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Abstract

Meta-analysis is an evidence based tool for combining results from inde-
pendent studies to obtain a concise estimate. Broadly the two parametric
statistical models used in this method are the fixed effect model and the
random effect model. The appropriateness of these models in incorporat-
ing variability between studies and resolving the problem of unpublished
studies in meta-analysis has long been debated among statisticians. The
Bayesian inference has been adopted extensively in clinical decision making.
This communication provides a detailed account of the theory of Hierarchi-
cal Bayesian Linear Model (HBLM) in determining the summary estimates
in meta-analysis of clinical trials. It has been shown that HBLM is a gener-
alized model from which the results of the classical fixed effect and random
effect model can be derived by treating the value of variation between stud-
ies, τ as either 0 or the non-iterative estimate by the methods of moments.
It also provides a method for estimating the study specific estimate that
helps in computing predictive probabilities. The Bayesian model has been
found to be more useful in incorporating other sources of variation as it is
based on Generalized Linear model.
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1 Introduction

Meta-analysis is the science of integrating results from independent studies to obtain
a concise estimate. It has been identified as an analytical and methodological tool
to aid the researchers to combine information from similar studies to arrive at a con-
clusion. In contrast to the traditional literature review which is narrative in nature,
meta-analysis uses quantitative methods to combine published results from primary
studies to arrive at a combined estimate. Over the past two decades, researchers have
developed several statistical models to describe the combining methods. While most
of them fall under the frequentist models, some Bayesian models have also been devel-
oped. Hierarchical Bayesian Linear model is one such technique that has been found
to have great potentials as a meta-analytic technique. Many researchers especially
Dr William Dumouchel (1983, 1996) have used this model in their studies. The same
model has been used by us in the PhD work. This communication describes the the-
oretical development of the summary measures of a hierarchical model as a tool for
meta-analysis. The method has been applied on meta-analysis of stroke clinical trials.

2 Review of literature

Lewis et al (1993) has highlighted the advantages of Bayesian analysis in yielding the
probability that one treatment is more efficacious than the other. He contrasts the
Bayesian and the Classical methods of inference and points out that Bayesian anal-
ysis scores over the classical method in the ability to incorporate prior information
regarding treatment efficacies, the ability to make multiple unscheduled inspections of
accumulating data without increasing the error rate of the study and the ability to
calculate the probability that one treatment is more effective than the other.

Some of the properties of the Bayesian inference have motivated Berger et al (1984),
Spiegethalter et al (1988) and Spiegelhalter et al (1994) to develop techniques for using
Bayesian approaches for interpretation and analysis of data from clinical trials. All
the authors have highlighted the incorporation of available evidence in the Bayesian
analysis.

Donner (1982) has developed a Bayesian approach to interpret subgroup results
in clinical trials. He observed that in treatment comparisons if a clinician is able to
determine a priori the association between two groups by experience it is possible to
incorporate this knowledge to interpret the results of the clinical trial.

Greenhouse et al (1994) has tried to describe robust Bayesian approach to address
the major criticism of the Bayesian approach on the need to specify a prior distribution
of the parameters of interest. He defines a class of prior distributions and investigates
how the inferences might change when the prior changes.
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Raudenbush and Bryk (1985) were one of the earliest advocates of empirical
Bayesian methods in meta-analysis. They have used a mixed effect model with both
fixed and random effects by assuming a two stage hierarchical linear model in meta-
analysis. In the first stage, within-study variance is estimated and in the second stage
between studies variation is estimated.

Carlin (1992) has developed a fully Bayesian approach to meta-analysis of studies
when the results are in the form of 2X2 tables. He has used a hierarchical normal
model with the assumption that the parameters of interest are the effects from indi-
vidual studies that are represented by an exchangeable prior distribution.

Smith et al (1995) have described a fully Bayesian analysis which can deal with
some of the unresolved issues such as a choice between the random and fixed effect
models, the treatment of small studies and extreme results and incorporation of study
specific covariates.

Prof. Donald Berry did pioneering work in Bayesian interpretation of clinical tri-
als. In their publication, Berry et al (1985, 1990,1992) have described that for strict
interpretation of results, the Bayesian approach is more appropriate in analyzing clin-
ical trials and meta-analysis than the frequentist approach. According to him, the
frequentist inference is a strict interpretation of Neyman-Pearson inference. In this
approach the design of the experiment induces a sample space that can be used in
calculating probabilities of statistics under various hypotheses. When the design is
not known a frequentist analysis is not possible. In a meta-analysis with a frequentist
approach since no overall design for gathering data is specified in advance, each study
should be analyzed separately in a meta-analysis. As a result, although frequentist
measures are used for representing data summaries in Meta analysis no inferential
meaning could be justified by frequentist measures.

DuMouchel(1983) developed a Bayesian model using the generalized least square
method for application in meta-analysis. The concept of ‘borrowing strength’ from
individual studies is highlighted in his paper. The technique has been applied on
papers developed by DuMouchel and Harris (1994) and the NASA report (1996) on
Hierarchical Bayesian Linear Modeling and meta-analysis.

