ
2/5
5

. (41)

Lemma 5 follows from (41). �

Note 6. Apparently, more refined methods (see, for instance, [8, Lemma 2.2]) allow to
obtain, instead of Lemma 5, the following bound,

sup
r

|Q2(r; a)| ≤ c

(
β4

Λ
1/2
4

+
β23

Λ
1/2
6

+
β4(|a|4 + |a|2σ2)

Λ
1/2
8

+
β23(|a|6 + |a|2σ4)

Λ
1/2
12

)
(42)

≤ c β4σ
2
[
1/Λ

1/2
6 + (|a|6 + |a|2σ4)/Λ1/2

12

]
.

Conjecture 1 is based just on the inequalities (40) and (42).

The folowing statement is proved in [8].

Lemma 6 [8; Lemma 2.2]. Let τ > 0, b ∈ R, b 6= 0. Let M be a positive
integer, Z = (Z1, . . . , Z2M ) be Gaussian random vector with independent coordinates,
EZj = 0, EZ2

j = σ2j , σ
2
1 ≥ σ22 ≥ · · · ≥ σ22M > 0 a ∈ R

2M . Then there exists a positive
constant c(M), such that

∣∣∣
∫ τ

−τ
tM−1E exp

{
it|Z + a|2

}
eitb dt

∣∣∣ ≤ c(M)

Λ
1/2
2M

.

The next lemma is a consequence of Lemma 6.



122 International Journal of Statistical Sciences, Vol. 6s, 2007

Lemma 7. Let M be a positive integer, r ∈ R, a ∈ H. If the dimension d of the space
H satisfies the condition d ≥ 2M then for every τ > 0,

I ≡
∣∣∣
∫ τ

−τ
tM−1e−itrEeit|Y−a|2 dt

∣∣∣ ≤ c(M)

Λ
1/2
2M

. (43)

Lemma 8. For every sequence of nonnegative integers {tp}k1, and elements xp ∈ H,
p = 1, . . . , k, we have

I ≡
∣∣∣
∫ τ

−τ
tM−1e−itrE

(
eit|Y−a|2

k∏

p=1

(Y − a, xp)
tp

)
dt
∣∣∣

≤ c(M ; {tp})σ2J

Λ
1/2
2M

( k∏

p=1

|(a, xp)|tp
σ2tp

+
∑

1≤p≤k

|xp|tp
σtp

∏

1≤j≤k
j 6=p

|(a, xj)|tj
σ2tj

+
∑

1≤p1<p2≤k

|xp1 |tp1
σtp1

· |xp2 |
tp2

σtp2

∏

1≤j≤k
j 6=p1,p2

|(a, xj)|tj
σ2tj

+ . . . +

k∏

p=1

|xp|tp
σtp

)
,

where J =
∑k

p=1 tp.

Proof. Let Y1, . . . , YJ+1 be independent copies of the random variable
1√
J + 1

Y ,

aq =
1

J + 1
a, q = 1, . . . , J + 1. We have

k∏

p=1

(Y − a, xp)
tp =

t1∑

{mq1}
J+1
q=1

· · ·
tk∑

{mqk}
J+1
q=1

( k∏

p=1

Stp

(
{mqp}J+1

q=1

)) k∏

p=1

J+1∏

q=1

(Yq − aq, xp)
mqp ,

where Stp

(
{mqp}J+1

q=1

)
are the polynomial coefficients, where for each collection of the

sequences

(m11,m21, . . . ,mJ+11), (m11,m22, . . . ,mJ+12), . . . , (m1k,m2k, . . . ,mJ+1 k),

there exists 1 ≤ q0 ≤ J + 1, such that mq0p = 0 for all 1 ≤ p ≤ k. Let for simplicity
q0 = 1. Then

Eeit|Y−a|2
k∏

p=1

J+1∏

q=1

(Yq − aq, xp)
mqp = Eeit|Y−a|2

k∏

p=1

J+1∏

q=2

(Yq − aq, xp)
mqp

= E

[( k∏

p=1

J+1∏

q=2

(Yq − aq, xp)
mqp

)
EY1e

it|Y1+y1|2
]
,
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where y1 = −a+∑J+1
j=2 Yj. It follows from here and Lemma 7 that

I =

∣∣∣∣
t1∑

{mq1}
J+1
q=1

· · ·
tk∑

{mqk}
J+1
q=1

( k∏

p=1

Stp

(
{mqp}J+1

q=1

))
E

[( k∏

p=1

J+1∏

q=1

(Yq − aq, xp)
mqp

)

×
∫ τ

−τ
EY1e

it|Y1+y1|2tM−1e−itr dt

]∣∣∣∣ ≤
c1(M ; {tp})

