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Abstract

Both logistic regression and linear discriminant analysis can be used to
predict the probability of a specified categorical outcome using several ex-
planatory variables. The objective of this work is to investigate whether
these two methods of analysis result similar findings in evaluating categori-
cal health outcomes. For this purpose we use a specific health problem, i.e.
modeling several characteristics of patients admitting with Acute Coronary
Syndrome (ACS) on in-hospital mortality. In conclusion, logistic regression
resulted in the same model as did discriminant analysis.
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1 Introduction

Both logistic regression and linear discriminant analysis can be used to predict the
probability of a specified categorical outcome using several explanatory variables. Par-
ticularly, logistic regression allows predicting an outcome, which may be continuous,
discrete, dichotomous, or a mix. Logistic regression is very popular in the health sci-
ences, since the discrete outcome could often be the presence or absence of a disease.
Unlike regression analysis, logistic regression does not run into the problem of pre-
dicting negative probabilities for group membership. Moreover, logistic regression is
especially useful when the relationship between the probability of group membership
(e.g., probability of disease) depends nonlinearly on predictors. Logistic regression
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analysis is based on the calculation of odds, which the ratio of the probability of the
dependent outcome being into one group divided by the probability of being into the
other group. Similarly, discriminant analysis aims to predict membership in two or
more mutually exclusive groups from a set of predictors, when there is no necessar-
ily natural ordering on the groups. Discriminant analysis is based on the estimation
of orthogonal discriminant functions that are linear combinations of the standardised
independent variables, which yield the biggest mean differences between the groups.
Thus, it could be suggested that discriminant analysis and logistic regression can be
used to address the same types of research question.

The objective of this work is to investigate whether these two methods of analysis
result similar findings in evaluating categorical health outcomes. For this purpose we
use a specific health problem, i.e. modeling several characteristics of patients admitting
with Acute Coronary Syndrome (ACS) on in-hospital mortality.

2 Methodology

2.1 Linear Discriminant Analysis and Logistic Regression

Discriminant analysis captures the relationship between multiple independent vari-
ables and a categorical dependent variable in the usual multivariate way, by forming
a composite of the independent variables. This type of multivariate analysis can be
used to determine which variable discriminates between two or more groups of sub-
jects and to derive a classification model for predicting the group membership of new
observations (Tabachnink BG, 1996). In the simplest type of discriminant analysis,
i.e. the two group, a linear discriminant function that passes through the means of the
two groups (centroids) can be used to discriminate subjects between the two groups.
For each case, the coefficient for an independent variable is multiplied by the case’s
score on that variable; these products are summed and added to the constant and the
result is a composite score for that case, i.e. their discriminant score. In general, the
linear discriminant function (LDF) is represented by equation:

LDF = b0 + b1xi1 + b2xi2 + ...+ bkxik = bX

where bj : the value of the jth coefficient, j = 1, . . . , k, and xij : the value of
the ithcase of the jth predictor. The LDF can also be written in standardized form,
in which each variable is adjusted by subtraction of its mean value and division by its
standard deviation. The standardized coefficients allow comparing variables measured
on different scales. Coefficients with large absolute values correspond to variables
with greater discriminating ability. From the LDF scores can be derived predicted
probabilities and predicted group membership on the dependent variable. The basic
rationale of this approach is that the bigger the between-groups sum of squares is
relative to the within-group sum of squares, the more likely it is that the independent
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and dependent variables are related. Similarly, this relationship can be indexed with
the ratio of between-group divided by total sum of squares (eta-squared statistic or
explained variability), or of within-group divided by total sum of squares (Wilks’s
lambda statistic or unexplained variability). Further, the ratio of between-group di-
vided by within-group sum of squares can be changed into a ratio of variances that
then becomes the F statistic. The F statistic reassures that the relationship is unlikely
to be due to chance. In discriminant analysis we carry forward from this bivariate anal-
ysis two principles: a) the first focuses on the distance between the two group means
(centroids) that is |y1 − y2|, and b) the second focuses on the pooled estimate of the

variance s2y =
∑

(y1j−y1)
2+

∑
(y2j−y2)

2

n1+n2−2 .

