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Abstract

A simplified methodology is developed to determine the order of a Box-
Jenkins (ARMA - Auto Regressive Moving Average) time-series model for
forecasting the influent Chemical Oxygen Demand (COD) for a wastewater
treatment plant (a Sequencing Batch Reactor-SBR). The determination of
the order was based on temporal correlation analyses. The Auto Regressive
(AR) and the Moving Average (MA) processes were investigated separately
and then combined over the modeling period to identify the processes that
resulted in better forecasts. A purely AutoRegressive model of order 2 was
found to predict better within reasonable limits the influent COD with a
10 day lead. The finding agreed well with previous research reports that
state that the moving average component is insignificant for describing the
temporal dynamics of influent characteristics for treatment plants. The
Box-Jenkins methodology used herein, being marginally theoretical in for-
mulation, has appeal to plant managers as a quick fix and short-term (10
day lead) forecasting method of influent wastewater characteristics.
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1 Introduction

The ability to foresee the consequences of actions and events can form a very im-
portant aspect of control in engineering. From the dawn of recorded history, and
probably before, man has sought to forecast the future. In wastewater treatment
plants, forecasting of influent characteristics can be useful as it helps in determining
the future operational criteria. For example, a forecasted surge in the strength of
influent wastewater as measured by the COD (Chemical Oxygen Demand) can help
the plant manager revise the mean cell residence times (i.e., the average time that
waste is treated for) by implementing reduced wasting of sludge. A higher COD is
an indicator of more treatment time required by the microbial organisms contained
in the sludge of the plant. Similarly, if the pH (pouvoir Hydrogen) of the influent is
forecast to be unusually high or low then this can possibly send signals for pH control
to prevent damage to the biomass of the treatment system.

A question however remains: How accurate can the forecasts be made on a short-
term basis by a quick fix method (i.e., simple enough to be implemented rapidly by the
plant manager) so that they may be acceptable to be considered for operations planning?
This paper addresses this question. It considers a simplified method for identification
of a Box-Jenkins (ARMA- AutoRegresive Moving Average) model for forecasting the
influent COD of a wastewater treatment plant - an SBR (Sequencing Batch Reactor)
- treating high strength industrial effluent. The method is comprised of identification
of the following in a step by step manner:

1) the Auto Regressive and Moving Average processes for influent COD variation.

2) the best ARMA model that yields the highest accuracy in forecasting during the
modeling range.

3) the validation of the ARMA model and its forecasting accuracy with a 10 day
lead.

4) ways of improving forecasting accuracy of the simplified Box-Jenkins approach.

Figure 1 shows the temporal variation of the INFCOD (Influent COD) of the SBR
during the assessment period which spanned a total of 60 days (total period including
validation comprised 105 days). The dates have been referenced from the date of the
start of the study. The range DAY 1 - DAY 60 was used for evaluation and model
identification (steps 1 and 2). The subsequent range of DAY 61 - DAY 105 (not
shown in Figure 1) was used for model validation (step 3). The statistical package
- SAS (Statistical Analysis System), version 6.12 for Window 95TM - was used for
the statistical computation on a Intel Pentium 166 MHz PC. Since the Box-Jenkins
methodology requires stationarity, the time series of influent COD was detrended (i.e.,
differenced) in a preprocessing analysis (as evident in Figure 1).



Hossain, Ng and Ong: Short-Term Forecasting of Influent COD 61

2 Box and Jenkins (ARIMA) Methodology

The Box-Jenkins (1976) ARMA (Auto Regressive Moving Average) methodology has
been used for time-series analysis because it is a powerful yet simple methodology for
forecasting a uni-variate time-series (Brocklebank and Dickey, 1986). Generally, Box
and Jenkins methodology has the following merits:

1) The concept is easy to understand and the model is simple to formulate (Box
and Jenkins, 1976).

2) It has become very popular and is the most common methodology used by mod-
ellers to for time series analysis of influent characteristics (Akaike and Nagawa,
1972; Nakamura and Akaike, 1981; Hiraoka and Fujiwara, 1992; Tao et al., 1994;
Sales et al., 1994).
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2.1 Autoregressive Process

The general pth order autoregressive process for a variable x (to be forecast) is defined
by

xt − ϕ+
1 xt−1 − ϕ+

2 xt−2 − · · · · · · · · · − ϕ+
p xt−p = εt (1)

where ϕ1, ϕ2 · · · · · ·ϕp are constants and εt is the random error (of the forecast) more
appropriately known as white noise. The model is denoted by AR(p). The white noise
element is normally distributed with zero mean and variance σ2. This type of process
of process (Equation. 1) is known as the autoregressive process, since it represents a
regression of xt on xt−1.

