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Abstract

This paper discusses some nonparametric and regression model strategies
for analyzing randomized studies where patients can have one or more oc-
currences of an unfavorable (or favorable) event. Principal attention is
given to methods for counts of a recurrent event during inter-visit intervals
which comprise an entire follow-up period. A major issue for confirmatory
studies of this type is how to rank the patterns of events. A second issue is
the management of missing data, particularly when patients can withdraw
prematurely because of lack of efficacy or a terminating event such as death
for which no treatment effects are expected. Both nonparametric methods
and regression models fitted with generalized estimating equations (GEE)
are useful for comparisons between treatments for the extent of one or more
events for a primary response variable. Results from the described methods
for counts of a recurrent event are illustrated for two confirmatory random-
ized clinical trials for comparing two treatments with respect to skeletal
complications in patients with metastatic bone disease.
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1 Introduction

Many confirmatory randomized clinical trials and epidemiologic studies have a pri-
mary response variable for which each patient can have one or more occurrences of an
unfavorable (or favorable) event. In most of these clinical trials, patients receive treat-
ments to reduce the frequency of occurrences of a severe event (e.g. exacerbations of a
respiratory disorder) during an entire follow-up period or during inter-visit intervals.
The best possible outcome for these patients is 0 occurrences (or complete prevention
of events) during the entire follow-up period, and many occurrences throughout the
follow-up period is a very unfavorable outcome. Between these extremes, some not
overly severe events during the early part of the follow-up period and no events in the
latter part can be a favorable outcome. Some examples of studies with data for one
or more occurrences of a recurrent event during an entire follow-up period or during
inter-visit intervals are as follows:

1. lower respiratory illnesses (LRI) in children during the first year of life
(LaVange et al [1994])

2. unscheduled medical visits for patients receiving treatment for asthma
(Malmstrom et al [1999])

3. skeletal complications needing medical interventions for patients with metastatic
bone disease
(Moecks et al [2004])

There are several issues which require attention in plans for analyses of confirma-
tory randomized clinical trials where each patient can have one or more events for a
primary response variable. Since the principal objective of a confirmatory study usu-
ally is the evaluation of whether patients with a test treatment have better outcomes
than those with a control treatment, the most central consideration for analysis is the
criterion for ranking the patterns of patient outcomes. In this regard, 0 occurrences
during the entire follow-up period is the best outcome for a patient and many oc-
currences throughout the follow-up period is a very unfavorable outcome, but how to
rank patterns of patient outcomes between these extremes can be difficult. Two issues
which such a ranking needs to address are the management of incomplete follow-up
(that is, missing data) for patients, and the management of multiple events during
sub-intervals of time, particularly when their frequency can be outlyingly large. A
noteworthy advantage of a justifiable ranking is that its relationship to test versus
control treatments can be evaluated with nonparametric statistical methods without
any formal assumptions about the underlying data structure. Complementary anal-
yses through appropriate regression models are often additionally possible when the
criterion for ranking is a count of events or an event rate per unit time.
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The criteria for ranking the patterns of outcomes for patients include

1. time to first event

2. number of events

3. rate per unit of time for events

The extent of incomplete follow-up can adversely influence the previously stated
criteria for ranking patients by causing patients to have a possibly smaller number of
observed events than would have occurred if patients had completed the entire follow-
up period. For this reason, a major question for patients with incomplete follow-up is
whether the withdrawal from follow-up suggests lack of efficacy and thereby a higher
rate of events after withdrawal from follow-up. A related question is concerned with
how the duration of follow-up affects the interpretation of 0 events, since longer follow-
up increases the strength of evidence for 0 events and vice versa. Another issue is
how to have a ranking manage follow-up terminating events such as deaths when the
intent of treatment is the reduction of morbidity events with no expected effects on
mortality. A ranking that manages deaths as the worst outcome has the limitations
of not accounting for the intent of treatment and of making the basis for ranking a
mixture of mortality and morbidity. Conversely, a ranking that ignores deaths does
not fully account for the extent to which the follow-up experience of a patient is
unfavorable.

