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Abstract

The availability of statistical packages has opened up new possibilities in
statistics teaching. There are both advantages and drawbacks of using
packages as a part of teaching both at the introductory and advanced levels.
After a brief discussion of these issues, attempt will be made to identify
ways in which software can be used to supplement teaching. Emphasis will
be given on case studies, demonstration, and practical difficulties faced by
a teacher who has limited exposure to the use of software.

1 Introduction

The emergence of statistical software has given rise to many possibilities. There are
obvious and not-so-obvious advantages that the software provide in respect of teaching
and research. On the other hand there are also apprehensions about the software. The
purpose of these article to discuss these issues in the light of some practical experience.

2 Potential advantages of using software in teaching

2.1 Scope for practical demonstrations

Use of software makes it possible to use a wider range of data-analytic tools over rel-
atively large sets of data. Thus, teachers can use realistic examples in the classroom
to illustrate various techniques.

For example, the usefulness of frequency distribution can be demonstrated by
means of a data set on arsenic content of water samples from 113 boreholes dis-
tributed over various locations in Bangladesh. The data were collected by the British
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Geological Survey and are freely downloadable from its website.[1] A part of this data
set is given in Table 1. Here, As represents arsenic concentration in micrograms per
litre (concentrations smaller than .5 micrograms per litre are reported as 0), Fe is Iron
concentration in milligrams per litre, Lat is latitude in degrees, Depth is depth of the
borehole in meters and Division is the administrative division. This data set will be
revisited in this article in order to illustrate various other points.

The frequency distribution given in Table 2 shows that samples from about 14%
of the locations had arsenic concentration above 50 micrograms per litre (the maxi-
mum acceptable level according to the Bangladesh government),[2] and another 15%
had more than 10 micrograms per litre (the maximum acceptable level according to
the World Health Organization).[3] In this case a histogram representing the relative
frequency density would not be very useful, since there is a large concentration of
extremely small values.
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As Fe Lat Depth Division As Fe Lat Depth Division

1 0.06 26.479 9 Rajshahi 13.6 0.749 24.444 118 Dhaka
2.2 6.21 25.7 15 Rajshahi 40.8 0.403 23.167 133 Khulna
1.1 1.48 24.088 37 Dhaka 2.7 0.192 24.454 NA Dhaka
1.1 0.24 26.083 18 Rajshahi 3.4 0.02 23.173 24 Khulna
0 1.38 26.054 37 Rajshahi 120 2.61 24.047 20 Dhaka
1.7 0.26 24.91 26 Dhaka 32.5 1.13 23.059 24 Khulna
0 0.17 25.903 30 Rajshahi 7.5 2.84 24.605 34 Dhaka
0.8 0.293 25.901 30 Rajshahi 0 0.028 22.812 274 Khulna
0 0.027 25.665 18 Rajshahi 77.6 7.33 24.24 27 Dhaka
0.8 1.65 25.653 20 Rajshahi 11.8 0.019 22.718 183 Khulna
0.9 0.224 25.288 21 Rajshahi 16.8 4.43 24.108 27 Dhaka
0 0.356 26.1 24 Rajshahi 1.4 0.094 22.586 18 Khulna
1.9 0.837 25.9 18 Rajshahi 7.7 1.62 24.197 29 Dhaka
0 0.271 26.203 NA Rajshahi 8.1 0.086 22.663 38 Khulna
0 0.018 25.931 27 Rajshahi 70.6 5.16 23.926 NA Dhaka
0 0.988 25.752 18 Rajshahi 0.7 0.022 22.548 274 Khulna
4 9.07 25.913 14 Rajshahi 7.5 0.071 23.734 137 Dhaka
0 0.182 25.965 18 Rajshahi 29 2.26 23.765 22 Dhaka
0.6 2.13 25.653 18 Rajshahi 61.8 4.43 23.754 127 Dhaka
0 0.084 25.532 18 Rajshahi 215 5.67 23.599 84 Dhaka
0 0.054 25.318 18 Rajshahi 200 10.6 23.21 20 Dhaka
0 0.016 25.134 12 Rajshahi 144 6.92 23.005 20 Dhaka
0 0.976 25.109 15 Rajshahi 3.1 1.17 23.167 238 Dhaka
0 0.04 24.804 18 Rajshahi 3.4 0.156 22.7 610 Barisal
0 0.023 24.933 18 Rajshahi 10 0.112 22.355 274 Barisal
0.5 0.08 25.05 15 Rajshahi 401 4.43 23.51 26 Dhaka
0.5 0.354 24.793 30 Rajshahi 7.5 0.096 23.769 53 Dhaka
5.6 0.078 22.365 NA Barisal 1.2 33.6 22.1467 265 Chittagong
1 1.24 24.8 30 Rajshahi 4.2 0.211 22.1924 146 Chittagong
1.4 0.086 22.365 37 Barisal 0.7 12.4 22.1467 68 Chittagong
0.6 0.03 24.684 61 Rajshahi 3.7 1.66 23.4453 32 Chittagong
14.6 0.426 22.365 27 Barisal 444 10.1 23.536 32 Chittagong
0.5 0.174 24.461 30 Rajshahi 107 2.78 23.2499 23 Chittagong
1.7 0.014 24.374 37 Rajshahi 2.5 4.02 23.2484 107 Chittagong
0 0.03 24.304 18 Rajshahi 234 7.06 23.2342 168 Chittagong
5.5 0.032 24.414 27 Rajshahi 100 0.665 22.8334 11 Chittagong
0 0.037 24.506 18 Rajshahi 111 0.49 23.0053 13 Chittagong
0.9 0.036 24.179 27 Rajshahi 275 1.32 22.7761 25 Chittagong
12.3 3.99 24.507 15 Rajshahi 4.4 0.033 22.4735 110 Chittagong
15.4 0.397 24.463 18 Rajshahi 3.4 0.202 22.3704 146 Chittagong
3.5 0.044 24.15 18 Rajshahi 2 0.365 22.2234 43 Chittagong
1.9 0.151 24.006 30 Rajshahi 4.6 0.527 22.0721 31 Chittagong
1.1 0.061 23.94 18 Rajshahi 2 0.128 21.4349 10 Chittagong
28.7 3.75 23.951 20 Rajshahi 1.2 0.307 21.2432 52 Chittagong
82.5 15.8 25.156 27 Dhaka 0.9 0.139 22.4815 56.96 Chittagong
8.4 0.015 24.005 113 Khulna 0.6 0.065 22.4815 160.92 Chittagong
34.9 0.791 25.117 27 Dhaka 1.1 0.047 22.4815 261.94 Chittagong
0.8 0.017 24.019 NA Khulna 8.7 0.088 21.517 7.32 Chittagong
0 0.953 23.909 49 Khulna 1.1 0.29 21.8128 542.68 Chittagong

