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Abstract

Various types of model have been suggested to describe spatial process
namely, the simultaneous autoregressive model, the conditional autoregres-
sive model and the moving average model. The problem of estimating the
parameters of spatial models has been taken up by many researchers. In
this paper, a procedure for estimating the parameters for the non-separable
second order spatial unilateral autoregressive, AR(2,1) model is presented.
Using our proposed procedure, we obtain good estimates, in the sense that
the estimated parameters were found to be close to the true values. The per-
formance of this estimator is also compared with other estimators such as
Yule-Walker and conditional least squares estimators via simulation studies.
The significance of this study is that it enables user to use an alternative
procedure to estimate the parameters of the non-separable second order
spatial unilateral AR(2,1) model.
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1 Introduction

Spatial processes have been analyzed in various fields such as biology, agriculture,
geography and meteorology. In this paper, consideration will be given to the spatial
process in two-dimensional regular grid where a random variable is defined at each in-
tersection point. Various types of models have been suggested to describe the process
namely, the simultaneous autoregressive (SAR) model [see Whittle (1954)], the condi-
tional autoregressive (CAR) model [see Besag (1974)] and the moving average (MA)
model [see Haining (1978b)]. Basu and Reinsel (1992 and 1993) examined a model
called the unilateral autoregressive moving average (ARMA) model of the quadrant
type and attention has been given to the first order case. Martin (1979, 1990 and
1996) studied in detail a special case of this model called linear-by-linear or separable
models.

Estimation of the parameters of spatial models remains a difficult task. They
are frequently estimated by maximum likelihood [see Basu and Reinsel (1993), Hain-
ing (1978a) and Ord (1975)], least squares [see Haining (1978a)] or Yule-Walker [see
Basu and Reinsel (1992) and Tjøstheim (1978)] methods. Some attempts have been
made to overcome the computational difficulties by considering unilateral models [see
Basu and Reinsel (1993)] and separable models [see Basawa, Brockwell and Mandrekar
(1991) and Martin (1979), (1990), (1996)]. Separable models have a product correla-
tion structure and this considerably simplifies the estimation. Shitan and Brockwell
(1995) provided an asymptotic test for separability for spatial autoregressive model by
translating the spatial problem to a multiple time series problem. For the more gen-
eral non-separable first order unilateral model, some results on the estimation of the
parameters by maximum likelihood have been provided by Basu and Reinsel (1993).

Shitan and Brockwell (1996) discussed the problem of estimation for higher order
non-separable unilateral autoregressive models. They have taken up the approach of
transforming the 2-D spatial problem to a multiple time series problem, treating one
of the spatial coordinates as a time index and the other coordinate as a multivariate
index and then carried out the multivariate least squares estimation (unconstrained
and constrained) procedures.

In this paper we look at the problem of estimation from a different perspective
from Shitan and Brockwell (1996). Our approach is to use maximum likelihood (ML)
to estimate the parameters of the second order non-separable spatial unilateral au-
toregressive, AR(2,1) model defined as,

Yij = α10Yi−1,j + α01Yi,j−1 + α11Yi−1,j−1 + α20Yi−2,j

+ α21Yi−2,j−1 + εij
(1)

where {Yij} is a sequence of two dimensional random variable with zero mean and the
errors εij are assumed to be normal and independent with mean 0 and variance σ2.
This procedure is an adaptation of the estimation method for the one parameter case
using maximum likelihood as discussed in Ord (1975). Here, we make an extension to
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the case of five parameters. We will also show how the weight matrices are constructed
in order to apply the maximum likelihood method. It can be shown that with certain
transformation for the weight matrices, this procedure is analogues of the modified
least squares estimation as given in Cliff and Ord (1981).

In Section 2, the construction of the weight matrices is presented. The derivation
of this procedure of estimation is discussed in Section 3. In Section 4, we discuss
other type of estimation methods for spatial unilateral AR model namely, the Yule-
Walker method and the conditional least squared methods. Some simulation studies
are presented in Section 5 to compare the performance of these estimators. In Section
6, the conclusions are presented.

2 Construction of the Weight Matrices for the Second
Order Spatial Autoregressive Model

We consider a second order spatial unilateral autoregressive, AR(2,1) model defined
as,

Yij = α10Yi−1,j + α01Yi,j−1 + α11Yi−1,j−1 + α20Yi−2,j

+ α21Yi−2,j−1 + εij ,
i = 1, 2, ..., m and j = 1, 2, ..., n,

(2)

where {Yij} is a sequence of two dimensional random variable with zero mean and the
errors εij are assumed to be normally distributed with mean 0 and common variance
σ2.

By assuming that the unobserved values to be zeroes, and letting the observation
vector, Y = (Y11, Y12, ..., Y1n, Y21, Y22, ..., Y2n, ..., Ym1, Ym2, ..., Ymn)

′

= (Y1, Y2, ..., Ym)′, where Yi = (Yi1, Yi2, ..., Yin)
′, i = 1, 2, ..., m and the

error vector, ε = (ε11, ε12, ..., ε1n, ε21, ε22, ..., ε2n, ..., εm1, εm2, ..., εmn)
′ =

(ε1, ε2, ..., εm)′, where εi = (εi1, εi2, ..., εin)
′, i = 1, 2, ..., m, we can rewrite

equation (2) in the matrix form as,



Y1

Y2

Y3

Y4
...
Ym


=



A1 0 0 0 · · · 0 0 0
A2 A1 0 0 · · · 0 0 0
A3 A2 A1 0 · · · 0 0 0
0 A3 A2 A1 · · · 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 0 0 · · · A3 A2 A1





Y1

Y2

Y3

Y4
...
Ym


+



ε1
ε2
ε3
ε4
...
εm


, (3)
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where A1, A2 and A3 are n× n matrices given as,

A1 =



0 0 0 · · · 0 0
α01 0 0 · · · 0 0
0 α01 0 · · · 0 0
0 0 α01 · · · 0 0
...