The principle by which the discriminant coefficients (or weights) are selected is that
they are chosen in order the distance between the centroids is maximized. So coeffi-
cients are chosen that push the group means on the composite variable as far apart as
possible, that is, that maximally discriminates between the two groups. Fisher (1938),
suggested to transform the multivariate observation x to univariate observations y
such that the y’s derived from groups 1 and 2 were separated as much as possible.
Thus, the linear combination y = a′x is the one that maximizes the ratio: (squared
distance between sample means)/(sample variance y). The vector of coefficients is
given by the eigenvectors of the matrix: B*S−1, where B = (x1 − x2)

′is the between
group matrix and S is an estimate of Σ. A critical feature of these composite sums
of squares is that they encapsulate, not only the variability of each variable, but also
their co-variability. Further, the coefficients can again be calculated in unstandardized
or standardized form. However, the discriminant coefficients are less informative than
those in regression, whatever their form. If we assume that there are 2 groups and
x1, x2 are the means of each group, and S the pooled covariance matrix, the allocation
rule based on Fisher’s discriminant functions is the following:

Xi ∈ group 1, if y = (x1 − x2)
′S−1Xi ≥ 1

2(x1 − x2)
′S−1(x1 + x2)

Xi ∈ group 2, if y = (x1 − x2)
′S−1Xi <

1
2(x1 − x2)

′S−1(x1 + x2)
.

The logistic regression strategy retains the goal of generating predicted probabilities,
but achieves it indirectly by using another probability index and a different criterion
to choose the coefficients. Logistic regression is useful for situations in which we want
to be able to predict the presence or absence of a characteristic or outcome, based
on values of a set of predictor variables (Hosmer DW, 1989). Since the probability
of an event must lie between 0 and 1 (for the binary case), it is impractical to model
probabilities with linear regression techniques, because the linear regression model
allows the dependent variable to take values greater than 1 or less than 0. Defined as
p1the probability of an object is belonging to group 1 and as p0the probability of an
object belonging to group 0. The form of the logistic regression model is:

zi = log (pi1/pi0) = b0 + b1xi1 + b2xi2 + ...+ bkxik
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where pi1/pi0 : is called the odds ratio, bj : the value of the jth coefficient, j = 1, . . . ,
k, xij : the value of the ithcase of the jth predictor. The parameters of the logistic
model (b0 to bk) are derived by the method of maximum likelihood. From the logistic
regression model we can derive the probability of an event occurring as:

P (Yi = 1\Xi) =
eb

TXi

1 +
(
ebTXi

) =
1

1 + e−bTXi

Using a probability cut-off of 0.5, you can classify an object to group 1 if p1 > 0.5
and to group 0 if p1 < 0.5. The previous probability is of course the same to the one
used in discriminant analysis presented above. The predicted probabilities and actual
categories for each case are bundled up into a statistic called the log-likelihood func-
tion. So, the aim is to find the coefficients that maximize the value of the log-likelihood
function. There is another method of expressing the strength of the multivariate re-
lationship, which is not only less contentious, but also more intuitively appealing and
potentially more practicable. This method uses the predicted probabilities to assign
cases into the categories of the dependent variable and then compares the results with
their actual categories. Cross-classifying cases according to their assigned and actual
categories provide another picture of how well the independent variables predict the
dependent variable. Since the predicted probabilities are decimal values between 0
and 1, they need to be dichotomized so that they can be compared with the actual 0
and 1 categories in a 2 × 2 table.

Hence, the two methods do not differ in functional form; they only differ in the
methods used for the estimation of coefficients as well as for the rules used for decision
making. Moreover, there are basic differences in the statistical assumptions, which
underlie those two methods.

With discriminant analysis, the assumptions are: a) the data for the independent
variables represent a sample from a multivariate normal distribution; therefore, pre-
dictor variables should be interval or ratio variables, b) The variance of the predictors
and the correlations among the predictors within each group should be the same (equal
variance/covariance matrices), and c) The predictors are not highly correlated with
each other. Moreover, it is empirically recommended that the sample size in a dis-
criminant analysis should provide at least 20 cases for each independent variable. The
dependent variable in a discriminant analysis should be categorical and may have any
number of categories. The categories should be mutually exclusive and jointly com-
prehensive, allowing each case to be assigned to a single category. It is assumed that
all of the independent variables are measured on at least an interval scale. However,
the more non-interval variables that are included, the less trustworthy the results will
be in terms of finding the optimum separation of the groups.