Equation (1) can be rewritten as,

xt −
p∑

i=1

ϕixt−i = ϕ0 + εt (2)

or,

(1−A(L))xt = ϕ0 + εt (3)

or,

xt =
ϕ0

(1−A(L))
+

εt
(1−A(L))

(4)

where A(L) =
∑p

i=1 ϕiL
i is the lag polynomial and L is the lag operator defined as

Lkxt = xt−k.

For a simple AR(1) model, (Equation 1) can be rewritten as,

xt = µ+ εt + ϕεt−1 + ϕ2εt−2 + · · · · · ·+ ϕt−1ε1 + ϕt(x0 − µ) (5)

where the mean (expected) value of xt is µ.

The knowledge of ϕ helps in forecasting future values of x. By statistical manipulation
it can be shown that, a forecast l steps into the future is,

µ+ ϕ1(xt − µ) (6)
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with error,

εt+l + ϕεt+l−1 + · · · · · · · · ·+ ϕl−1εt+1 (7)

Solution to the AR(1) : xt = ϕ0 + ϕ1xt−1 + εt model becomes (after repeated subsitu-
tion with an initial condition x0)

xt = ϕ0

t−1∑
i=0

ϕi
1 + ϕt

1x0 +
t−1∑
i=0

ϕi
1εt−i (8)

Taking the expected value of equation (8), we obtain

Ext = ϕ0

t−1∑
i=0

ϕi
1 + ϕt

1x0 (9)

Updating by l period, me obtain

Ext+s = ϕ0

t+l−1∑
j=0

ϕj
1 + ϕt+l

1 x0 (10)

For large sufficiency large values of t both equations (9) and (10) will converge to a
constant (µ) since |ϕ1| < 1 (the stationarity condition for the AR(1) process). How-
ever, there is no reason to believe that the dependence of xt on past values should be
limited to the previous observation xt−l only.

A simple way to determine the order of the Autoregressive process is described in the
next section (Figure 2).

2.2 Moving Average Process

As an example of another stochastic process based on the difference of values between
the present and the past (i.e. correlated errors), the moving average (MA) model of
order q is presented as MA(q),

xt = εt − θ1εt−1 − θ2εt−2 − · · · · · · · · · θqεt−q (11)

where θ1, θ2, · · · · · · θq are constants and εt is white noise.
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Using the mean µ, xt can be rephrased for an MA(1) process as,

xt = µ+ εt − θεt−1 (12)

Just as in the case for the autoregressive process, a future value of x can be predicted
l steps ahead into the future as,

xt+l = µ− θl(εt−1) (13)

with error,

εn+l + θεn+l−1 + · · · · · · · · ·+ θl−1εn+1 (14)

The determination of the order of the moving average component has been described
in the next section (Figure 2).

3 ARMA Model (Box and Jenkins)

The most natural generalization of the ARMA model is the combination of the AR
and the MA process as described in the previous section (Gilchrist, 1976). Thus, if a
first-order MA process is combined with a first-order AR process, the resultant model
is known as a mixed autoregressive and moving average process(ARMA) of the order
(1, 1) as shown below.

xt − ϕxt−1 = εt − θεt−1 (15)

Using the mean µ, the general ARMA model of order (p, q) is given by,

(xt − µ)− ϕ1(xt−1 − µ)− · · · · · ·ϕp(xt−p − µ) = εt − θ1εt−1 − · · · · · · − θqεt−q (16)

3.1 A Simplified Methodology for ARMA Model Identification

The primary task of the time series analysis using the Box and Jenkins (ARMA) ap-
proach is to identify the order of the ARMA process. In order to identify the order
of the model the following approach was adopted as indicated in the flowchart below
(Figure 2). To maintain simplicity in the approach, the R2 measure was used to iden-
tify the order that was most representative of the time-series. However, such measures
are not always reliable for time series modeling and other criterion, such as the Akaike
Information Criterion (AIC- Akaike, 1972), are more robust measures under certain
cases.
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3.1.1 The Auto Regressive Process for INFCOD