27.8 19.6 25.018 36 Rajshahi 1.1 0.089 22.4817 329.26 Chittagong
17.7 0.007 23.761 27 Khulna 11.3 0.249 23.8659 18.3 Chittagong
1.4 0.316 24.758 20 Dhaka 261 0.134 23.7627 26.22 Chittagong
5.7 0.02 23.529 18 Khulna 3.4 0.161 24.1945 30.5 Sylhet
4.2 0.074 24.748 107 Dhaka 5.2 0.211 24.3776 36.59 Sylhet
35.6 0.914 23.547 122 Khulna 2.3 0.197 24.4696 30.5 Sylhet
1.8 0.697 24.866 65 Dhaka 11.2 2.26 24.8795 30.5 Sylhet
17 0.494 23.488 21 Khulna

Table 1: Arsenic data (As concentration smaller than 0.5 micrograms per litre is reported as 0).

Source — http://www.bgs.ac.uk/arsenic/bangladesh/Data/BWDBSurveyData.csv.
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Range Frequency Relative frequency (%)
0-1µg/L

1.1-10µg/L
10.1-50µg/L
50.1-100µg/L

More than 100µg/L

34
46
17
5
11

30.09
40.71
15.04
4.42
9.73

Table 2: Frequency distribution of arsenic data.

2.2 Developing intuition

In a physics laboratory a student can design the conditions of an experiment and ex-
amine the outcome rather quickly. This helps one gather experience quickly and thus
develop intuition about the underlying physical laws. In statistics the response can be
very slow unless the computation is done in a computer. A judicious user can use a
statistical software to develop his/her intuitions.

This is made possible by exposure to a variety of outcomes — both expected and
unexpected. Consider once again the arsenic data, restricted to the 108 cases where
the information is complete (that is, after excluding the five cases where the depth of
the borehole is not known). The arsenic content As may be regressed linearly on Fe,
Lat and Depth. It is well known that inclusion of too many variables in a regression
equation may lead to lack of precision of the estimators of some parameters. For the
present data, when As is regressed on Lat alone, the p-value of the regression coeffi-
cient is .102. The p-value of this coefficient increases to .127 when Fe is included in
the model. This increase is expected from the foregoing explanation. However, the
p-value drops to .028 as soon as the variable Depth is brought into the model. Such an
outcome may surprise the analyst if he/she is not aware that the effect of a variable
may be masked by the absence of other variables, and inclusion of the missing variable
would then make everything fall in place.