The NASA report is a pioneering work of DuMouchel which explains the role of Hi-
erarchical model in meta-analysis. The same model has been applied by the author in
another paper (Canner, 1983) on Canner’s review of six trials of myocardial infarction.

Spiegelhalter et al(1994) have discussed the use of Bayesian framework for analyz-
ing clinical trials. The paper gives the various sources of evidence that could be used
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as prior information for incorporating in the analysis. These include clinical opin-
ion, evidence from non-randomized studies and evidence from other randomized trials
apart from the reference prior as defined by Jeffreys (1961).

Freedman (1983) has discussed the use of subjective opinion in stopping rules for
clinical trials in his paper. The clinical opinion was elicited by interviews with clini-
cians who were asked to specify two values d1 and d2 where d1 is the lower limit of the
range of equivalence below which the clinician would certainly not use the treatment
and d2 is the level above which the clinician will certainly use the treatment.

Chaloner et al (1993) describes a graphical method of elicitation of prior distribu-
tion for a clinical trial.

Parmar et al (1994) have designed a postal questionnaire to elicit the prior judg-
ment of clinicians who were to take part in the CHART lung trial and head an neck
trial. The prior opinion of the participating clinicians regarding the advantage of
CHART over conventional radiotherapy was elicited by marking their opinion (range
of equivalence) on a scale of treatment differences.

Tweedie et al (1996) had applied Bayesian meta-analysis on lung cancer studies
and they have demonstrated that compared to the random effects model Bayesian
methods allow more detailed modeling of study heterogeneity to be incorporated, are
robust against a wide choice of specifications of heterogeneity and allow more detailed
statements to be made not only about the overall effect by also about the individual
study effects. The paper has employed the Markov Chain Monte Carlo techniques for
implementing Bayesian hierarchical models but the details of the technique have not
been given.

The main drawback of Bayesian method is the difficulty in computing complicated
likelihood and posterior functions. Naylor (1982) has outlined a numerical integra-
tion method using Gaussian quadrature that leads to efficient calculation of posterior
densities for a wide range of problems. The method has shown that in comparison to
standard maximum likelihood methods, this method can handle complex likelihoods
or prior densities with ease and maximum likelihood methods are sensible if the log-
likelihood contours are ellipsoidal which is a more restrictive assumption.

Reilly (1976) has described a method in which the prior probabilities are described
as arrays using the parameters of a linear or non-linear model. These are then used
in the Bayes theorem to get joint posterior distributions of the parameters.
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3 Methodology

A formal Hierarchical Linear Model assumes that the sample estimate yi is approxi-
mately normally distributed with known variances, conditional on the true parameter
value θi i.e.

yi/θi ∼ N(θi, s
2
i ) (1)

Further, θi follows normal distribution with mean and variance given by the hy-
perparameters µ and τ2 respectively i.e.

θi/µ, τ
2 ∼ N(µ, τ2) (2)

Meta-analysis could be considered as a hierarchical process with the effect yi from
the ith trial that estimates the parameter θi for the selected set of trials. These trials
could then be thought of as a subset from a larger population of trials with an unknown
effect µ. Thus, the problem simplifies to the estimation of the population parameters
µ and τ2 given the data Y . From (1) and (2) the sample effect measure yi/µ, τ

2

follows normal distribution with mean µ and variance τ2+s2i . The probability density
function for yi is then given as

f
(
yi
/
µ, τ2

)
=

1√
2π(τ2 + s2i )

e
−1(yi−µ)2

2(τ2+s2
i
)

In the Bayesian paradigm µ and τ are estimated from the posterior density function
f(µ/Y ) and the marginal posterior density function of f(τ/Y, µ) respectively. Using
the Bayes formula for two parameters, the marginal posterior distribution of µ is

π(µ/Y, τ2) =
π(Y/µ, τ2)π(µ/τ2)∫

µ
π(Y/µ, τ2)π(µ/τ2)dµ

(3)

where π(µ/τ2) is the conditional distribution of µ if τ2 is known. Similarly the
posterior distribution of τ is given as

π(τ/µ, Y ) =
π(Y/µ, τ2)(µ/τ2)π(τ)∫

τ
π(Y/µ, τ2)π(µ/τ2)π(τ)dτ

(4)

where π(τ) is the prior distribution of τ . Thus, the Bayesian estimates for µ and
τ were found to depend on the prior distribution of µ and τ .

In meta analysis of clinical trials with binary outcome the effect is the absolute
difference in event rates in the treatment group and the control group (pt-pc). This
measure follows a normal distribution. The corresponding population measure should
also follow normal distribution. Assuming a non-informative normal prior for µ given τ
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with arbitrary mean m and variance d2 → ∞ i.e µ ∼ N(m, d2) and a non-informative
prior distribution π(τ) for τ it is possible to obtain estimates for µ and τ using a
Bayesian approach. In particular, we are interested to obtain the following summary
estimates

a. Mean and variance of µ , the parameter for the larger population

b. Mean and variance of θ, the parameter for the subset of population

The two summaries are obtained in Bayesian terms using conditional and un-
conditional probabilities.