With logistic regression the assumptions are that a logistic regression (i.e. a sig-
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moidal dependency) exists between the probabilities of group memberships and a linear
function of the predictor variables. It is also assumed that observations are indepen-
dent. Moreover, in the logistic regression context, the more unequal the numbers
in the categories, the more cases are needed. Add to all this the problem of miss-
ing data because of list-wise deletion, and the desirability of having enough cases to
cross-validate results on a holdout sample, and it becomes painfully clear that logistic
regression typically requires cases in the hundreds to guarantee trustworthy results.
Additionally, there is no formal requirement for multivariate normality, homoscedas-
ticity, or linearity of the independent variables within each category of the dependent
variable. However, someone may note that satisfying these conditions among the inde-
pendent variables for the whole sample may enhance robustness of the results. Thus,
the problem of multi-co linearity could apply to logistic regression and the assumption
of independence of cases remains in place, since case-wise exploration of the residuals
may reveal patterns suggesting non-independence and may identify outliers for whom
the model provides notably poor predictions.

Furthermore, in order to evaluate both approaches sensitivity, specificity and accu-
racy will be also calculated. The sensitivity of a binary classification test with respect
to some class is the probability that the test correctly classifies cases of that class.
That is, it is the proportion of true positives of all positive cases in the population. In
addition, the specificity of a with respect to a given class is the probability that the
test correctly classifies cases not belonging to that class. That is, it is the proportion of
true negatives of all negative cases in the population. Finally, accuracy is the degree of
veracity. In other words the degree of conformity of a measured or calculated quantity
to its actual, true value. It is calculated as the ratio of true positive and true negative
cases among all potential results.

2.2 Logistic regression or linear discriminant analysis?

In conclusion, linear discriminant analysis and logistic regression can be used to address
the same types of research question. Similarly to logistic regression, in discriminant
analysis the variable generated by the composite cannot be a predicted score on the
dependent variable. Instead it is a LDF score that then feeds into calculations that
produce the predicted probability of a case being in a particular category of the depen-
dent variable. This predicted probability is then used to generate a predicted category
for each case. Thus, the strategy is very similar to logistic regression in which the
composite variable generates logits, which produce predicted probabilities, which pro-
duce predicted categories. It could be suggested that discriminant analysis is a more
appropriate method when explanatory variables are normally distributed. In the case
of categorized variables, discriminant analysis remains preferable and fails only when
the number of categories is really small (2 or 3). The results of logistic regression, how-
ever, are in all these cases constantly close and a little worse than those of discriminant
analysis. But whenever the assumptions of discriminant analysis are not met, the use
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of discriminant analysis is not justified, while logistic regression gives good results
since it can handle both categorical and continues variables, and the predictors do
not have to be normally distributed, linearly related or of equal variance within each
group regardless of the distribution as suggested by Pohar M., et al. (2004).

3 Application

3.1 Use of epidemiologic data to predict a health outcome

In this study, we compared the results of discriminant and logistic regression in pre-
dicting in-hospital mortality among patients presenting with a range spectrum of acute
coronary syndromes. Between October 1, 2003 and September 30, 2004 (12 months)
we enrolled almost all consecutive patients (participation rate = 98%) that entered
in the cardiology clinics or the emergency units of six major General Hospitals, in
Greece. During the study period 2,172 patients were admitted for ACS in the selected
hospitals, 1649 (76%) of them were men and 523 (24%) were women. Further details
about the data used may be found elsewhere (Pitsavos et al., 2005). The independent
variables which were available as potential predictors for in-hospital mortality was
history of coronary heart disease (yes or no), hypertension (yes or no) and diabetes
mellitus (yes or no), sex (male or female), age in years, body mass index in kg/m2,
smoking habits (yes or no), initial level of systolic blood pressure in mm Hg, the esti-
mated creatinine clearance rate in ml/min and the maximum level of MB isoenzyme
of creatinine kinase (CKMB) in ng/ml.