A straightforward way to manage incomplete follow-up for patients is to use a spec-
ified principle to assign a number of events to the patient for the time from withdrawal
of follow-up to the end of the entire follow-up period. This number is then added to
the observed number of events for the patient during their actual follow-up so as to
produce a projected total number of events for the entire follow-up period for the pa-
tient. This type of projected total can then be used as the basis for ranking patients
according to the extent of their occurrences of events. Several potential principles for
assigning a number of events for the time from withdrawal of follow-up to the end of
the follow-up period are as follows:

1. if a patient no longer has the disorder being treated at the time of withdrawal,
add 0 events to the number of events prior to withdrawal;

2. If withdrawal is unrelated to the occurrence of events, add y(T − t)/t to the
number of events y prior to withdrawal where t is the duration of follow-up and
T is the planned duration of the entire follow-up period;

3. If withdrawal suggests lack of efficacy and the overall rate of events is low, add
the maximum of (1, y(T − t)/t) to y.

4. If withdrawal is comparable to the worst possible outcome, then manage the
patient as having the worst possible rank for the entire follow-up period
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5. If a patient has 0 events at withdrawal, then their management should provide
better ranks for longer duration of follow-up

With respect to these principles, there should be recognition that more stringent
methods for managing withdrawals may overly favor test treatment when withdrawal
tends to occur more frequently and earlier for a control group than a group with
test treatment; and so a neutral method like (2) may be conservative. An additional
consideration is that the use of more stringent methods for managing withdrawals with
test treatment than for controls (e.g., (3) for test and (2) for control) can shed light
on the robustness of results from comparisons between treatments.

When the possibly multiple events for a patient occur in a clearly distinct and
not overly frequent manner, then their total number can provide a useful basis for
ranking patients. However, in some situations, an outlyingly large (or impossible to
enumerate) frequency of events can occur in a sub-interval of time as a consequence
of a single underlying event, and such outliers can adversely influence the ranking of
a patient by distorting their total number of events. One way to address this issue
is to partition the entire follow-up period into a set of mutually exclusive intervals.
Then each time interval is classified according to whether it has at least one event or
according to its most severe event (with no event being the most favorable outcome
and with one possibility for a severe event being an outlying frequency of events). The
ranking of patients is then based on the number of time intervals with events (or severe
events) rather than the number of events with outliers being avoided.

Given that a justifiable ranking is produced from appropriate ways of addressing
incomplete follow-up for patients and multiple events during sub-intervals of time,
nonparametric statistical methods can be used to compare the test and control treat-
ments. In this regard, an important property of nonparametric statistical tests for
treatment comparisons in a randomized clinical trial is that no formal assumptions
are required (see Koch et al [1998]), mainly because the probabilistic structure for the
test is a consequence of randomization in the study design. Well known nonparamet-
ric statistical tests for a ranking include the Wilcoxon rank sum test and its extended
Mantel-Haenszel (or Van Elteren) extension to studies with stratified randomization
(see Stokes et al [2000, Chapter 4]). Additional extensions to enable adjustment for
continuous covariables or more covariables than stratification can accommodate are
discussed in Koch et al [1998] and Tangen and Koch [2000].