Students sometimes think that a regression model fits quite well if the regression
coefficients are statistically significant. For the present data set, the regression equa-
tion involving the three explanatory variables is as follows.

As = 370.7
(154.5)

[.018]

− 14.11
(6.332)

[.028]

Lat+ 4.571
(1.567)

[.004]

Fe− .1553
(.0794)

[.053]

Depth. (1)

In the above equation the numbers in parentheses indicate the standard errors, while
the numbers in square brackets indicate the p-values. The multiple R-square is .124.
This shows that there much more variability in the arsenic concentration than what
is explained by the explanatory variables — even though most of the coefficients are
statistically significant at the 5% level.
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The role of high leverage observations are also illustrated through analysis of this
data set. Two observations (no. 50 and 85) have very high leverages — .494 and .162.
Once these are excluded from the analysis, the fitted equation changes drastically to

As = 353.5
(143.1)

[.015]

− 13.97
(5.867)

[.019]

Lat+ 12.79
(2.328)

[.000]

Fe− .0976
(.0745)

[.193]

Depth. (2)

Incidentally, the multiple R-square jumps up to .269 when the two cases are excluded.

2.3 Follow-up analysis

While a particular analysis answers some questions, it may also give rise to further
questions. Sometimes the analyst has to look beyond the domain of statistics for
answers to these new questions. For example, the signs of the estimated regression
coefficients given in (1) would make sense if one has some understanding of the mecha-
nism of arsenic accumulation in groundwater (see, for instance the Introduction section
of [1]).

The effect of the geographical location is also brought out by a one-way analysis of
variance after classifying the 113 cases by the administrative division. The divisional
effect is highly significant. The divisional averages show that Chittagong (mean arsenic
concentration 63.47 µg/L) and Dhaka (63.04) are worst affected, while the problem is
not so serious in Khulna (12.26), Barisal (7.00), Sylhet (5.53) and Rajshahi (2.88).

If one looks closely into the two high-leverage cases, the first is found to have come
from a rather shallow borehole located in Rajshahi, and the arsenic concentration is
unusually high. On the other hand, case 87 comes from a deep borehole in Chittagong
with a high iron concentration, but the arsenic concentration is unusually low. The
unusual level of the response at the high-leverage points explain why their deletion
improves the fit.

Following up on new questions, whether these are statistical or not, help students
make important connection between their theoretical knowledge and the problems of
real life and gain confidence in their ability to solve problems. The statistical part of
this follow-up study is made easier by software.

2.4 Believing theorems

Understanding the proof of a theorem does not necessarily mean that one believes
it. Believing a proven result is an essential part of developing statistical intuition. If
real life does not provide adequate opportunity for watching a result in action (as is
the case for many statistical theorems), random simulations can act as a substitute.
For example, the appropriateness of the asymptotic distribution of a statistic can be
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verified through simulations. Insight into rates of convergence may also be gained
in this manner. An often neglected quantity in studying rates of convergence is the
constant associated with the leading term. Sometimes simulations help one realize
that a large value of the constant can be responsible for apparently slow convergence.

2.5 Quick verification of hunches

When one selects a model from a number of competing models using some data-based
selection criterion, and proceeds to draw inference on the parameters of the model on
the basis of the same data set, then some bias may creep into the estimator. This ‘se-
lection bias’ may be visualized by considering two competing subset regression models
which are intrinsically equally good. One of these two models is bound to be selected
via the chosen criteria, — in a particular realization of the concerned random phenom-
ena. This means that this particular realization of the chosen model provides better
explanation of the response than many other realizations of the same model. Thus,
conditioning on selection alters the explanatory characteristics and thus may lead to
bias. This is only a hunch. It is very difficult to prove, even in a simple case, that
the estimators of regression coefficients in a particular subset model are biased when
conditioned on selection. This may however be established through simulations, as
shown by Miller.[4]

What often stands between a ‘hunch’ and a ‘proof’ is a piece of mathematical jug-
glery which has nothing to do with statistics. Simulation through statistical software
has the potential to remove this obstacle.