The conditional summaries are:

• Conditional posterior mean µ∗(τ) = E(µ/Y, τ) and variance µ∗∗(τ) = V (µ/Y, τ)
where µ is a function of τ .

• Conditional posterior mean θ∗i (τ) = E(θi/Y, τ) and variance θ∗∗i (τ) = V (θi/Y, τ)
where θi is a function of τ .

The unconditional summaries are:

• Unconditional posterior mean and variance of µ, µ∗, µ∗∗.

• Unconditional posterior mean and variance of θi, θ
∗
i , θ

∗∗
i .

The posterior probabilities.

a. Conditional combined mean and variance, µ∗(τ) and µ∗∗(τ)

µ∗ (τ) = E (µ/Y, τ) =

∫
µ

µ.f(µ/y, τ)dµ −∞ < µ < ∞

f(µ/y, τ) =
f(µ, y, τ)

f(y, τ)
=

f(µ, y, τ)
µ=∞∫

µ=−∞
f(µ, y, τ)dµ

=
f(y/µ, τ).f(µ/τ)

µ=∞∫
µ=−∞

f(y/µ, τ).f(µ/τ)dµ

E(µ/y, τ) =

µ=∞∫
µ=−∞

µf(y/µ, τ).f(µ/τ)dµ

µ=∞∫
µ=−∞

f(y/µ, τ).f(µ/τ)dµ

(5)
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f(y/µ, τ).f (µ/τ) =
1(√

2π
)k k∏

i=1

√(
s2i + τ2

)e−
1
2

k∑
i=1

(yi−µ)2

(s2i+τ2) × 1

d
√
2π

e−
1
2(

µ−m
d )

2

=
1(√

2π
)k+1 k∏

i=1

√(
s2i + τ2

)
d

e

−1
2

[(
µ2+m2−2mµ

d2

)
+

k∑
i=1

{
y2i +µ2−2µyi

(s2
i
+τ2)

}]

=
1(√

2π
)k+1 k∏

i=1

√(
s2i + τ2

)
d

e

−1
2

[
µ2

(
1
d2

+
k∑

i=1

1

(s2
i
+τ2)

)
−2µ

(
m
d2

+
k∑

i=1

yi
(s2
i
+τ2)

)
+

(
m2

d2
+

k∑
i=1

y2i
(s2
i
+τ2)

)]

(6)
To simplify (6) let us define the following three expressions

A =

k∑
i=1

1(
s2i + τ2

) +
1

d2

B =

k∑
i=1

yi(
s2i + τ2

) +
m

d2

C =
k∑

i=1

y2i(
s2i + τ2

) +
m2

d2
(7)

Expressing the exponent in (6) in terms of A, B and C

=
−1

2
A
[
µ2 − 2B/A + C/A

]

=
−1

2
A

[(
µ− B

A

)2

− B2

A2
+

C

A

]

=
−1

2

µ− B/A

1
/√

A

2

+

(
C− B2

A

) (8)

Thus, the RHS of (6) is simplified
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⇒ 1√
2π

e
−1
2

(
µ−B/A

1/
√
A

)2
× 1

d
(√

2π
)k k∏

i=1

√
( si2+τ2)

e
−1
2
(C−B2/A) (9)

The integral of the denominator of (5) is given by

=

∫
µ

(
1√
2π

)k+1

× 1

d
k∏

i=1

√(
s2i + τ2

)e
−1
2

[(
µ−B/A

1/
√

A

)2

−(C−B2/A)

]
dµ

Multiplying and dividing by 1/
√
A the above expression could be written as

=

 1/
√
A(√

2π
)k× e−

1
2(C−B2/A)

d
k∏

i=1

√
s2i+τ2

×

 1
√
2π

(
1
/√

A
) ∫

µ

e
−1
2

(
µ−B/A

1/
√

A

)2

dµ



=
1/

√
A(√

2π
)k× e−

1
2(C−B2/A)

d
k∏

i=1

√(
s2i + τ2

) (10)

(since the second expression being normal cdf is equal to 1).

The integral in the numerator of (5) is given by

∫
µ

µ

(
1√
2π

)k+1

× 1

d
k∏

i=1

√(
s2i + τ2

)e
−1

2

(
µ−B/A

1/
√

A

)2

− 1
2(C−B2/A)


dµ

⇒
(

1√
2π

)k

1/
√
A× 1

d
k∏

i=1

√(
s2i + τ2

)e− 1
2(C−B2/A) 1

1/
√
A
√
2π

∫
µ

µe
−1
2

(
µ−B/A

1/
√
A

)2

dµ

⇒
(

1√
2π

)k

× 1

d
K∏
i=1

√(
s2i + τ2

)e− 1
2(C−B2/A) × B

A
(11)