Initially, we entered in both discriminant and logistic regression models only the
predictors, which were statistically significant in univariate analysis. We used the
standardized canonical discriminant function coefficients for discriminant analysis and
z statistic (standardized coefficients, Wald statistic) for logistic regression, to evaluate
the contribution of each one variable to the discrimination between two groups. The
larger the standardized coefficients, the greater are the contribution of the respec-
tive variable to the discrimination. We, also, compared the sign and magnitude of
coefficients. Secondarily, we performed stepwise discriminant and logistic regression
analysis including all available predictors mentioned above. For discriminant analy-
sis, the selection criterion for entry was the Wilks’ Lambda, with a value F-to-enter
of 3.84 and a value F-to-remove of 2.71. For logistic regression, was used the set of
0.05 significance levels for entry and 0.1 for removal of variables; these p values were
selected to approximate the F values used in the discriminant analysis. We compared
the variables selected, the order of selection and the sign and magnitude of coefficients.
Equality of the covariance matrices was checked with the Box’s M test and it was re-
vealed that they were not equal (p < 0.001), thus this assumption for discriminant
analysis was not met.
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Response operating characteristics (ROC) curves were plotted for each model. An
ROC curve graphically displays sensitivity and 100% minus specificity (false positive
rate) at several cut-off points. By plotting the ROC curves for two models on the same
axes, one is able to determine which test is better for classification, namely, that test
whose curve encloses the larger area beneath it.

To approach further statistical generalization a non-parametric bootstrap tech-
nique was applied. In particular, we created 1000 random samples from the same
dataset and we run both logistic regression and discriminant analysis models. In each
sample the correct classification rate was calculated for both statistical methods. All
analyses were performed using the STATA version 8.0 software (STATA Corp., College
Station, TX, USA).

3.2 Results

Univariate analysis revealed that the CPKMB levels, the systolic blood pressure, the
creatinine clearance, gender, age, and diabetes, contribute significantly in the discrim-
ination of patients in those dying during their hospitalization and those surviving.
Using in discriminant and logistic regression only these variables, both techniques re-
vealed that CPKMB levels, systolic and diabetes were the most important contributors
(Table 1).

Table 1. Variables, standardized and un-standardized coefficients for the discrimi-
nant analysis model and logistic regression models.

Logistic Regression Discriminant analysis
Predictors b coefficients z- statistic Unstandardized Standardized

coefficients coefficients

CKMB in ng/ml 0.005 4.86 0.007 0.649

Systolic blood pres-
sure in mmHg

-0.021 3.49 -0.015 -0.390

Diabetes (yes vs. no) 1.076 3.22 0.812 0.375

Creatinine clearance
in ml/min

-0.020 2.55 -0.04 -0.196

Age in years 0.04 2.14 0.029 0.372

Male vs. female -0.63 1.87 -0.625 -0.264

Moreover, we observe that the direction of the relationships was the same and there
were not extreme differences in the magnitude of the coefficients. The overall correct
classification rate was 79% for discriminant analysis and 96.6% for logistic regression.
However, when we used not equal prior probabilities for the two groups the overall
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correct classification rate for discriminant analysis was increased in 96.3%. Table 2,
presents sensitivity, specificity, and accuracy (i.e., correct classification rates) of both
approaches at various cut-offs of the probability of dying within hospital. Although
some differences were observed between the two approaches regarding the classification
ability, Figure 1 that illustrates the ROC curves of the aforementioned models, clearly
indicates that the logistic model is similar to the discriminant analysis model (i.e., no
difference in the area under the curve, AUC, 81.8% vs. 81.1%, p = 0.9).

Table 2. Sensitivity, specificity and accuracy of logistic regression and discriminant anal-
ysis models, at various cut-off points for the probability of having the disease.
Cut-off value∗ Logistic regression Discriminant analysis

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
0.05 61 85 84.3 100 5 8.1
0.10 37 95 93.3 100 17 19.5
0.25 13 99 96.4 93 48 49.5
0.50 2 99 96.8 65 78 77.2
0.75 0 100 96.8 46 93 91.7
0.90 0 100 96.8 11 99 95.8

∗ P (death); values less than or equal to the cut-off value indicate that the person is alive;
those greater than the cut-off value indicate that the person would die during hospitalization.

Furthermore, the stepwise approach revealed that both models selected the same
variables, with the same order of entry (Table 3). Furthermore, the sign of the coef-
ficients were the same and a slight difference was observed in the magnitude of the
coefficients. The correct classification rate was 81.4% for discriminant analysis and
96.8% for logistic regression. Figure 2, shows that the logistic model is slightly supe-
rior in its classification ability compared to discriminant analysis model.
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Table 3. Variables, standardized and un-standardized coefficients for the discrimi-
nant analysis model and logistic regression models, after stepwise approach in the
original dataset.