...
. . .

. . .
...

...
0 0 0 · · · α01 0


,

A2 =



α10 0 0 · · · 0 0
α11 α10 0 · · · 0 0
0 α11 α10 · · · 0 0
0 0 α11 · · · 0 0
...

...
. . .

. . .
. . .

...
0 0 0 · · · α11 α10


and

A3 =



α20 0 0 · · · 0 0
α21 α20 0 · · · 0 0
0 α21 α20 · · · 0 0
0 0 α21 · · · 0 0
...

...
. . .

. . .
. . .

...
0 0 0 · · · α21 α20


.

Equation (3) can be written more compactly as,

Y = AY + ε , (4)

where A is N × N matrix, N = mn. It is clear that A is a lower triangular matrix
with zeros on the main diagonal. Then, if we decompose A into five matrices such
that it isolates different parameters, we obtain

Y = (α10W1 + α01W2 + α11W3 + α20W4 + α21W5)Y + ε, (5)

where, A = α10W1 + α01W2 + α11W3 + α20W4 + α21W5 and Wk, k =1,
2, . . . , 5, are the N ×N weight matrices with elements ones and zeros, given as

W1 =


0 0 0 · · · 0 0 0
B1 0 0 · · · 0 0 0
0 B1 0 . . . 0 0 0
...

. . .
. . . . . .

. . .
. . .

...
0 0 0 · · · 0 B1 0

 ,
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W2 =


B2 0 0 · · · 0 0 0
0 B2 0 · · · 0 0 0
0 0 B2 . . . 0 0 0
...

. . .
. . . . . .

. . .
. . .

...
0 0 0 · · · 0 0 B2

 ,

W3 =


0 0 0 · · · 0 0 0
B2 0 0 · · · 0 0 0
0 B2 0 . . . 0 0 0
...

. . .
. . . . . .

. . .
. . .

...
0 0 0 · · · 0 B2 0

 ,

W4 =



0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
B1 0 0 · · · 0 0 0
0 B1 0 · · · 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 · · · B1 0 0


and

W5 =



0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
B2 0 0 · · · 0 0 0
0 B2 0 · · · 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 · · · B2 0 0


as well as, B1 and B2 are n× n matrices defined as

B1 =


1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · 0 0 1


and

B2 =


0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · 0 1 0

 .



42 International Journal of Statistical Sciences, Vol. 5, 2006

3 Parameter Estimation for the Second Order Spatial
Autoregressive Model Using Maximum Likelihood (ML)

Equation (5) can then be written as,

Y = [ I − ( α10W1 + α01W2 + α11W3 + α20W4 + α21W5)]
−1 ε (6)

or
Y = ( I − A )−1 ε (7)

where I is an N ×N identity matrix.
Therefore, the covariance matrix of Y, V is given as,

V = σ2 ( I −A )−1
[
( I −A )−1

]′
. (8)

The square root of the determinant of V is given as,

|V|1/2 =
(
σ2

)N/2 ∣∣ ( I − A )−1
∣∣ . (9)

Since (I−A) is the lower triangular matrix with diagonal elements 1,∣∣ ( I − A )−1
∣∣ = 1. This leads to

|V|1/2 =
(
σ2

)N/2
. (10)

Therefore, the likelihood function l is given as,

l = 1

(2π)N/2|V|1/2
. exp

{
−1

2Y
′V−1Y

}
= (2π)−N/2(σ2)−N/2 exp

{
− 1

2σ2Y
′ [(I−A)−1(I−A′)−1

]−1
Y
}

= (2π)−N/2(σ2)−N/2 exp
{
− 1

2σ2Y
′(I−A′)(I−A)Y

}
.

Thus we obtain the log likelihood, L as

L = −N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2
Y′(I−A′)(I−A)Y. (11)

Denoting α′ = (α10, α01, α11, α20, α21) = (α1, α2, α3, α4, α5), for each i =
1, 2, ..., 5,

∂L

∂αi
= − 1

σ2

 −Y′W′
iY + αiY

′W′
iWiY +

∑
∀j ̸=i

αjY
′W′

j WiY

 (12)
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for j = 1, 2, . . . , 5.
Equating (12) to zero leads toαiY

′W′
iWiY +

∑
∀j ̸=i

αjY
′W′

j WiY

 = Y′W′
iY. (13)

Therefore, denoting Zi = WiY, the maximum likelihood for α′ = (α1, α2, α3,
α4, α5) can be obtained by solving the equation