When the criterion for ranking patterns of patient outcomes is a count of events for
the follow-up period, an event rate per unit time, or such quantities during successive
time intervals, methods based on generalized estimating equations (GEE) can be used
to fit regression models to describe relationships to treatments and other explanatory
variables (see Diggle et al [1994], and Royall [1986]). For such analyses, the sample
size needs to be sufficiently large (for example, ≥ 100 patients) to support approxi-
mately normal distributions for estimates of parameters (although robustness for such
approximations can be produced for treatment comparisons by using re-randomization
methods such as those discussed by Westfall et al [1999]). GEE methods additionally
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provide the empirical sandwich estimate for the covariance matrix of the estimated pa-
rameters with the property of consistency for this purpose having robust applicability
regardless of the correctness of any specified working variance (or correlation) struc-
ture for the counts of events (with such robustness encompassing overdispersion as
well). Missing data can be maintained as missing if considered completely at random,
or can be managed with assigned (or extrapolated) values according to specified prin-
ciples (for example, worst value, previously observed value, etc.). When missing data
are maintained as missing, the underlying assumption is that the model adequately
predicts both the quantities that are observed and those that are missing. The main
consideration for justifying a specified principle for assigning values to missing data is
that any bias in it is in favor of the control treatment and against the test treatment.
An advantage of GEE methods relative to nonparametric statistical tests is that, in
addition to p-values, they provide estimates of treatment differences and correspond-
ing confidence intervals. As stated previously, an advantage of nonparametric methods
is their much weaker structure for assumptions.

Additional references which discuss other methods for the statistical analysis of
studies with one or more occurrences of primary events include Anderson et al [1993],
Mathe and Chevret [1999], and Therneau and Hamilton [1997].

2 Metastatic Bone Disease Example

The previously described considerations for the statistical analysis of one or more pri-
mary events are well illustrated by two studies to compare test and control treatments
for the reduction of the extent of skeletal complications for patients with metastatic
bone disease (Moecks et al [2004]). Each study had 8 visits at 3 month intervals
over a two-year follow-up period. The sample sizes for Study 1 were nC = 143 for
control and nT = 154 for test, and the sample sizes for Study 2 were nC = 158 for
control and nT = 154 for test. Events were based on a composite endpoint for medical
interventions against bone pain or incident fractures.

For avoidance of excess counting of multiple events as a consequence of a single
underlying event, each of the inter-visit intervals was classified as having at least one
event or not. This data structure in terms of classifications for inter-visit intervals
also accounted for diagnostic procedures such as X-rays only having planned use at
the end of inter-visit intervals. Deaths were not a direct component of the composite
endpoint (that is, they were managed as a random cause of incomplete follow-up
(or censoring)) because the test treatment was not expected to have any effect on
mortality. A substantial number of patients in each study withdrew prematurely
because of death, signs of progression of the disease, or other reasons. For Study 1,
38% for control and 41% for test did not complete at least 6 inter-visit intervals; and
for Study 2, 59% for control and 47% for test did not complete at least 6 inter-visit
intervals.
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2.1 Treatment Comparisons with Wilcoxon Rank Sum Statistics

The criteria for ranking the patterns of outcomes for patients in the studies concerning
skeletal complications were as follows:

1. the number of inter-visit intervals with at least one event (which assumes no
events after withdrawal);

2. the rate (y/t) for the number of intervals with at least one event y relative to
the number of intervals prior to withdrawal t

3. the ”smoothed rate” based on (y + 0.5)/(t + 1).

Use of the rate (y/t) involves the assumption that the event rate after withdrawal
is the same as that prior to withdrawal. It also manages (0/t) = 0 as similarly
informative regardless of t. The smoothed rate (y + 0.5)/(t + 1) accounts for t in a
manner similar to (y/t) but manages y = 0 as less informative when t is smaller.

The results from Wilcoxon rank sum statistics for comparisons between test and
control for the criteria for ranking patterns of outcomes of patients in the studies
concerning skeletal complications are shown in Table 1. For Study 1, the Wilcoxon
rank sum p-values were less than 0.05 for all three ranking criteria with the result
for the ”smoothed rate” being somewhat more conservative through partly penalizing
the test treatment for its slightly higher withdrawal rate. Conversely, the p-value for
the ”smoothed rate” was the strongest result for Study 2 by penalizing the placebo
group for its partly higher withdrawal rate. This higher withdrawal rate for placebo
needs some type of management through an event rate because its bias undermined
the extent to which the simple count of intervals with at least one event could detect
a significant difference between the test and control treatments.