2.6 Checking assumptions and finding alternative models

Using statistical software one can get an idea about the appropriateness of the various
assumptions underlying a certain analysis. For example, the plot of the observed
vs. fitted values of arsenic concentration from the foregoing analysis (after dropping
observations 50 and 85), shown in Figure 1, indicate the presence of considerable
heteroscedasticity. In particular, there is larger variation in observed concentration
when the predicted concentration is larger. The plot also underscores what should be
understood at the outset — that the predicted concentration obtained from a linear
model may be negative in some cases, whereas the observed concentration can never
be negative.
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The problem of heteroscedasticity and the non-negativity of the response may
be tackled by using log(As) as the response variable. This transformation is usually
ruled out when some response values are 0. However, in this case, the 0 values are
in fact censored from the left at .5 micrograms per litre. The normal likelihood for
the censored data may be maximized using the EM algorithm.[5] The ‘complete data’
in this case would include the exact values of these low arsenic concentration. The
iterative steps are as follows.

E-step : log(Asi) = xTi β − σ exp

[
−1

2

(
log(.5)− xTi β

σ

)2
]
/Φ

(
log(.5)− xTi β

σ

)
for each missing observation Asi (β and σ are current estimates),

M-step : β = usual least squared estimator with missing values substituted as above,

σ = root-mean squared value of residuals from above least squares analysis.

In the above expressions, Asi is the arsenic concentration in the ith case, xi is the
vector of the explanatory variables in the ith case and Φ(·) is the standard normal dis-
tribution function. The iterations may begin with the M-step with log(.5) substituted
for the missing values. The E- and M-steps can be coded easily in software such as R
(freely downloadable from the internet).[6] The fitted equation (after dropping cases
50 and 85 and also case 87 which becomes a high-leverage point when the other two
cases are dropped) is

log(As) = 31.81
(5.343)

[.000]

− 1.317
(.2193)

[.000]

Lat+ .5462
(.0928)

[.000]

Fe− .0044
(.0027)

[.114]

Depth. (3)

The multiple R-square is 0.404, which cannot be compared with the previous value,



116 International Journal of Statistical Sciences, Vol. 5, 2006

as the response has been transformed. Figure 2 shows the observed vs. predicted log-
concentration of arsenic. It appears that heteroscedasticity is somewhat removed.

One can also fit a binary data regression model for the ‘indicator variable’ of arsenic
concentration being more than 10 micrograms per litre, using the three explanatory
variables. The fitted equation (after dropping observations 50, 85 and 87) happens to
be

log

(
Prob(As > 10)

1− Prob(As > 10)

)
= 9.967

(4.943)

[.011]

− .4448
(.2038)

[.007]

Lat+ .1447
(.0591)

[.004]

Fe− .0091
(.0045)

[.011]

Depth. (4)

The binary observation (1 for arsenic concentration higher than the WHO limit
and 0 for concentration within the limit) is plotted in Figure 3 against the predicted
probability of the response being 1. The fit is reasonable.
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3 Potential problems with using software

3.1 Too expensive

The high cost of computer hardware as well as statistical software is a major problem
faced by academic institutions in many developing countries. Even though hard-
ware becomes cheaper with newer technology flooding the market, the older hardware
quickly becomes unusable because of the shortage of spare parts. Newer versions of
software require newer hardware. Thus, one never really has the chance to reduce
expenditure.

In this scenario one has to be ready to extract as much mileage as possible from
the available resources. For examples, the smartest machines or the the latest ver-
sion of the best software is not necessary for most of the computational needs of an
average statistics teacher or student. A pentium PC with MS-Excel can be used to
carry out almost all the statistical computing at the bachelor’s degree level. Making a
not-so-smart software do sophisticated computation is a challenge which should excite
the students. The scope of manipulating with vectors makes packages like MS-Excel
more attractive than writing programs in C or Fortran.

Minitab is widely used in undergraduate teaching, and its website provides a freely
downloadable trial version.[7] However, it is very expensive. Systat provides a some-
what cheaper alternative.[8]

Another alternative is provided by the R Project for Statistical Computing which
has created the freely available computing environment called R.[9] A versatile statis-
tics toolbox is also available with R.[6]

3.2 Need for a teacher to learn more

This is perhaps biggest hurdle. An uninitiated teacher may find it quite difficult
to use the various options of a software, not to speak of programming in a general
or statistical computing environment. Unexplained keywords and unexpected results
only adds to the frustration. I have taken the easiest route in this respect, by learning
together with students. The students can do the programming while the teacher can
help them interpret the findings. In the process a greater link is achieved between
theory and practice.