Dividing (11) by (10) we get
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E(µ/y,τ) = µ∗(τ) =
B

A
=

k∑
i=1

yi
(s2i +τ2)

+ m
d2

k∑
i=1

1(
s2i +τ2

) + 1
d2

(12)

V(µy/τ) = µ∗∗(τ) =
1

A
=

1
k∑

i=1

1

(s2i +τ2)
+ 1

d2

(13)

b. Conditional study specific mean and variance θ∗i (τ) and θ∗∗i (τ)

LetBi(τ
2, s2i ) =

V(yi)

τ2 +V(yi)
=

s2i
s2i + τ2

The mean of θi(τ) the study specific estimate is given by

E(θi/yi, τ) = Bi(τ
2, s2i )× µ∗(τ)+ [1− Bi(τ

2, s2i )
]
× yi

= µ∗(τ)× s2i
s2i +τ2

+
(
1− s2i

s2i +τ2

)
× yi

= µ∗(τ)
(
s2i +τ2−τ2

s2i +τ2

)
+

(
τ2

s2i +τ2

)
× yi

= µ∗(τ)+ (yi − µ∗(τ))

(
τ2

s2i + τ2

)
(14)

V (θi/yi, τ) = θ∗∗i (τ) =

(
s2i

s2i + τ2

)2

µ∗∗ (τ) +
τ2s2i

s2i + τ2
(15)

c. Unconditional combined mean and variance, µ∗ and µ∗∗

The marginal posterior summaries µ∗ and µ∗∗ i.e. the overall mean and variance of
the effect estimates are obtained by integrating the conditional summaries µ∗(τ) and
µ∗∗(τ) w.r.t the posterior distribution of τ .

Posterior distribution of τ is given by π(τ/y)

π(τ/y) =
f(y,τ)

f(y)
=

∫
µ f(y, µ, τ)dµ∫

τ

∫
µ f(y, µ, τ)dµdτ

=

∫
µ f(y/µ, τ).f(µ/τ).π(τ)dµ∫

τ

∫
µ f(y/µ, τ).f(µ/τ).π(τ)dµdτ

(16)

The numerator of (16) is nothing but π(τ).(10)

= π(τ)
1

√
A
(√

2π
)k .1d 1

k∏
i=1

√(
s2i + τ2

)e−1
2 (C−B2/A)
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Thus

π(τ/Y) =
1

ρ
π(τ)

1√
A
.

1
k∏

i=1

√(
s2i + τ2

)e−1
2 (C−B2/A) (17)

where ρ is the normalizing constant to make π(τ/Y ) a probability density function
and is given as

ρ=

∞∫
0

π (τ)
1√
A
.

1
k∏

i=1

√(
s2i + τ2

)e− 1
2(C−B2/A)

Simplifying (17) and substituting the values of A, B and C

π (τ/y) ∝ π(τ)
1

k∏
i=1

√(
s2i + τ2

) . 1
1√

k∑
i=1

1

(s2i +τ2)
+ 1

d2

× e

−1
2

m2

d2
+

k∑
i=1

y2
i

(s2i +τ2)
−

(
k∑

i=1

yi
s2
i
+τ2

+ m
d2

)2

k∑
i=1

1

(s2i +τ2)



(18)

Recognizing the fact that µ∗(τ) = B
A =

k∑
i=1

yi

(s2i +τ2)
+ m

d2

k∑
i=1

1(
s2
i
+τ2

)+ 1
d2

we can write the expression

in the exponent of (18) as
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m2

d2
+

k∑
i=1

y2i
(s2i+τ2)

−
(

k∑
i=1

yi
(s2i+τ2)

+ m
d2

)
µ∗ (τ)

=
k∑

i=1

(
y2i

(s2i+τ2)
− yi

(s2i+τ2)
µ∗ (τ)

)
+ m

d2
(m− µ∗ (τ)) (m− µ∗ (τ))

=
k∑

i=1

1

(s2i+τ2)

[
(yi − µ∗ (τ))2 + yiµ

∗ (τ)− (µ∗ (τ))2
]
+ m

d2

=
k∑

i=1

1

(s2i+τ2)
(yi − µ∗ (τ))2 + µ∗ (τ)

[
k∑

i=1

yi
(s2i+τ2)

− µ∗ (τ)
k∑

i=1

1

(s2i+τ2)

]
+ m

d2
(m− µ∗ (τ))

=
k∑

i=1

1

(s2i+τ2)
(yi − µ∗ (ττ))2 + µ∗ (τ)

×
[
µ∗ (τ)

(
k∑

i=1

1

(s2i+τ2)
+ 1

d2

)
− m

d2
− µ∗ (τ)

k∑
i=1

1

(s2i+τ2)

]
+ m

d2
(m− µ∗ (τ))

=
k∑

i=1

1

(s2i+τ2)
(yi − µ∗ (τ))2 − µ∗(τ)

d2
(m− µ∗ (τ)) + m

d2
(m− µ∗ (τ))

=
k∑

i=1

1

(s2i+τ2)
(yi − µ∗ (τ))2 + 1

d2
(m− µ∗ (τ))2

The complicated integrand f(Y ) in the denominator of (17) in not integrable by
analytical methods. To obtain the value of this integral numerical integration approach
has to be applied. One such method of integration is the Gauss-Hermite integration
formula(DuMouchel, W. (1989).