Table 1. Results from Wilcoxon Rank Sum Statistics for Comparisons
of Ranking Criteria between Test and Control

Control Test
Study Criterion Mean Std Dev Mean Std Dev Wilcoxon p

1 y 1.27 1.38 0.79 1.10 0.002
1 (y/t) 0.25 0.28 0.16 0.25 0.002
1 (y + 0.5)/(t + 1) 0.28 0.22 0.23 0.19 0.017
2 y 1.15 1.29 0.94 1.22 0.077
2 (y/t) 0.28 0.31 0.20 0.28 0.018
2 (y + 0.5)/(t + 1) 0.33 0.22 0.27 0.20 0.005

2.2 Treatment Comparisons with GEE Methods

Methods based on generalized estimating equations (GEE) were used to fit logistic
regression models to the probabilities of occurrence or not of at least one event dur-
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ing the respective inter-visit intervals for each of the two studies concerning skeletal
complications in patients with metastatic bone disease. For this purpose, SAS PROC
GENMOD was used for independent subjects with specifications for one record per
subject with a binomial distribution, logit link, a model which only included treat-
ments for events/trials with y as events and t as trials. A repeated statement with
subject corresponding to the unique identification numbers of the respective patients
was invoked with an independence working correlation structure to produce the empir-
ical sandwich estimate for the covariance matrix of the estimated model parameters.
This method of covariance matrix estimation was used because of its robustness to
overdispersion to the working variance of binomial distributions; see Appendix. For
situations where events are enumerated throughout the continuous duration of the
follow-up period (rather than the classification of inter-visit intervals as having at
least one event or not), analogous methods involving Poisson regression are applicable
(see Stokes et al [2000, Chapter 15.14] and Koch and Stokes [2004]).

The GEE methods had four different specifications for events/trials to address the
varying numbers of periods (or intervals) at risk t of patients and the role of zero
events. These specifications were as follows:

1. y as the actual number of events and t as the actual number of periods for
follow-up

2. (y + 0.5) as the number of events to manage 0 events and (t + 1) as the actual
number of periods for follow-up

3. modification of y to [y + y(8− t)/t] = (8y/t) for the projected number of events
for 8 periods from the (y/t) rate for events per period and 8 as the number of
periods

4. modification of y to [(y + 0.5) + (y + 0.5)(8− t)/(t+ 1)] = 9(y + 0.5)/(t+ 1) for
the projected number of events for 9 periods from the (y + 0.5)/(t + 1) rate for
events per period and 9 as the number of periods

With specifications 3 and 4, each patient has equal weight in the estimation of model
parameters whereas patients have weights proportional to t (or (t + 1)) with speci-
fications 1 (or 2). The role of specifications 2 and 4 is to manage 0 events as more
informative when t is larger. Results from methods for generalized estimating equa-
tions to fit logistic regression models to the probabilities of occurrence or not of at
least one event during inter-visit intervals of studies concerning skeletal complications
in patients with metastatic bone disease are shown in Table 2.
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Table 2. Results from Methods for Generalized Estimating Equations from
Alternative Specifications for Events and Periods

95% Confidence
Study Criterion Periods Estimate Interval Score p

1 y t 0.60 (0.42, 0.84) 0.004
1 (y + 0.5) (t+ 1) 0.70 (0.55, 0.90) 0.006
1 (8y/t) 8 0.59 (0.40. 0.87) 0.007
1 9(y + 0.5)/(t + 1) 9 0.74 (0.58, 0.94) 0.017
2 y t 0.68 (0.49, 0.94) 0.020
2 (y + 0.5) (t+ 1) 0.74 (0.59, 0.94) 0.014
2 (8y/t) 8 0.65 (0.46, 0.93) 0.020
2 9(y + 0.5)/(t + 1) 9 0.73 (0.59, 0.91) 0.006

All of the p-values for the comparisons between test and control are less than 0.05.
Those from specifications 3 and 4 agree well with their counterparts from Wilcoxon
rank sum tests in Table 1 since they similarly manage patients as having equal weights.
The results from specifications 2 and 4 are somewhat weaker than those from speci-
fications 1 and 3 for Study 1 (where the withdrawal rate for test treatment is higher
than control) and somewhat stronger for Study 2 (where the withdrawal rate is higher
for control). As noted previously, GEE methods provide estimates of odds ratios for
the extent of lower probabilities of at least one event during inter-visit intervals for
test versus control and corresponding confidence intervals in addition to p-values.