A teacher also needs a number of real data sets which can be used in the initial
phase of learning data analysis. There are plenty of data-oriented books in the market,
including some books on data alone.[10,11] These data are freely downloadable from
the internet. Students can also be asked to collect primary and secondary data, which
is an important experience for them. If they have access to the internet, then they
can make use of some excellent resources available in it.[12]
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3.3 Allocation of time

When statistical data analysis has to be accommodated in an existing curriculum,
it may jeopardize the time table as well as the teacher’s preparatory plan. As far
as the teacher’s time is concerned, the difficulty is mostly restricted to the initial
stage. My experience at the Indian Statistical Institute, Kolkata suggests that lecture
time is not strained at all by introducing the computational component. Home as-
signments in courses such as statistical methods, statistical inference, linear models,
sample survey and design of experiments, regression techniques, time series analysis,
multivariate analysis, large sample techniques, stochastic processes and so on can be
made computer-oriented. Some class time has to be set aside for discussion of these
assignments. This can be accommodated at the expense of routine algebra or calculus
used in some proofs.

3.4 Stunted thought process of students

It is common knowledge that school students who have early access to calculators
tend to forget multiplication tables and generally have less time to develop an intu-
ition about numbers. A similar risk is faced by statistics students in college who have
easy access to statistical computing. They may be tempted to follow worked out ex-
amples too closely, or to check out a ‘hunch’ too soon — even before trying to guess
the answer through intuition or reasoning.

While this possibility cannot be ruled out, access to software is not the issue. The
same reliance on worked out matter can also be seen among students who do not have
access to computers at all. For many students of this category statistics is a bunch of
theorems stated in books.

The calculator syndrome and the book syndrome are two sides of the same coin.
The teacher’s thrust has to be on relating all new knowledge (whether these are gath-
ered from books or software) to the world we can touch, hear and see. A statistical
data analyst should know that in a regression problem a high-leverage point is an ex-
treme case. He should be able to identify some obviously high-leverage points simply
by inspection — when the data set is not too large. (The high-leverage points of the
arsenic data set is a case in point.) The data analyst should also satisfy himself that
the outcome of the analysis is meaningful, the coefficients have the appropriate sign,
the predictions are in the right range, and so on. No statistical software can impart
or impair these skills. The responsibility lies with the analyst.

3.5 Statistical software are not perfect

All statistical software have errors in them. These errors are not independent. The
fact is that while competing with one another for the development of newer versions,
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the software teams borrow features and ideas from one another. They also borrow
errors in the process.

It is a common practice in most (if not all) statistical software to denote a stan-
dardized statistic as a t-ratio whenever the standard deviation in the denominator is
an estimated one. This nomenclature is appropriate in the context of linear regression
if normality is assumed. However, a t-ratio is also mentioned alongside the estimated
parameters in various other contexts such as the generalized linear model, where the
scaled statistic is normal only in the asymptotic sense, and no small sample distri-
bution is available! The t-ratio is therefore a misnomer which could not have been
invented by all the software independently.

4 Research

Issues discussed in Section 2 are relevant not only for teaching but for research as
well. Software also helps a researcher visualize sets, surfaces and other mathematical
constructs. Availability of fast statistical computing has made possible the widespread
use of iterative methods such as the EM-algorithm. It has also inspired the ad-
vent of computation-intensive methodology such as resampling techniques, diagnos-
tics, Markov chain monte carlo and other Bayesian computational algorithms.

Unfortunately, many new computation-intensive methods add little if anything
to the existing body of knowledge on the subject. As these methods have become
fashionable, those who seek the quickest route to publication are tempted to join the
bandwagon and do what they were doing elsewhere — churning out fancy methods
that nobody will ever use, except for comparing with fancier methods.

5 Concluding remarks

It was once suggested to me that statistical packages may have made statisticians
redundant. There is some truth in this statement. Scientists and engineers now have
access to a much wider range of statistical tools than ever before. However, the pack-
ages can not possibly provide application-specific interpretation. Statisticians can fill
in this void. Those who are unable to do so may have become redundant to the users
of statistical methods.

The positive aspect of this development is that statisticians need no longer be
constrained by the lack of computational resources. There will be no excuse for not
demonstrating the effectiveness of a particular method. There will be no credit for
inventing minor computational shortcuts. Packages are pushing statisticians to mind
their statistics.
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