Integrals of the type
∞∫

−∞
e−t2f(t)dt may be approximated with a Gaussian− type formula

n∑
i=1

wi,nf(ti,n) where the weights wi,n are defined as
2n−1n!

√
p

n2[Hn−1(ti)]
2 where ti,n is the set of

roots of by Hn(ti) = 0 and Hn(ti) = (−1)net
2
i
dn
(
e−t2i

)n
dt2i

is a Hermite polynomial

of nth order.

The integral in (17) is over the range (−∞,∞) . To write the integral in the Gaus-
sian form we transform the variable τ into γ = ln(τ) so that the range of γ is from 0
to ∞. Then the posterior density in terms of γ becomes f (γ/Y) = π (τ/Y ) |J | where
J is the jacobian of transformation |J | = δτ/δγ = eγ

f (γ/Y ) = π (eγ/Y ) eγ

To determine the points of integration the procedure is to first maximize the log
likelihood of γ i.e. L (γ) = log (f (γ/Y )) = γ + log (π (eγ/Y )) . Let γ0 be the value of
γ that maximizes L(γ). Then we choose a small value say ε = 0.01 and compute
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H =
−L(ν0 + ε) + L(ν0 − ε)− 2L(ν0)

ε2

H is the Bayesian version of Fisher Information that takes into account the prior
distribution and the actual data rather than the expected data . The points used in

the numerical integration are γi = γ0 + xi ×
√

2
H where xi are the x-values given in

the table 25.10 in the book ”Handbook of mathematical functions ” (Abramowitz, M.
and Stegun, I. (1972)). Depending on the order of the Hermite polynomial the table
gives the values of the abscissa. Thus if we choose nine points of the integration we
obtain the values of x corresponding to n = 9 in the table. From the values of γI we
compute the values of τI from the relation τI = eγ The posterior probabilities π(τ/Y )

are thus computed from the following equation π (τ/Y)= π(τi).τiλi
k∑

i=1
π(τi).τiλi

where λi is the

weight assigned to each value of τi .

The marginal posterior expectation and variance of µ viz. µ∗ and µ∗∗ are obtained
by weighing the conditional posterior expectation and variance µ∗(τ) and µ∗∗(τ) by
π(t/Y ) and summing it over the values of τi obtained by Gauss Hermite integration.
The overall mean and variance of an effect measure is then expressed by the values of
µ∗ and µ∗∗. The posterior probability of µ for a particular value could also be obtained
from these expressions. The derivation of these quantities is given as under:

µ∗ = E(µ/Y ) =
n∑

j=1
µ∗(τj)π(τj/Y )

µ∗∗ = V (µ/Y ) = E(V (µ/Y )) + V (E(µ/Y ))

=
n∑

j=1

{
µ∗∗(τj) + (µ∗(τj)− µ∗)2

}
π(τj/Y )

d. Unconditional study specific mean and variance, θ∗i and θ∗∗i

The marginal posterior expectation and variance q*i and q**i for each study is
also obtained likewise by weighing the conditional posterior expectation and variance
by π(τ/Y ). Thus, we obtain

θ∗i = E(θi|Y ) =
∫
τ
θ∗i π (Y ) dτ =

∫ {
µ∗ (τ) + [yi − µ∗ (τ)] τ2

(τ2+s2i )

}
π (τ/Y ) dτ

∼=
n∑

j=1

{
µ∗ (τ) + [yi − µ∗ (τ)] τ2

(τ2+s2i )

}
π (τ/Y )

θ∗∗i = V (θi|Y ) =
∫ {

V [θi|Y, τ ] + [θi
∗ (τ)− θ∗i ]

2
}
π (τ/Y ) dτ

∼=
n∑

j=1

{
V [θi|Y, τ ] + [θi

∗ (τ)− θ∗i ]
2
}
π (τi/Y )
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e. Posterior probabilities P (µ > Q/y)

The posterior probability of µ given τ is defined as

P( µ> Q| y) = E [P( µ> Q| y, τ) ] = E(
∞∫
Q

f(y/µ,τ)f(µ/τ)(∫
µ
f(y/µ,τ)f(µ/τ)

)dµ)

=
n∑

j=1

∞∫
Q

f(y/µ,τ)f(µ/τ)(∫
µ
f(y/µ,τ)f(µ/τ)

)dµ
π(τj/y)

f(y/µ,τ)f(µ/τ)(∫
µ
f(y/µ,τ)f(µ/τ)dµ

) is the conditional posteior distribution of y given µ, τ which is

normally distributed with mean B/A and variance 1/A. The integral in the summation
is thus