Λ
1/2
2M

×E

[( J+1∑

j=1

(|(Yj , x1)|t1 + |(a, x1)|t1)
)
· · ·
( J+1∑

j=1

(|(Yj , xk)|tk + |(a, xk)|tk)
)]
. (44)

Using the inequality E|(Yj , xp)|tp ≤ c(J)σtp |xp|tp , and carrying out the square brackets
the expression σ2J in (44), we arrive at the statement of Lemma 8. �

Lemma 9. The following estimate holds,

sup
r

|Q2(r; a)| ≤ c1
σ8

Λ
1/2
8

[β4(a)
σ8

+
β4
σ4

]
+ c2

σ12

Λ
1/2
12

[β23(a)
σ12

+
β23
σ6

]
. (45)

Proof. The function Q2(r; a) is defined only for r ≥ 0. Let us extend it onto
the negative semiaxis in the even way. Since Q2(−∞; a) = Q2(+∞; a) = 0, by the
invertion formula (see [5, p. 381]), we have

Q2(r; a) =
i

2π
lim
T→∞

lim
ε↓0

∫

ε<|t|≤T

e−itr Q̂2(t; a)

t
dt =

i

2π
lim
T→∞

∫ T

−T
e−itr Q̂2(t; a)

t
dt. (46)

The expression (28) for Q̂2(t; a) contains of 15 summands. As a result we need to
estimate the following 15 integrals:

I1 ≡
T∫

−T

e−itrt5Eeit|Y−a|2η31(a)η
3
2(a) dt, I2 ≡

T∫

−T

e−itrt4Eeit|Y−a|2η21(a)η
2
2(a)η12 dt,

. . . , I14 ≡
T∫

−T

e−itrtEeit|Y−a|2η11η22 dt, I15 ≡
T∫

−T

e−itrtEeit|Y−a|2η212 dt.

We have

I1 =

T∫

−T

e−itrt5Eeit|Y−a|2(Y − a,X1)
3(Y − a,X2)

3 dt.
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For the sake of brevity we introduce the following notations,

B3(a) =

(
β3(a)

σ6

)2

+

(
β3
σ3

)2

, B4(a) =
β4(a)

σ8
+
β4
σ4
.

Using Lemma 8, we find that

|I1|≤
c σ12

Λ
1/2
12

[(
β3(a)

σ6

)2

+
β3
σ3
β3(a)

σ6
+

(
β3
σ3

)2]
≤ c1 σ

12

Λ
1/2
12

B3(a)<
c1 σ

12

Λ
1/2
12

B3(a)+
σ8

Λ
1/2
8

B4(a).

Now we prove the inequality

|I2| ≤
c σ10

Λ
1/2
10

B3(a) <
cσ12

Λ
1/2
12

B3(a) +
σ8

Λ
1/2
8

B4(a). (47)

We have with the help of Lemma 8,

|I2| ≡
∣∣∣∣

T∫

−T

e−itrt4Eeit|Y−a|2η21(a) η
2
2(a) η12 dt

∣∣∣∣

≤ c σ10

Λ
1/2
10

E
[(a,X1)

2 (a,X2)
2

σ8
+

|X1|2 (a,X2)
2

σ6
+

|X1|2 |X2|2
σ4

] |X1| |X2|
σ2

. (48)

Denote Uj(a) =
|(a,Xj)|
σ2

, Uj =
|Xj |
σ

, j = 1, 2. It is easily seen that

U2
1 (a)U

2
2 (a)U1U2 ≤

(
U3
1 (a) + U3

1

) (
U3
2 (a) + U3

2

)
.

Then

EU2
1 (a)U

2
2 (a)U1U2 ≤

(β3(a)
σ6

)2
+ 2

β3(a)

σ6
β3
σ3

+
(β3
σ3

)2
≤ 3B3(a). (49)

In the same way we get

EU3
1U2U

2
2 (a) ≤ E

(
U3
1U

3
2 + U3

1U
3
2 (a)

)
≤ 2
[(β3(a)

σ6

)2
+
(β3
σ3

)2]
. (50)

The bound (47) follows from (48) – (50).
Analogously,

|I6| ≡
∣∣∣∣

T∫

−T

e−itrt3Eeit|Y−a|2η41(a) dt

∣∣∣∣ ≤
c σ8

Λ
1/2
8

B4(a) <
cσ8

Λ
1/2
8

B4(a) +
σ12

Λ
1/2
12

B3(a)
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and for the rest Ip we have

Ip <
c1 σ

12

Λ
1/2
12

B3(a) +
c2 σ

8

Λ
1/2
8

B4(a).

The statement of the lemma follows from (46), (28) and the bounds, obtained for
|Ip|, p = 1, . . . , 15.

The proof of Theorem 6. Theorem 6 follows from Lemmas 3 and 9.
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