Z′
1 Z1

Z′
1 Z2

Z′
1 Z3

Z′
1 Z4

Z′
1 Z5

Z′
2 Z1

Z′
2 Z2

Z′
2 Z3

Z′
2 Z4

Z′
2 Z5

Z′
3 Z1

Z′
3 Z2

Z′
3 Z3

Z′
3 Z4

Z′
3 Z5

Z′
4 Z1

Z′
4 Z2

Z′
4 Z3

Z′
4 Z4

Z′
4 Z5

Z′
5 Z1

Z′
5 Z2

Z′
5 Z3

Z′
5 Z4

Z′
5 Z5




α1

α2

α3

α4

α5

 =


Y′ Z1

Y′ Z2

Y′ Z3

Y′ Z4

Y′ Z5

 ,

or 
α1

α2

α3

α4

α5

 =


Z′

1 Z1

Z′
1 Z2

Z′
1 Z3

Z′
1 Z4

Z′
1 Z5

Z′
2 Z1

Z′
2 Z2

Z′
2 Z3

Z′
2 Z4

Z′
2 Z5

Z′
3 Z1

Z′
3 Z2

Z′
3 Z3

Z′
3 Z4

Z′
3 Z5

Z′
4 Z1

Z′
4 Z2

Z′
4 Z3

Z′
4 Z4

Z′
4 Z5

Z′
5 Z1

Z′
5 Z2

Z′
5 Z3

Z′
5 Z4

Z′
5 Z5


−1 

Y′ Z1

Y′ Z2

Y′ Z3

Y′ Z4

Y′ Z5

 . (14)

4 Other Estimation Methods

In this section, we shall review other alternative methods of parameters estimation for
spatial unilateral autoregressive models.

4.1 Spatial Yule-Walker Estimation

Tjøstheim (1978) considered Yule-Walker method to estimate the parameters of spatial
AR models. For data given on two-dimensional regular grid, Yij , i = 1, . . . , m and j
= 1, . . . , n, the sample autocovariances at lag (s, t) and (s,−t) for s ≥ 0 and t ≥ 0
are defined respectively as,

R(s, t) =
1

mn

m−s∑
i=1

n−t∑
j=1

YijYi+s,j+t (15)

and

R(s,−t) =
1

mn

m−s∑
i=1

n∑
j=1+1

YijYi+s,j−t. (16)
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From these definitions, R(s,t) = R(-s,-t) and R(-s,t) = R(s,-t). For a spatial unilateral
AR(p1, p2) model, the spatial analogue of the one-dimensional Yule-Walker equations
as in time-series case is given as,

R(s, t) =

p1∑
k=0

p2∑
l=0

αklR(s− k, t− l). (17)

Then, if we define

α = (α10 ..., αp1,0, α01, ..., αp1,1, ..., α0,p2 , ..., αp1,p2)
′,

r = (R(1, 0), ..., R(p1, 0), R(0, 1), ..., , R(p1, 1), ..., R(0, p2), ..., R(p1, p2))
′ and

R =


R(0, 0) R(−1, 0) · · · R(1− p1, p2)
R(1, 0) R(0, 0) · · · R(2− p1,−p2)
...

... · · ·
...

R(p1 − 1, p2) R(p1 − 2, p2) · · · R(0, 0)

 ,

the spatial Yule-Walker estimates, α̂ can be obtained by solving equation,

α̂ = R−1r. (18)

Guyon (1982), Basu and Reinsel (1993) and Ha and Newton (1993) showed that this
estimate is asymptotically biased. If the divisor mn in the sample autocovariance is
replaced by (m-s)(n-t), the ‘unbiased’ version of this estimator will be obtained [see
Ha and Newton (1993)].

Since our interest is on a spatial unilateral AR(2,1) model as defined in equation
(2) above, α, r and R will take the forms, α = (α10, α20, α01, α11, α21)

′, r =
(R(1, 0), R(2, 0), R(0, 1), R(1, 1), R(2, 1))′ and

R =


R(0, 0) R(1, 0) R(1,−1) R(0, 1) R(1, 1)
R(1, 0) R(0, 0) R(2,−1) R(1,−1) R(0, 1)
R(1,−1) R(2,−1) R(0, 0) R(1, 0) R(2, 0)
R(0, 1) R(1,−1) R(1, 0) R(0, 0) R(−1, 0)
R(1, 1) R(0, 1) R(2, 0) R(1, 0) R(0, 0)

 .

Then the estimate of α = (α10, α20, α01, α11, α21)
′ is obtained by using equation (18)

above. The divisor mn is replaced by (m-s)(n-t) to obtain the ‘unbiased’ Yule-Walker
estimate.

4.2 Spatial Conditional Least Squares Estimation

We discuss here two types of conditional least squares estimation method. For Type 1,
as in maximum likelihood method discussed in Sections 2 and 3, we assume that the un-
observed border values are all zero, that isY′

b = (Y−1,0, ..., Y−1,n, Y00, ..., Y0n, Y10, ...
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, Ym0) = 0. The least squares estimates of α′ = (α10, α01, α11, α20, α21) is given as

α̂′ = (X′X)−1X′Y, (19)

where

Y = (Y11, Y12, ..., Y1n, Y21, Y22, ..., Y2n, ..., Ym1, Ym2, ..., Ymn)
′

and X is a matrix of dimension (mn) × 5 given as,

X =



0 0 0 0 0
0 Y11 0 0 0
...

...
...

...
...

0 Y1,n−1 0 0 0
Y11 0 0 0 0
Y12 Y21 Y11 0 0
...

...
...

...
...