=

∞∫
Q

1√
2π. 1√

A

e
−1
2

{(
µ−B/A

1/
√

A

)2}
dµ

Let
(
µ−B/A

1/
√
A

)
= z dµ = 1√

A
dz

µ = Q = z =
(
Q−B/A

1/
√
A

)
µ = ∞ = z = ∞

= 1√
2π. 1√

A

∞∫(
Q−B/A

1/
√

A

) e− z2

2
1√
A
dz

= Φ
(
Q−B/A

1/
√
A

)
= Φ

(
Q−µ∗(τ)√

µ∗∗(τ)

)
.

where Φ(x) is the standard normal variate defined as

Φ(x) =
x∫

−∞

1√
2π
e

−x2

2 dx

Φ(−x) = 1− Φ(x) Hence P( µ> Q| y) =
n∑

j=1
Φ

(
Q−µ∗(τj)√

µ∗∗(τj)

)
π(τj/y)

An illustration:

This example is extracted from the corresponding authors Ph.D thesis (Geetha
Menon, unpublished ) Acute ischaemic stroke is a major cause of death and disabil-
ity worldwide yet, despite advances in stroke prevention, there is no effective routine
treatment for the stroke once it has occurred. Thrombolysis is an effective treatment
for acute myocardial infarction (MI), a vascular disease with some similarities to acute
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ischaemic stroke, but it has taken many years and the randomization of many thou-
sands of MI patients in multicentre trials to prove that thrombolysis works. Indeed,
the benefit of thrombolysis was almost missed; it was not until a systematic review in
1985 that led to very large trials that confirmed the benefit in acute MI. Yet, a cumu-
lative meta-analysis of the published MI trials showed - in retrospect - that there was
clear evidence of benefit as long ago as 1973. An overview of the literature on throm-
bolysis in acute ischaemic stroke identified six randomized controlled trials (RCTs) on
a total of 700 patients (plus various non-randomized studies and case reports).

The present Cochrane Review combines those earlier studies with the more sub-
stantial information that has recently become available from larger trials. Thus the
total number of patients now randomized (and published) in trials of thrombolysis in
acute ischemic stroke is 3286, relatively few compared with the acute MI trials, but
still probably enough to begin to draw some useful conclusions about thrombolytic
treatment, and certainly enough to guide trialists interested in the further testing of
thrombolytic treatment for acute ischemic stroke. 12 trials have been included in this
review covering a total of 3438 patients (1777 in the treatment group and 1661 in the
control group). Table1 below gives the description of these trials.
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Table 1: Characteristics of trials included in the systematic review on thrombolysis

in acute ischaemic stroke. Wardlaw, J.M. et al (1999)
S.No Trial Year Exp Cont Intervention Type of Participants

Inclusion Exclusion
1. ABE 1981 54 53 Urokinase

vs
Placebo

All grades of presumed
thrombotic stroke <2
wks, pre- entry CT, age
>18 years

Presumed embolic
stroke, severe neurologi-
cal deficit.

2. ATARASHI 1985 192 94 Urokinase
vs placebo

Presumed cerebral ar-
terial thrombosis, < 5
days, age> 18 years , en-
try CT

Presumed embolic
stroke, severe neurologi-
cal deficit.

3. OHTOMO 1985 169 181 Urokinase
vs placebo

Presumed ”non-embolic”
ischaemic stroke < 5
days, no age limit, pre-
entry CT.

4. ASK 1986 174 166 Streptokinase
vs placebo

Any acute ischaemic
stroke within 4 hours of
onset; age =18-85 years;
CT scan mandatory

Recent trauma or
surgery, stroke <3
months, pregnancy,
anticoagulants in the
previous 48 hours
(except aspirin), un-
controlled hypertension
(SBP >200, DBP>120

5. MAST-E 1996 156 154 Streptokinase
vs placebo

With acute ischaemic
stroke within 6 hours of
onset; age > 18yrs, pre-
entry CT

Patients with mild
neurological deficit
or rapidly improving
when assessed; previ-
ous stroke; pregnancy;
SBP>220,
DBP>110; oral antico-
agulants (not aspirin);
recent trauma, surgery,
peptic ulcer disease, etc.

6. MORRIS 1995 10 10 Streptokinase
vs placebo

Acute ischaemic stroke
within 6 hours of onset,
pre entry CT age= 40-80
years,

No previous stroke.

7. ECASS 1995 313 307 tPA vs
placebo

Acute ischaemic stroke
within 6 hours ofonset.
Pre entry CT to ex-
clude cerebral haemor-
rhage and patients whose
infarct was already visi-
ble); age =18-80 years.

With mild or rapidly
improving strokes, in
coma, DBP >110 and
SBP>200; recent trauma
or surgery, pregnancy,
weight > 100 kg

8. HALEY 1993 14 13 tPA vs
placebo

Ischaemic stroke <90 or
<180 minutes from on-
set, 18-80 years, pre en-
try CT.

TIA, very mild and
very severe neurological
deficits.