The X as in Figure 2 refers to the influent COD (INFCOD) variable to be analyzed
in the time series. Linear regressions (with intercept) were performed of INFCOD on
lagged values of INFCOD upto lag 9. This means that the following models were tried,

INFCODt = A+B ∗ INFCODt−1

INFCODt = A+B ∗ INFCODt−1 + C ∗ INFCODt−2

INFCODt = A+B ∗ INFCODt−1 + C ∗ INFCODt−2 +D ∗ INFCODt−3

INFCODt = A+B ∗ INFCODt−1 + · · · · · · · · · · · · · · · · · · · · ·+ J ∗ INFCODt−9

where A,B,C · · · are constants.

Table 1 shows the values for R2(R2) and Adjusted R2 (Adj.R2) for the models. We
have also considered the use of Adj.R2 (see Notations) to minimize the effect of over-
fitting.
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Table 1 reveals that an AR model of order p = 3 is the best fit for the autoregressive
process as it provides the optimum R2 value against Adj.R2 value.

As a next step, the data available for the Modelling (fitting) period (Day 1 to Day
60) was divided into four subsequent parts, each of an arbitrary 20 days. 20 days were
devised based on the amount of data available. Each of these parts were used to fit
(and calibrate) the AR model and then forecast for the subsequent 10 days, as,

Modelling Period Forecasting Period
DAY 1 - 20 DAY 21 - 30
DAY 11 - 30 DAY 31 - 40
DAY 21 - 40 DAY 41 - 50
DAY 31- 50 DAY 51 - 60

AR models upto order p = 3 were fitted, i.e., AR(1), AR(2) and AR(3). For each
AR model, the hypothesis of white noise was tested using the chi-squared statistic for
residuals (Box and Jenkins, 1976; Brocklebank and Dickey, 1986). For all the three
models the residuals were found to be statistically significant in constituting a white
noise series. The parameter coefficients ϕ1, ϕ2 and ϕ3 were all less than unity and the
AR models were of the form as in Equation 5. The mean used for forecasting was the
arithmetic mean of INFCOD. Judging from the R2 value and the average deviation
(error) in absolute terms, the AR(2) model was found to forecast best among the three.
Hence, p for the ARMA model was decided as p = 2. Figure 3 shows how well the
AR(2) model fitted in the modeling period based on the above concept of a moving
base period for calibration.
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3.1.2 Moving Average Process

In a similar manner to AR, linear regressions (with intercept) were performed of INF-
COD on lagged errors εt−1, εt−2, · · · · · · εt−9. Table 2 shows the R2 values for the above
nine models. As seen from the table, both the R2 and Adjusted R2 show consistent
increase with increasing lagged errors. Since, the MA model would be too unwieldy if
too many lagged errors are involved, the Adjusted R2 as percentage of R2 was taken as
the criteria for estimating the optimum value of q for the MA process. q was therefore
estimated to be 3.

In the next step, the data available for the modelling (fitting) period (D) was found
statistically inadequate to describe the INFCOD time series based on the MA process.
Hence it was conjectured that the MA process was insignificant (i.e., q = 0) in de-
scribing the temporal dynamics of INFCOD. This observation agrees well with that
of Nakamura and Akaike (1981) who failed to achieve better forecast by incorporating
the MA process in their influent time series model for a power plant.
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Next, the ARMA models of order (2,1), (2,2) and (2,3) were fitted in the Modelling
period (DAY 1 - 60) in a similar fashion as for the AR or MA process. The ARMA
models were each tested for the white noise hypothesis using the Chi-squared statistic,
and were found to be statistically significant. Since both the R2 and mean residual
values of the ARMA models were found to be inferior to the AR(2) model, the Mov-
ing Average component of the ARMA process was discarded. Table 3 show the R2,
average deviation (error) in absolute terms and the % error of the model fit for the
ARMA(2,1), ARMA(2,2), ARMA(2,3) and the AR models. The final model selected
was therefore an AR(2) model which had been identified as the most significant. This
model was used to forecast INFCOD values in the validation range of DAY 61 - 105.