Y1n Y2,n−1 Y1,n−1 0 0
Y21 0 0 Y11 0
Y22 Y31 Y21 Y12 Y11
...

...
...

...
...

Y2n Y3,n−1 Y2,n−1 Y1n Y1,n−1
...

...
...

...
...

Ym−1,1 0 0 Ym−2,1 0
Ym−1,2 Ym,1 Ym−1,1 Ym−2,2 Ym−2,1
...

...
...

...
...

Ym−1,n Ym,n−1 Ym−1,n−1 Ym−2,n Ym−2,n−1



.

It is obvious that the estimates from equation (19) are equivalent to the maximum like-
lihood estimates as given in equation (14). This is due to our previous assumption that
the unobserved border values are all fixed to zero, that is Y′

b = (Y−1,0, ..., Y−1,n, Y00,
..., Y0n, Y10, ..., Ym0) = 0 and also the square root of the determinant of the covari-

ance matrix of Y, |V| 1/2 =
(
σ2

)N/2
does not involved any function of α′. Therefore

maximizing equation (11) with respect of α′ is analogue of the procedure to obtain
the conditional least squares estimates as in equation (19).

In Type 2, we obtain the conditional least squares estimates by conditioning on the
given observed border, Yo

′ = (Y11, ..., Y1n, Y21, ..., Y2n, Y31, ..., Ym1). Then, the
estimator is given as,

α̂o = (Xo
′Xo)

−1Xo
′Y(1) (20)

where
Y(1)

′ = (Y32, ..., Y3n, Y42, ..., Y4n, ..., Ym2, ..., Ymn),
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and Xo is a matrix of dimension (m−2)(n−1) × 5 defined as,

Xo =



Y22 Y31 Y21 Y12 Y11
...

...
...

...
...

Y2n Y3,n−1 Y2,n−1 Y1n Y1,n−1

Y32 Y41 Y31 Y22 Y21
...

...
...

...
...

Y3n Y4,n−1 Y3,n−1 Y2n Y2,n−1
...

...
...

...
...

Ym−1,2 Ym1 Ym−1,1 Ym−2,2 Ym−2,1
...

...
...

...
...

Ym−1,n Ym,n−1 Ym−1,n−1 Ym−2,n Ym−2,n−1



.

5 Simulation Results

A simulation study is conducted to evaluate the performance of this estimation proce-
dure for the second order spatial unilateral AR model as defined in equation (2). The
estimation programmes were written in S-Plus. We began by generating independent
standard normal variates εij and then the border values Yi,1, i = 1, 2, . . . , n, Y1,j
and Y2,j , j = 2, 3, . . . , m are determined by assuming that the cells bordering the
lattice have fixed values of zeros. Then, the remaining Yi,j , i = 3, 4, . . . , m; j =
2, 3, . . . , n, are obtained recursively from equation (2). The simulations were done
for two different sets of α-values and nine different grid sizes, i.e. (6×10), (8×8),
(8×10), (6×15), (5×20), (16×20), (12×30), (15×25) and (20×20). The estimates of
α′ = (α10, α01, α11, α20, α21) are obtained using maximum likelihood (ML), Yule-
Walker, ‘unbiased’ Yule-Walker and least squares (LS Type 2) estimators as given in
equations (14), (18) and (19), respectively. For each set of α-values, we made 500
replications for each of the grids and obtained the averages of the estimates. The root
mean squared errors (RMSE) as well as absolute bias are used as criteria to compare
the estimators. The RMSE is a square root of the mean squared error (MSE) which
is given as,

MSE(α̂) = E(α̂− α)2 = Var(α̂) + [b(α̂)]2,

where b(α̂) is a bias vector of the estimators.
Tables 1, 3, 5 and 7 show the results of the average estimates of α′ from 500

replications for α′ fixed at (-0.6, 0.3, 0.5, -0.1, 0.4), that is α10 = −0.6, α01 = 0.3,
α11 = 0.5, α20 = −0.1, α21 = 0.4 and σ2= 1.0000 using ML, Yule-Walker, ‘unbiased’
Yule-Walker and LS Type 2, respectively. Similarly Tables 2, 4, 6 and 8 show the
results of the average estimates of α′ from 500 replications for α′ fixed at (0.2, 0.3,
0.2, 0.1, 0.1), that is α10 = 0.2, α01 = 0.3, α11 = 0.2, α20 = 0.1, α21 = 0.1 and σ2=
1.0000 using ML, Yule-Walker, ‘unbiased’ Yule-Walker and LS Type2, respectively.
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The averages of the estimated σ2 from 500 replications are shown in the last columns.
σ2 is estimated as the mean of the squared residuals. The RMSE for all estimated
parameters and σ̂2 are shown in parentheses.

Figures 1 and 2 show the plots of absolute bias of the estimates against grid size
and RMSE against grid size from 500 replications for α′ fixed at (-0.6, 0.3, 0.5, -0.1,
0.4) and σ2= 1.0000, while Figures 3 and 4 show the plots of absolute bias of the
estimates against grid size and RMSE against grid size from 500 replications for α′

fixed at (0.2, 0.3, 0.2, 0.1, 0.1) and σ2= 1.0000 for all estimators discussed above.
From Figure 1, it is seen that for α′ fixed at (-0.6, 0.3, 0.5, -0.1, 0.4), the magnitude

of the bias was largest for Yule-Walker for all parameters and it was obvious for small
grid sizes. The performance of the other three was considerably equivalent but ML is
seen the best. The magnitude of the bias also decreases as the grid size increases for
all estimators and parameters. Although the magnitude of the bias for Yule-Walker
estimates was largest for all parameters, its bias was smallest for σ̂2.