9. JTSG 1993 51 47 tPA vs
placebo

Thromboembolic stroke
< 6 hrs, aged 18-80
years, pre entry CT and
angiography.

haemorrhagic stroke or
patent cerebral arteries
at angiography

10. MORI 1992 19 12 tPA vs
placebo

Ischaemic stroke< 6 hrs
from onset, age= <80
yrs, pre entry CT and an-
giography.

Patients in deep coma.

11. NINDS 1995 312 312 tPA vs
placebo

Ischaemic stroke , pre en-
try CT ,within 180 min-
utes of onset; age=18-80
years; cortical and lacu-
nar strokes

Previous stroke, head
trauma within 3 months,
pregnancy/lactation, ab-
dominal surgery, hep-
arin within 48 hours
or deranged clotting fac-
tors/platelets, SBP>180
or DBP>110

12. MAST-I 1995 313 312 SK , asp and
combination
of both

All acute ischaemic
stroke within 6 hours
from onset; pre-entry CT
mandatory to exclude
cerebral haemorrhage.

Rapidly improving
symptoms likely to be
a TIA; recent trauma
or surgery; oral antico-
agulant treatment (not
aspirin); aspirin or SK
not either definitely indi-
cated or contraindicated;
SK in the past year,

tPA- Tissue Plasminogen Activator
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The results of these trials have been systematically reviewed for evidence of the
treatment effect on a few important clinical outcomes like Death or dependency at the
end of follow-up, Death within the first two weeks of onset of stroke, Fatal Intracranial
haemorrhage during treatment period, Death or dependency in patients randomized
within 3 hours of onset of stroke. This illustration examines the application of HBLM
on the results of those trials that reported the number of patients who died or became
dependent at the end of follow-up.

Seven trials have reported this outcome as shown in table 2. Two regimens tPA
and Streptokinase were compared to conventional treatments. A fixed effect analysis
has shown that a comparison of the effect of tPA with a conventional treatment has
yielded a statistically significant result. The fixed effect estimate for risk difference
(pt-pc) was −12.58, (95% CI = −17.70,−7.45) meaning there were more events in the
conventional group as compared to the treated group. This difference was statistically
significant. Similar fixed effect analysis on comparison of the effect of Streptokinase
in reducing this event has however shown a statistically non-significant effect. ($ in
Table 2)
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Table 2: Meta-analysis of thrombolytic trials that reported death or de-
pendency at the end of followup

S.no Study Experimental
n/N

Control
n/N

RD (SD)
[95%CI]

STREPTOKINASE VS CONTROL

1 ASK 84/174 74/166 3.70 (5.41)
[-6.90, 14.29]

2 MAST-E 124/156 126/154 -2.33 (4.48)
[-11.12, 6.46]

3 MAST-I 97/157 106/156 -6.17 (5.39)
[-16.72, 4.39]

4 MORRIS 6/10 5/10 10.0 (22.14)
[-33.39,53.39]

χ2
H =1.98 Fixed effect estimate -1.51 (2.88)

[-7.16, 4.14] $

TPA VS CONTROL

5 ECASS 198/313 220/307 -8.4 (3.75)
[-15.75, -1.06]

6 MORI 11/19 10/12 -25.44 (15.62)
[-56.06, 5.18]

7 NINDS 179/312 229/312 -16.03(3.75)
[-23.38,-8.67]

χ2
H = 2.76 (p<0.05) Fixed effect estimate -12.58(2.61)

[-17.70,-7.45]

Between studies variance 9.90

Random effect estimate -12.81 (3.38)
[-19.44, -6.18]

8 MAST-I 99/156 106/156 -4.49(5.37)
[-15.01, 6.04]

Combined Fixed effect estimate -7.22 (1.82)
[-10.79,-3.65]

Between studies variance 24.73

Combined Random effect estimate -6.55(2.72)
[-11.88,-1.22]

n-number of events; N-No. examined; RD-Risk Difference; SD-Standard deviation;
χ2
H= Chi-square test for homogenity
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The data in table 2 was subjected to Bayesian analysis (Table 3). In the absence of
an informative prior a non-informative prior with an arbitrary mean and large variance
was incorporated in the analysis. The individual effect estimates were obtained along
with the posterior probability of beneficial effect. The combined Bayes estimate with
all the studies yielded an absolute reduction of 6.72% with posterior probability of a
beneficial effect being 98.4%. Stratified analysis under streptokinase group however
yielded a reduction of 1.29% with the treatment group and a posterior probability of
64.8%. The trials that used tPA as the treatment yielded a large beneficial effect of
13.28% and a high posterior probability of 98.4%. This large difference is reflected in
the combined estimate

Table 3 Bayesian meta-analysis of thrombolytic trials
that reported death or dependency at the end of follow-up