2.3 Discussion for GEE Methods

In this application, there is interest in analyzing the total number y of inter-visit
intervals with at least one event (relative to the total number of intervals at risk)
with the underlying longitudinal data structure ignored, particularly because informa-
tion for the actual inter-visit intervals with events is not accurately available. Thus,
the effects of explanatory variables at the patient level on the number of inter-visit
intervals with events per interval at risk for the respective subjects is evaluated by
using logistic regression models. Estimates for the parameters in these models are ob-
tained by solving the maximum likelihood equations that correspond to the numbers
of inter-visit intervals with events having independent binomial distributions (that is,
by applying logistic regression as discussed in Stokes et al [2000, Chapter 8]), although
no assumptions concerning underlying binomial distributions are involved. Through
methods for generalized estimating equations (GEE), the estimated parameters have
approximately normal distributions when the number of subjects is sufficiently large
(e.g.,≥ 100), and their covariance matrix is consistently estimated by the empirical
sandwich estimate from GEE with robustness to the correctness of the working vari-
ance of binomial distributions (that is, overdispersion). However, the validity of the
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previously stated results from GEE methods requires that the model for the num-
bers of inter-visit intervals with events per interval at risk is correct. For situations
where the total number of inter-visit intervals with an event is the focus of analysis,
the correctness of the model specification requires that all inter-visit intervals at risk
are comparably affected by subject level explanatory variables (that is, no time ×
explanatory variable interaction) and that any time dependent explanatory variables
have no effects. Also, if subjects have varying numbers of inter-visit intervals at risk,
then such time intervals themselves must have no effects. Finally, as stated previously
missing person time in this situation is considered as missing completely at random
(or as adequately predicted from the data for observed person time), although it can
alternatively be managed with assigned values according to specified principles (e.g.,
worst value, previously observed value, etc.).

The relationship between the probability of at least one event during a particular
inter-visit interval and explanatory variables at both the level of the patient and at
the time dependent interval level can be analyzed with GEE methods for repeated
measures logistic regression. The respective patients are the primary sampling units
(or subjects) and the respective intervals at risk are the observational units for analy-
sis. Each interval has yes or no for at least one event as the response variable and the
corresponding set of explanatory variables for treatment, interval, and treatment ×
interval interaction. The usual specifications for the estimation of model parameters
with GEE methods are binomial distribution, logit link, a repeated statement with
respect to patient identification numbers, and an exchangeable (or unstructured) work-
ing correlation structure. In this analysis, all intervals have equal (unit) weight, and
so patients with more intervals for exposure have more weight in the determination of
the estimated parameters. For the example in this paper, the underlying longitudinal
data for the respective inter-visit intervals of the patients are not available, and so
results from such longitudinal analyses are not presented.

3 Concluding Comments

Both nonparametric methods and regression models fitted with GEE methods can
provide useful analyses of data from studies with one or more occurrences of one or
more types of primary events for independent subjects. The value of such analyses is
better when missing data are less extensive, have a known cause (e.g., death, treatment
failure), or have a random nature. Large sample sizes make normal approximations
through central limit theory more applicable to inferential results such as confidence
intervals and p-values from statistical comparisons. For nonparametric methods, re-
randomization methods can provide essentially exact p-values.
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Appendix. Properties of estimated Parameters from Lo-

gistic Regression

Let yj denote the number of events in Tj trials for patient j where j = 1, 2, ..., n. The
yj are assumed to be independent with expected values E{yj} = µj = Tjπj (and with
all higher moments being finite), and the variation of the πj is assumed to be well
described by the logistic regression model πj = exp(x′

jβ)/{1 + exp(x′

jβ)} where x′

j

is the jth row of a specified full rank (n × t) matrix X and β is a (t × 1) vector of
unknown parameters. Thus, if y = (y1, ..., yn)