From Figure 2, it is seen that Yule-Walker is still the worst if we compare the
performance based on RMSE value for α′ fixed at (-0.6, 0.3, 0.5, -0.1, 0.4), except
for α̂01 and α̂20. LS Type 2 performed worst for α̂01. ML estimator was always the
best for all parameters except for α̂20. However, the RMSE for σ̂2 are considerably
equivalent for all estimators. The RMSE also decreases as the grid size increases for
all estimators and for all parameters.

For α′ fixed at (0.2, 0.3, 0.2, 0.1, 0.1), as shown in Figure 3, it is seen that Yule-
Walker estimates are more biased than the other three for α̂11, α̂20 and α̂21. The
‘unbiased’ Yule-Walker estimates performed worst for α̂10 and α̂01. ML and LS Type
2 estimators performed equally except for α̂01 where the bias for LS Type 2 estimates
was larger. The bias for σ̂2 was slightly higher for ML estimate compared to the other
three and the bias was smallest for Yule-Walker estimate. However, as the results for
the previous set of α′, the absolute biases decrease as the grid sizes increase for all
parameters and for all estimators.

Lastly, from Figure 4, the RMSE values for Yule-Walker estimate were always
smallest for all parameters compared to the other three. The RMSE of LS Type 2
estimates was always largest except for α̂21 which is highest for ‘unbiased’ Yule-Walker
estimates. As in previous set, all estimators performed equally for σ̂2. The RMSE
values also decrease as the grid sizes increase and the performance of all estimators
was considerably equivalent for moderate grid size.

From this simulation studies, it is seen that ML estimator is the best in overall
performance compared to the other three for these two set of α′ values. It performed
the best in the sense that the magnitude of the biases and RMSE values for all pa-
rameters were generally smallest with a few exceptions like for σ̂2. Furthermore, as
the grid size increases, the estimates approach the true values and absolute bias and
the RMSE values decrease for all parameters.
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Table 1: Average estimated value of parameters and RMSE (in parentheses) from 500
replications of ML estimators for α′ fixed at (-0.6, 0.3, 0.5, -0.1, 0.4) and σ2= 1.0000.

Grid size α̂1 α̂2 α̂3 α̂4 α̂5 σ̂2

6 × 10 -0.5952
(0.1356)

0.2870
(0.1221)

0.4892
(0.1533)

-0.1171
(0.1453)

0.3790
(0.1712)

0.9201
(0.1921)

8 × 8 -0.5748
(0.1342)

0.2862
(0.1200)

0.4718
(0.1487)

-0.1027
(0.1435)

0.3683
(0.1533)

0.9198
(0.1896)

8 × 10 -0.5953
(0.1114)

0.2903
(0.1030)

0.4849
(0.1315)

-0.1063
(0.1145)

0.3818
(0.1296)

0.9370
(0.1642)

6 × 15 -0.5909
(0.1082)

0.2884
(0.0954)

0.4767
(0.1261)

-0.1028
(0.1253)

0.3786
(0.1330)

0.9431
(0.1545)

5 × 20 -0.5865
(0.1077)

0.2914
(0.0877)

0.4753
(0.1175)

-0.0977
(0.1288)

0.3849
(0.1311)

0.9507
(0.1469)

16 × 20 -0.5953
(0.0548)

0.2969
(0.0500)

0.4922
(0.0574)

-0.1003
(0.0548)

0.3915
(0.0548)

0.9877
(0.0803)

12 × 30 -0.5974
(0.0510)

0.2966
(0.0458)

0.4967
(0.0557)

-0.1037
(0.0557)

0.3928
(0.0577)

0.9889
(0.0770)

15 × 25 -0.5972
(0.0500)

0.2970
(0.0447)

0.4981
(0.0548)

-0.1006
(0.0520)

0.3949
(0.0548)

0.9895
(0.0748)

20 × 20 -0.5962
(0.0480)

0.2984
(0.0458)

0.4940
(0.0500)

-0.1003
(0.0490)

0.3932
(0.0490)

0.9900
(0.0723)

Table 2: Average estimated value of parameters and RMSE (in parentheses) from 500
replications of ML estimators for α′ fixed at (0.2, 0.3, 0.2, 0.1, 0.1) and σ2= 1.0000.

Grid size α̂1 α̂2 α̂3 α̂4 α̂5 σ̂2

6 × 10 0.1853
(0.1411)

0.2850
(0.1253)

0.2035
(0.1490)

0.0846
(0.1487)

0.0921
(0.1667)

0.9183
(0.1923)

8 × 8 0.2037
(0.1349)

0.2849
(0.1208)

0.1901
(0.1456)

0.0762
(0.1367)

0.0875
(0.1552)

0.9198
(0.1905)

8 × 10 0.1882
(0.1170)

0.2877
(0.1063)

0.1970
(0.1281)

0.0915
(0.1241)

0.0944
(0.1349)

0.9345
(0.1643)

6 × 15 0.1943
(0.1140)

0.2880
(0.0970)

0.1904
(0.1122)

0.0875
(0.1281)