STUDY RD P
Streptokinase Vs Control

ASK 0.10 (4.11) [-7.96, 8.16] 0.519
MAST-E -1.74(3.50) [-8.58, 5.11] 0.693
MAST-I -2.82 (4.02) [-10.70, 5.06] 0.761
MORRIS -0.72 (6.47) [-13.39,11.95] 0.598
Combined Bayes -1.29(4.53) [-10.17,7.59] 0.648

tPA vs control
ECASS -10.66(3.47) [-17.4, -3.85] 0.998
MORI -14.81(7.47) [-29.44, -0.18] 0.986
NINDS -14.38(3.43) [-21.1, -7.66] 1.0
Combined Bayes -13.28(6.74) [-26.49 -0.07] 0.984

All studies
ASK -2.90 (4.54) [-11.80,5.90] 0.753
MAST-E -4.86 3.52) [-11.76,2.63] 0.907
MAST-I -6.57(3.62) [-13.71,0.56] 0.96
MORRIS -5.83(5.87) [-17.39,5.67] 0.873
ECASS -7.63(2.94) [-13.39, -1.28] 0.995
MORI -8.53(5.68) [-19.66,2.59] 0.96
NINDS -11.45( 3.76) [-18.82,-4.08] 1.0
MAST-I -5.94(3.69) [-13.18,1.29] 0.939
Combined Bayes -6.72(2.87) [-12.34,1.10] 0.984

Figure 1 shows the trace plot of the posterior distribution of tau and the condi-
tional means of the combined and individual estimates. It is observed that the most
plausible range of tau is 0.46 to 8.44. The studies specific expectations shrink towards
a common value of −6.89 for low values of tau and for very large values of tau these
assume the observed values of yi .The most deviant study with a large si (MORI) is
the one that undergoes maximum shrinkage. For τ < 8.44 MORI is actually estimated
to have a larger θ than NINDS.
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The summary plot in figure 2 explains the shrinkage property of the Bayesian ap-
proach. According to this property the individual studies borrow strength from other
studies in meta-analysis thus reducing their uncertainty and improving their precision.
The property of ’regression to the mean’ is also clearly shown by the individual bayes
estimates.
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4 Discussion

Hierarchical Bayes linear model integrates the fixed effect and the random effect mod-
els into one framework and provides unified approach to meta-analysis. These models
were popularized by Lindley and Smith.(1972) The descriptive form of the model con-
sists of the Observational model in stage I(yi/θi) ∼ f(yi/θi) for the data and the
Structural model in stage II(θi/µ, τ

2) ∼ g(θi/µ, τ
2) for the parameters and Hyper-

parameter model µ, τ2 ∼ h(µ, τ2). This form is more natural for model building and
describes well in meta-analysis. It also overcomes the limitation of the random effect
method in assigning a prior distribution for τ which has a location and an uncertainty
parameter. If the prior for τ is concentrated near τ = 0, the HBLM is equivalent to the
fixed effect model and if it is concentrated near the estimate of τ then it is equivalent
to the random effect model. Bayesian specification is completed by assigning prior
distributions to µ and τ2.

In the event of no specific information for µ it could be assumed to follow a diffuse
prior. Informed priors could be the clinical prior obtained from prior beliefs of clini-
cians. Spiegelhalter, has suggested that in application of Bayesian methods in clinical
trials one can use skeptical priors where the belief is that large differences are unlikely
or even enthusiastic priors where very large differences could also be believed to occur
with smaller uncertainty. He has shown the application of clinician prior on MRC Neu-
tron therapy trial and has compared this with the prior obtained from meta-analysis of
previous randomize trials.cusssion: DuMouchel27 has proposed a prior distribution of
the form λ/χ2

q for τ2 which follows from the sampling theory of the distribution of σ2

in a normal distribution with parameters µ and σ2. Here ns2/σ2 follows χ2 with q− 1
d.f. The prior distribution of µ is assumed to follow multivariate Student t - distru-
butions. The posterior distribution then follows multivariate Student t-distributions.
The author has shown that this model is flexible and the computations are readily
programmed for τ2 . In another paper, the author proposes the same model with a
flat prior for µ and a log-logistic prior The advantage of this type of a prior is that
it is a compromise between opposing philosophies about meta-analysis: those who
believe that t is near 0 (the philosophy of a fixed effect meta-analysis) and those who
believe that t is large (the you can’t combine apples and oranges philosophy). The
plot of this function is a curve with a maximum value at τ = 0 progressively decaying
as τ increases and is asymptotically parallel to x-axis for very large value of τ . Du-
Mouchel has observed that the Bayes method provides the researcher more flexibility
in arriving at a conclusion by means of providing the posterior probability at any point.

Carlin assumes a locally uniform prior for µ and τ2. He adopts a Monte Carlo
method for first maximizing the product of the prior and the likelihood function.
Next, suitable lower and upper limits for τ2 was obtained such that the posterior
density at each extreme is very small compared to the maximum density value. The
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range is then divided into 100 equal parts and the posterior distribution is discretised
at equal number of intervals. This communication attempts to provide the readers a
simplistic approach to determine the summary estimates in a hierarchical model. It
could also be used to develop numerical algorithm for the purpose of computing the
estimates on a computer in any high level language.
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work.
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