′, µ = (µ1, ..., µn)
′, π = (π1, ..., πn)

′, and
T = (T1, ..., Tn)

′, then

E{y} = µ = DTπ = DTD
−1
ζ exp(Xβ)

where ζ = {1 + exp(Xβ)}, and Da is a diagonal matrix with respective diagonal
elements from a, exp(a) is the vector of exponentiated values of a, and 1 is an (n×1)
vector of 1’s.

If the yj have independent binomial distributions relative to Tj as the number of
trials (although this is not a necessary assumption), then the likelihood function would
be

L(π) =

n∏

j=1

{Tj !/yj !(Tj − yj)!}πyjj (1− πj)
(Tj−yj).

Under the logistic regression model µ = DTD
−1

ζ
exp(Xβ), the corresponding log-

likelihood and its derivatives with respect to β are as follows:

Loge{L(β)} =
n∑

j=1

[yjx
′

jβ − Tj{loge(1 + exp(x′

jβ))} − {loge(Tj !/yj!(Tj − yj)!)}]
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∂Loge{L(β)}
∂β′

=

n∑

j=1

[yjx
′

j −
Tj exp(x

′

jβ)x
′

j

(1 + exp(x′

jβ))
]

=

n∑

j=1

[yjx
′

j − µj(β)x
′

j ]

= {y′X − [µ(β)]′X}
where µ(β) = DTD

−1
ζ exp(Xβ). On this basis, the maximum likelihood estimates

β̂ for β and µ̂ for µ satisfy the non-linear equations

X′y = X′[µ(β̂)] = X′DTD
−1

ζ(β̂)
exp(Xβ̂)

for which the solution to obtain β̂ requires iterative computing methods. These equa-
tions are typically called logistic regression estimating equations, and their solution β̂

is typically called the logistic regression vector of parameter estimates. However, the
use of β̂ to estimate β does not require the yj to have independent binomial distri-

butions, although the applicability of independent binomial distributions enables β̂ to
have optimal precision.

The behavior of β̂ is characterized in large samples by its linear Taylor series about
β regardless of whether the yj have binomial distributions. This linear Taylor series
has the structure

β̂TS(y) = β̂(π)+ [
∂β̂

∂y′
|y = DTπ

](y −DTπ)

where [ ∂β̂
∂y′

] is determined from the logistic regression estimating equations; that is,

∂
∂y′

[X′y = X′DTD
−1

ζ(β̂)
exp(Xβ̂)] yields X′ = X′DTDπ̂D(1−π̂)X

∂β̂

∂y′
, where

π̂ = D
−1

ζ(β̂)
exp(Xβ̂) and so [

∂β̂
∂y′

|y = DTπ
] = (X′DνX)−1X′ with

ν = [T1π1(1− π1), ..., Tnπn(1− πn)]
′. It follows that

β̂TS(y) = β + (X′DνX)−1X′(y −DTπ).

Since β̂ behaves like its linear Taylor series counterpart β̂TS when sample sizes are
large, β̂ approximately has the multivariate normal distribution with expected value
vector β and covariance matrix
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V ar(β̂) = (X′DνX)−1X′V ar(y)X(X′DνX)−1

when sample sizes are large enough for X′(y −DTπ) to have an approximately mul-
tivariate normal distribution via Liapounov central limit theorems. These properties
do not require the yj to have independent binomial distributions; but they do require
the yj to be independent, and they require the model

E{yj} = µj = Tjπj = Tj exp(x
′

jβ)/[1 + exp(x′

jβ)]

to be a correct specification. They also require n to be sufficiently large to support
approximate normality for X ′(y − DTπ).