0.1016
(0.1327)

0.9431
(0.1549)

5 × 20 0.2046
(0.1095)

0.2905
(0.0889)

0.1834
(0.1170)

0.0901
(0.1281)

0.0982
(0.1315)

0.9501
(0.1471)

16 × 20 0.2007
(0.0583)

0.2957
(0.0520)

0.1942
(0.0574)

0.0925
(0.0557)

0.0956
(0.0600)

0.9873
(0.0812)

12 × 30 0.1981
(0.0539)

0.2955
(0.0480)

0.2009
(0.0566)

0.0944
(0.0557)

0.0961
(0.0566)

0.9888
(0.0769)

15 × 25 0.1970
(0.0539)

0.2963
(0.0458)

0.2020
(0.0548)

0.0944
(0.0539)

0.0986
(0.0566)

0.9894
(0.0747)

20 × 20 0.2009
(0.0510)

0.2972
(0.0480)

0.1952
(0.0500)

0.0942
(0.0490)

0.0967
(0.0520)

0.9898
(0.0728)
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Table 3: Average estimated value of parameters and RMSE (in parentheses) from 500
replications of YW estimators for α′ fixed at (-0.6, 0.3, 0.5, -0.1, 0.4) and σ2= 1.0000.

Grid size α̂1 α̂2 α̂3 α̂4 α̂5 σ̂2

6 × 10 -0.4565
(0.1817)

0.2403
(0.1281)

0.3258
(0.2054)

-0.0725
(0.0927)

0.2030
(0.2156)

0.9680
(0.1879)

8 × 8 -0.4714
(0.1729)

0.2379
(0.1241)

0.3300
(0.2037)

-0.0649
(0.1086)

0.2203
(0.2015)

0.9543
(0.1821)

8 × 10 -0.4875
(0.1517)

0.2483
(0.1082)

0.3462
(0.1833)

-0.0705
(0.0889)

0.2338
(0.1857)

0.9699
(0.1609)

6 × 15 -0.4599
(0.1679)

0.2553
(0.1039)

0.3326
(0.1931)

-0.0653
(0.0849)

0.2144
(0.2000)

0.9826
(0.1522)

5 × 20 -0.4322
(0.1881)

0.2624
(0.0970)

0.3195
(0.1997)

-0.0591
(0.0794)

0.1960
(0.2140)

0.9976
(0.1456)

16 × 20 -0.5403
(0.0794)

0.2759
(0.0548)

0.4191
(0.0959)

-0.0792
(0.0529)

0.3148
(0.0970)

0.9971
(0.0804)

12 × 30 -0.5277
(0.0860)

0.2790
(0.0510)

0.4163
(0.0980)

-0.0795
(0.0500)

0.3030
(0.1063)

1.0013
(0.0776)

15 × 25 -0.5393
(0.0775)

0.2987
(0.0500)

0.4252
(0.0900)

-0.0793
(0.0490)

0.3164
(0.0954)

0.9992
(0.0750)

20 × 20 -0.5503
(0.0678)

0.2782
(0.0500)

0.4295
(0.0831)

-0.0813
(0.0480)

0.3267
(0.0843)

0.9972
(0.0725)

Table 4: Average estimated value of parameters and RMSE (in parentheses) from 500
replications of YW estimators for α′ fixed at (0.2, 0.3, 0.2, 0.1, 0.1) and σ2= 1.0000.

Grid size α̂1 α̂2 α̂3 α̂4 α̂5 σ̂2

6 × 10 0.1758
(0.1183)

0.2814
(0.1153)

0.1349
(0.1221)

0.0459
(0.1086)

0.0298
(0.1170)

0.9453
(0.1879)

8 × 8 0.2032
(0.1225)

0.2686
(0.1105)

0.1305
(0.1292)

0.0521
(0.1063)

0.0363
(0.1153)

0.9411
(0.1858)

8 × 10 0.1881
(0.1030)

0.2803
(0.1000)

0.1396
(0.1131)

0.0645
(0.0970)

0.0406
(0.1049)

0.9536
(0.1599)

6 × 15 0.1765
(0.0980)

0.2972
(0.0985)

0.1336
(0.1054)

0.0470
(0.0959)

0.0405
(0.0985)

0.9644
(0.1514)

5 × 20 0.1731
(0.0917)

0.3071
(0.0911)

0.1250
(0.1109)

0.0387
(0.0927)

0.0323
(0.0954)

0.9740
(0.1440)

16 × 20 0.2041
(0.0574)

0.2961
(0.0510)

0.1644
(0.0624)

0.0805
(0.0529)

0.0661
(0.0600)

0.9922
(0.0812)

12 × 30 0.1948
(0.0500)

0.3062
(0.0490)

0.1694
(0.0583)

0.0754
(0.0529)

0.0634
(0.0583)

0.9949
(0.0768)

15 × 25 0.2000
(0.0520)

0.3010
(0.0469)

0.1723
(0.0566)

0.0806
(0.0510)

0.0682
(0.0566)

0.9943
(0.0747)

20 × 20 0.2073
(0.0529)

0.2952
(0.0469)

0.1678
(0.0566)

0.0858
(0.0469)

0.0699
(0.0548)

0.9937
(0.0727)
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Table 5: Average estimated value of parameters and RMSE (in parentheses) from 500
replications of ‘unbiased’ YW estimators for α′ fixed at (-0.6, 0.3, 0.5, -0.1, 0.4) and
σ2= 1.0000.