Logistic Regression Discriminant analysis
Predictors b coefficients z- statistic Unstandardized Standardized

coefficients coefficients

CKMB in ng/ml 0.005 5.22 0.007 0.692

Age in years 0.071 3.96 0.036 0.457

Systolic blood
pressure in mmHg

-0.027 3.63 -0.017 -0.411

Males vs. Females
(1 vs. 0)

-0.938 2.48 -0.805 -0.340

Diabetes (1: yes
vs. 0: no)

0.901 2.42 0.594 0.274
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3.3 Validation of the findings

In order to validate our findings we performed a bootstrap simulation technique. In
particular, we re-sampled our original dataset 1000 times and we run both logistic
regression and discriminant analysis. The results (i.e., bootstrap estimates, standard
errors, and bias) are presented in Table 4.

Table 4. Variables, estimates (standard errors), and bias, in logistic regression and
discriminant analysis, after non-parametric bootstrap re-sampling method.

Logistic Regression Discriminant analysis
Predictors b-coefficients bias Un-standardized bias

coefficients

CKMB in ng/ml 0.003 (0.001) -0.0001 0.004 (0.002) -0.00001

Age in years 0.056 (0.002) 0.002 0.029 (0.001) 0.00005

Systolic blood pres-
sure in mmHg

-0.02 (0.006) -0.001 -0.012 (0.004) -0.0001

Males vs. Females
(1 vs. 0)

-0.78 (0.36) -0.018 -0.78 (0.09) -0.0002

Diabetes (1: yes vs.
0: no)

0.97 (0.31) -0.012 0.77 (0.06) -0.0001

Furthermore, the 95% CI of the correct classification rate using the information
from the bootstrap re-sampling method was from 79% to 84% for discriminant analysis
and from 94% to 98% for logistic regression.

4 Discussion

In general, results from the logistic model agreed with those of discriminant anal-
ysis. Both techniques selected the same variables when we performed the stepwise
approach, while entering all significant variables from the univariate analysis in these
two methods, only slight differences was observed in the order of predictors (from the
most important for the discrimination between the two groups to the less important)
between those methods. The overall correct classification rate was good for both, and
either would be useful for the prediction of the in-hospital mortality of patients pre-
senting with acute coronary syndromes. Moreover, although the assumption of equal
covariance was not hold in this dataset, both methods had similar results. All of the
sequential strategies, both hierarchical and statistical, can be used in discriminant
analysis, though the statistical approach using such techniques as stepwise analysis is
the most common application. When discriminant analysis is applied to more than
two groups, the major consequence is that more than one discriminant function can
be calculated. Each function will have its own set of coefficients and each will generate
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a discriminant score for every case. Mathematically, it is possible to derive as many
functions as there are groups minus 1. So for a four-group analysis, there will be a
maximum of three functions, and each case will potentially have three discriminant
scores. However, the fact that three functions can be derived does not mean that all are
necessary in order to achieve maximum discrimination between the groups. This may
be achievable with only one, or perhaps two, of the available functions. Not surpris-
ingly then, the major new issue that arises when the dependent variable has more than
two categories is how many functions are worth retaining from those that are available.

Moreover, Brenn T.and Arnesen E (1985), used discriminant analysis, logistic re-
gression and Cox’s models to select risk factors for total and coronary deaths among
6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93
per 1000 were considered. Discriminant analysis selected variable sets only marginally
different from the logistic and Cox methods, which always selected the same sets. In
addition the researchers observed that a time-saving option, offered for both the lo-
gistic and Cox selection, showed no advantage compared with discriminant analysis,
since analysing more than 3800 subjects, the logistic and Cox methods consumed,
respectively, 80 and 10 times more computer time than discriminant analysis. Thus
the researchers concluded that discriminant analysis is advocated for preliminary or
stepwise analysis, otherwise Cox’s method should be used.

The presented work has some limitations. First, a violation of the assumption of
equal covariance matrices as showed by the Box - M test, may modest our findings from
the discriminant analysis, however, the multivariate Box M test for homogeneity of
covariances is particularly sensitive to deviations from multivariate normality (which
in our case is true for CKMB levels). However, this is not so important in this case
since the violation from homoscedacity is due to some outlier observation in our data
set. Moreover, although the presented results are not based only on one dataset, but
have also been simulated using appropriate re-sampling methods, the confirmation of
our findings in other original datasets is considered essential. In conclusion, logistic
regression resulted in the same model and with a better correct classification rate, as
did discriminant analysis. Taking into account the assumptions made before, one may
decide which method should use to analyze the data.
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