When the yj have independent binomial distributions, V ar(y) = Dν and V ar(β̂)
simplifies to (X′DνX)−1 for which a consistent estimator is VBβ̂ = (X′Dν̂X)−1

where ν̂ = (T1π̂1(1 − π̂1), ..., Tnπ̂n(1 − π̂n))
′. More generally, the yj do not have

binomial distributions, and so a robust estimator for V ar(β̂) is needed. For this
purpose, the empirical sandwich estimator (as provided by methods for generalized

estimating equations (GEE)) is applicable. This sandwich estimator for V ar(β̂) is
given by

VGβ̂ = (X′Dν̂X)−1[X′DvX](X′Dν̂X)−1

where Dv is a diagonal matrix for which the diagonal elements are the respective
vj = (yj − µ̂j)

2 where µ̂j = Tj π̂j with π̂j = exp(x′

j β̂)/[1 + exp(x′

jβ̂)]. This estimator

is robust for V ar(β̂), but it could be unsatisfactorily crude unless the sample size n
is sufficiently large (e.g., n ≥ 100).

One can further note that β̂ and VGβ̂ remain the same if the yj and the Tj are
multiplied by any constant C; that is,

X′[Cy] = X′DCTD
−1

ζ(β̂)
exp(Xβ̂)

for Cy relative to CT simplifies by cancellation of C to

X′y = X′DTD
−1

ζ(β̂)
exp(Xβ̂);

and for V
Gβ̂

, multiplication of Tj by C causes multiplication of ν̂j by C and thereby

multiplication of (X′Dν̂X)−1 by (1/C), but corresponding multiplication of yj and
Tj by C causes multiplication of vj = (yj − µ̂j)

2 by C2 and thereby multiplication
of (X′DvX) by C2, and so the overall multiplier for VGβ̂ is (1/C)(C2)(1/C) = 1 in
correspondence to the invariance of VGβ̂ to the multiplication of yj and Tj by any
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constant C.

The principal requirement for VGβ̂ to be a robust estimator for V ar(β̂) is cor-
rectness of the logistic regression model

E{yj} = µj = Tjπj = Tj exp(x
′

jβ)/[1 + exp(x′

jβ)].

However, this requirement has the underlying assumption that the explanatory vari-
ables do not have different effects during successive time intervals with numbers of

events yij and numbers of trials Tij for i = 1, 2, ..., dj such that yj =
∑dj

i=1 yij and

Tj =
∑dj

i=1 Tij (that is, no time × explanatory variable interaction applies). Also,
missing counts of events for missing time intervals or for time intervals after discon-
tinuation of follow-up (that is, dj < i ≤ d) are assumed to be missing completely at
random (that is, they are assumed to be compatible with the model for the observed
counts). An additional assumption when patients have varying numbers of trials (be-
cause of discontinuation of a study prior to completion of a specified follow-up period)
is that the rates of events for the successive time intervals are homogeneous for each of
the patients so that E{Yij/Tij} = (µij/Tij) = πij = πj since it implies µij = πjTij and

E{yj} = µj =
∑dj

i=1 πjTij = Tjπj. Clarification of the necessity of this assumption
is provided by consideration of the structure πij = θiπj (with θi as a multiplicative
effect for the ith time interval) as a simple departure since it implies µij = θiπjTij and

E{yj} = µj =
∑dj

i=1E{yij} =
∑dj

i=1 θiπjTij = πj
∑dj

i=1 θiTij ; but this structure implies
that the model µj = Tjπj is an incorrect specification unless all θi = 1 (or all Tij = Ti
and all dj = d so that µj = πj

∑d
i=1 θiTi = πjK with K =

∑d
i=1 θiTi being the same

for all subjects).
The previously described considerations concerning the πij can be addressed to

some extent by using GEE methods to fit a repeated measures logistic regression
model to the yij relative to the Tij. Whether missing data is missing completely at
random would still be an issue.