Grid size α̂1 α̂2 α̂3 α̂4 α̂5 σ̂2

6 × 10 -0.6512
(0.1841)

0.3128
(0.1323)

0.5508
(0.2114)

-0.1585
(0.1667)

0.4044
(0.1887)

0.9496
(0.1892)

8 × 8 -0.6265
(0.1584)

0.3013
(0.1175)

0.5218
(0.1828)

-0.1346
(0.1507)

0.3963
(0.1667)

0.9390
(0.1884)

8 ×10 -0.6374
(0.1432)

0.3077
(0.1054)

0.5290
(0.1643)

-0.1376
(0.1319)

0.3995
(0.1483)

0.9518
(0.1601)

6 ×15 -0.6304
(0.1404)

0.3076
(0.1039)

0.5287
(0.1609)

-0.1316
(0.1334)

0.3959
(0.1435)

0.9592
(0.1511)

5 × 20 -0.6196
(0.1375)

0.3162
(0.0949)

0.5321
(0.1533)

-0.1229
(0.1330)

0.3915
(0.1400)

0.9678
(0.1449)

16 × 20 -0.6153
(0.0600)

0.3032
(0.0490)

0.5142
(0.0656)

-0.1135
(0.0592)

0.4037
(0.0592)

0.9897
(0.0801)

12 × 30 -0.6166
(0.0592)

0.3062
(0.0458)

0.5234
(0.0671)

-0.1165
(0.0600)

0.4035
(0.0592)

0.9912
(0.0768)

15 × 25 -0.6151
(0.0574)

0.3037
(0.0447)

0.5193
(0.0648)

-0.1122
(0.0548)

0.4048
(0.0583)

0.9912
(0.0747)

20 × 20 -0.6140
(0.0520)

0.3030
(0.0447)

0.5122
(0.0539)

-0.1118
(0.0510)

0.4036
(0.0510)

0.9914
(0.0722)

Table 6: Average estimated value of parameters and RMSE (in parentheses) from 500
replications of ‘unbiased’ YW estimators for α′ fixed at (0.2, 0.3, 0.2, 0.1, 0.1) and
σ2= 1.0000.

Grid size α̂1 α̂2 α̂3 α̂4 α̂5 σ̂2

6 × 10 0.1404
(0.1732)

0.2524
(0.1456)

0.2093
(0.1609)

0.0635
(0.1581)

0.1096
(0.1947)

0.9431
(0.2110)

8 × 8 0.1533
(0.1616)

0.2552
(0.1356)

0.2058
(0.1640)

0.0588
(0.1378)

0.1147
(0.1814)

0.9423
(0.1914)

8 × 10 0.1439
(0.1463)

0.2607
(0.1204)

0.2062
(0.1389)

0.0753
(0.1311)

0.1160
(0.1616)

0.9531
(0.1685)

6 × 15 0.1585
(0.1273)

0.2624
(0.1100)

0.1910
(0.1175)

0.0708
(0.1273)

0.1093
(0.1428)

0.9549
(0.1533)

5 × 20 0.1728
(0.1170)

0.2636
(0.1020)

0.1799
(0.1212)

0.0703
(0.1245)

0.0966
(0.1300)

0.9602
(0.1452)

16 × 20 0.1788
(0.0640)

0.2809
(0.0574)

0.1999
(0.0608)

0.0860
(0.0574)

0.1070
(0.0663)

0.9900
(0.0810)

12 × 30 0.1778
(0.0600)

0.2770
(0.0548)

0.2048
(0.0600)

0.0896
(0.0574)

0.1057
(0.0616)

0.9912
(0.0769)

15 × 25 0.1777
(0.0608)

0.2792
(0.0529)

0.2069
(0.0574)

0.0892
(0.0548)

0.1090
(0.0616)

0.9917
(0.0747)

20 × 20 0.1801
(0.0574)

0.2848
(0.0510)

0.2009
(0.0539)

0.0880
(0.0500)

0.1078
(0.0600)

0.9919
(0.0726)
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Table 7: Average estimated value of parameters and RMSE (in parentheses) from 500
replications of LS (Type 2) estimators for α′ fixed at (-0.6, 0.3, 0.5, -0.1, 0.4) and σ2=
1.0000.

Grid size α̂1 α̂2 α̂3 α̂4 α̂5 σ̂2

6 × 10 -0.5941
(0.1581)

0.2754
(0.1549)

0.4787
(0.1794)

-0.1197
(0.1622)

0.3792
(0.1808)

0.9432
(0.1907)

8 × 8 -0.5682
(0.1565)

0.2766
(0.1425)

0.4635
(0.1694)

-0.1011
(0.1591)

0.3680
(0.1584)

0.9365
(0.1870)

8 × 10 -0.5952
(0.1249)

0.2841
(0.1204)

0.4777
(0.1449)

-0.1089
(0.1273)

0.3807
(0.1356)

0.9489
(0.1633)

6 × 15 -0.5877
(0.1273)

0.2815
(0.1221)

0.4705
(0.1473)

-0.1013
(0.1315)

0.3797
(0.1375)

0.9557
(0.1530)

5 × 20 -0.5806
(0.1273)

0.2863
(0.1153)

0.4726
(0.1421)