3.2 The Identified ARMA Model

The final time series model was therefore an AutoRegressive model of order 2 (AR(2))
of the form

INFCODt = µ+ ϕ1(INFCODt−1 − µ) + ϕ2(INFCODt−2 − µ) + εt (17)
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where εt represents the white noise series.
The model in Equation 17 was fitted in the Modelling range of DAY 1 -60, as,

INFCODt = 2497 + 0.51(INFCODt−1 − 2497) + 0.36(INFCODt−2 − 2497) + εt(18)

where INFCOD is the COD of the influent measured in mg/l.

The Chi-squared values for εt and tests of significance are shown in Table 4. As it
can be seen, the residuals are statistically significant at 0.05 level as a random error
series. Figure 4 shows the frequency distribution of the residuals ε, indicating an
almost normal distribution.

3.3 ARMA Model Validation

With the final time series model AR (2) properly formulated, the model (Equation.18)
was then validated using data ranging from DAY 61 to DAY 105. A moving window
period of 60 days was used for calibration of the model and the forecast was done for
the subsequent 10 days. Figure 5 shows the validation of the AR(2) model. It is found
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that the AR(2) model yields an average absolute error of 873 mg/l (Figure.5). The
moving window period for calibration of the AR(2) model is shown below.

Calibration (Moving window period) Forecasting

DAY 1 - DAY 60 DAY 61 - DAY 70
DAY 11 - DAY 70 DAY 71 - DAY 80
DAY 21 - DAY 80 DAY 81 - DAY 90
DAY 31 - DAY 90 DAY 91 - DAY 100
DAY 71 - DAY 130 DAY 101 - DAY 105

4 Discussion

Sales et al. (1994) and Tao et al. (1994) have performed similar forecasting analyses
using the Box-Jenkins AR model for predicting inflows for a catchment. However,
there appears to be little literature for comparison of the forecast of influent strength
of wastewater (COD) using the Box-Jenkins model for a SBR wastewater treatment
plant. Existing literature has shown that records of around 1000 data points are
necessary for identifying a versatile time series model and forecasting analysis for
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wastewater treatment control (Hiraoka and Fujiwara, 1992). In this example of fore-
casting analysis, only 120 data points have been used in evaluating the series due to
lack of further data, a very common and realistic scenario in small-scale wastewater
treatment plants. The average error in predicting the influent COD with a 10 day
lead time (the usual lead time required by the plant manager to assess options for
treatment control) had been about 873 mg/l (approximately 35% error). Therefore, it
is hypothesized that if more data from the SBR plant can be available, the time-series
and forecasting analysis should allow more accurate with forecast errors being within
a more tolerable range (> 20% error). With more data spanning a greater length of
time, more temporal features of COD variation like ”seasonality” and ”trend” could
be more accurately identified and thus enhance the quality of the Box-Jenkins anal-
ysis. If a reasonably well forecasting sequence is possible, then the plant operator
may use the forecasting analysis to estimate his operational criteria 10 days ahead.
Furthermore, the simple algorithmic nature of model identification shown in Figure 2
can be translated conveniently to a computer routine for computation of the ARMA
model automatically from on on-line data monitoring system at the plant site. As
most treatment plants of today are being monitored on-line for the influent, effluent
and process. characteristics (Andrews, 1992), the computerization of this approach
is therefore an attractive option. However, it is recognized that there may be other
important statistical criteria that are not examined here. For example, more robust
and sophisticated methods for evaluating forecast models exist - such as split sample
predictive power tests of the initial models considered (.e.g AR vs ARMA) and the
use of Ljung-Box Q statistics for a more definitive test of white noise. Nevertheless,
we hope that this paper will lead to further studies involving a wider range of methods
with the objective of designing a simplified procedure for the forecasting of influent
COD. Such procedures will have appeal for plant managers and practitioners alike.

Statistical Notations

R2 =
SSR

SST
=

SST − SSE

SST
= 1− SSE

SST

Where SST = Total Sum of squares (model sum of squares)

SSR = Sum of squares due to regression (also called explained sum of squares)

SSE = Sum of squares due to error ( also called unexplained sum of squares).

Adjusted Rsquare (Adj.R2) = 1− (1−Rsquare)
N −K

N −K − 1

N = No. of data points , K = No of regression terms in the model
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