-0.0917
(0.1375)

0.3862
(0.1360)

0.9648
(0.1456)

16 × 20 -0.5943
(0.0574)

0.2962
(0.0539)

0.4924
(0.0608)

-0.0996
(0.0557)

0.3916
(0.0548)

0.9888
(0.0803)

12 × 30 -0.5975
(0.0548)

0.2951
(0.0510)

0.4947
(0.0592)

-0.1032
(0.0557)

0.3922
(0.0566)

0.9900
(0.0770)

15 × 25 -0.5974
(0.0539)

0.2958
(0.0480)

0.4980
(0.0566)

-0.1017
(0.0529)

0.3952
(0.0548)

0.9904
(0.0748)

20 × 20 -0.5954
(0.0490)

0.2979
(0.0490)

0.4942
(0.0520)

-0.0994
(0.0500)

0.3931
(0.0490)

0.9907
(0.0723)

Table 8: Average estimated value of parameters and RMSE (in parentheses) from 500
replications of LS (Type 2) estimators for α′ fixed at (0.2, 0.3, 0.2, 0.1, 0.1) and σ2=
1.0000.

Grid size α̂1 α̂2 α̂3 α̂4 α̂5 σ̂2

6 × 10 0.1763
(0.1667)

0.2729
(0.1591)

0.2035
(0.1761)

0.0829
(0.1664)

0.1017
(0.1732)

0.9418
(0.1902)

8 × 8 0.2025
(0.1578)

0.2756
(0.1449)

0.1919
(0.1606)

0.0732
(0.1470)

0.0927
(0.1591)

0.9369
(0.1877)

8 × 10 0.1825
(0.1319)

0.2804
(0.1257)

0.1963
(0.1414)

0.0905
(0.1334)

0.0999
(0.1393)

0.9468
(0.1630)

6 × 15 0.1930
(0.1345)

0.2812
(0.1257)

0.1910
(0.1292)

0.0896
(0.1315)

0.1062
(0.1375)

0.9563
(0.1532)

5 × 20 0.2082
(0.1296)

0.2842
(0.1187)

0.1853
(0.1396)

0.0930
(0.1360)

0.0996
(0.1356)

0.9650
(0.1457)

16 × 20 0.2014
(0.0608)

0.2947
(0.0557)

0.1950
(0.0592)

0.0925
(0.0566)

0.0953
(0.0600)

0.9885
(0.0812)

12 × 30 0.1975
(0.0583)

0.2939
(0.0529)

0.2004
(0.0592)

0.0951
(0.0574)

0.0970
(0.0574)

0.9899
(0.0768)

15 × 25 0.1963
(0.0574)

0.2948
(0.0500)

0.2032
(0.0566)

0.0937
(0.0548)

0.0991
(0.0574)

0.9903
(0.0747)

20 × 20 0.2015
(0.0529)

0.2965
(0.0500)

0.1959
(0.0520)

0.0945
(0.0500)

0.0962
(0.0529)

0.9906
(0.0728)
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Figure 1: Absolute bias of point estimates, α̂i(i = 1, 2, 3, 4, 5) and σ̂2 vs. grid size from
500 replications for α′ fixed at (−0.6, 0.3, 0.5,−0.1, 0.4)−(ML(+), YW (⋄), ‘Unbiased’
YW (△), LS Type 2(×)).
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Figure 2: RMSE of point estimates, α̂i(i = 1, 2, 3, 4, 5) and σ̂2 vs. grid size from 500
replications for α′ fixed at (−0.6, 0.3, 0.5,−0.1, 0.4) − (ML(+), YW (⋄), ‘Unbiased’
YW (△), LS Type 2(×)).
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Figure 3: Absolute bias of point estimates, α̂i(i = 1, 2, 3, 4, 5) and σ̂2 vs. grid size from
500 replications for α′ fixed at (0.2, 0.3, 0.2, 0.1, 0.1) − (ML(+), YW (⋄), ‘Unbiased’
YW (△), LS Type 2(×)).
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Figure 4: RMSE of point estimates, α̂i(i = 1, 2, 3, 4, 5) and σ̂2 vs. grid size from
500 replications for α′ fixed at (0.2, 0.3, 0.2, 0.1, 0.1) − (ML(+), YW (⋄), ‘Unbiased’
YW (△), LS Type 2(×)).
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6 Conclusion

In this paper we have provided a procedure for estimating the parameters of the spatial
unilateral AR(2,1) model using the maximum likelihood method. This estimation
procedure was an adaptation of the method discussed in Ord (1975) which provided
the maximum likelihood estimate for the one parameter case. Here, we have extended
the procedure to the case of five parameters. We have shown how the matrices are
constructed and the form of these matrices have a lower triangular which in turn
simplifies the likelihood function.

From the simulation results, there is some evidence that this procedure provides
good estimates for the parameters in sense of closeness to true values. Furthermore,
as the grid size increases, the estimates approach the true values and the RMSE and
absolute bias values decrease for all parameters.

In general then, by proper construction of the weight matrices it is shown that the
unilateral model as defined in equation (2) can be translated to adopt the general set-
ting in Ord (1975) and Cliff and Ord (1981) and consequently the maximum likelihood
estimators can be obtained.

The method proposed herein can be extended in an analogous way for the unilateral
AR(p1,1) model where the number of parameters would be 2p1 + 1.
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