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Abstract

This study deals with construction of intervention models for the share
index data of Banks and Other Financial Institutions in Bangladesh. In-
tervention model is constructed for time series data and its comparison is
done with ARIMA model. In our study we established superiority of in-
tervention model over the ARIMA model. Using the share index data, we
have shown that due to existence of external events, intervention model has
lower residual variance and fits the data better.
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1 Introduction

Stock market is a way to raise new corporate cash and makes the firms not fail in a
high cashing problem. By selling some of their stocks in a public offering, the founders
can diversify their holdings and thereby reduce somewhat the risks of their personal
portfolios.

The share index measure changes in the cost of earnings income at a certain level
from investment to shares of joint stock companies and it changes very frequently
with the fluctuation of the reputation of the companies. This change may be very
high due to some external events such as policies taken by companies, war, political
unrest, natural calamities etc. A simple time series model may not be adequate to
predict share index considering the effect of external events. One may use ARIMA
model for this purpose but fluctuation in the data may often affect the underlying
ARIMA structure and the true ARIMA pattern will not be properly determined. In
such a case, intervention analysis is a way to describe dynamic pattern of distributed
lag responses of the output series to the input series and the autocorrelation of the
disturbances (Debny and Martin, 1979; Chang et al., 1988).

Intervention model has been discussed by many authors (Tsay, 1986 and 1988;
Chang et al., 1988). They proposed that deterministic inputs could be used in dy-
namic regression models to represent identified event, called interventions. Same idea
may be used to account for unexplained outliers in a time series. This type of models
has a broad variety of applications. For examples, Box and Tiao (1975) considered
environmental and economic policy issues; Wichern and Jones (1977) consider mar-
keting and management issues; and Zimring (1975) considered effects of gun control
legislation. Application of intervention analysis on share index data in Bangladesh is
rare. Thus, the purpose of the present study is to apply intervention analysis to share
index data for Banks and Other Financial Institutions and compare it with ARIMA
model.

2 Materials and Method

The data, used in this empirical work, has been taken from the journal ”Index Num-
bers of Dhaka Stock Exchange Share Prices”, published by Statistics Department,
Bangladesh Bank (Bangladesh Bank, 1998, 1999, 2000). The framework we use to
evaluate an intervention effect represented by a single intervention variable is the ra-
tional form of the Dynamic Regression (DR) model (Liu, 1984). The model is:

Pt = C +
w(B)Bb

δ(B)
It + Et, (1)
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where Pt is the output variable,
It is the input variable,
W (B) = w0 + w1B + · · · · · ·+ whB

h,
δ(B) = 1− δ1B − · · · · · · δrBr,
B is the backshift operator i.e., Bi(It) = It−i,
C is an additive constant,
Et is the disturbance term may be described by an ARIMA process (Box and

Jenkins, 1976).

f(It) =
w(B)Bb

δ(B) It is known as transfer function.

In intervention model, the input variable, It is a deterministic variable used to repre-
sent the possible intervention.

Several approaches have been proposed to identify the transfer function. This empir-
ical work has been prepared on the basis of the following method.

Transfer function Identification by Outlier Detection (Chang et al., 1988; Tsay, 1986
and 1988): Intervention models can be constructed according to the nature of outliers
or level shift (LS) present in the data series. According as the nature of external
events, outliers can be additive or innovational.

Additive outliers (AO) is similar as the one-period pulse intervention and innovational
outliers (IO) are additions to the random shock series et: an IO affects the output
series Pt through the ARIMA structure of the disturbance series in the model for Pt.
Permanent level shift (LS) is similar as step intervention.

When a time series is affected by an outlier or by an external event, we observed a
contaminated series rather than a stationary ARIMA series. Therefore, an observed
time series variable Pt may be composed of a stationary ARIMA series plus a contam-
ination term such as,

Pt =


wAIt +

θ(Bs)θ(B)
φ(Bs)φ(B)∇D

s ∇d et for AO
ws
∇ It +

θ(Bs)θ(B)
φ(Bs)φ(B)∇D

s ∇d et for LS,
θ(Bs)θ(B)

φ(Bs)φ(B)∇D
s ∇dwIIt +

θ(Bs)θ(B)
φ(Bs)φ(B)∇D

s ∇d et for IO

(2)

where the first term of the right hand side is known as contamination term, represents
the effect of intervention: wA and ws are the coefficients of AO and LS, respectively
and the second term represents the ARIMA structure (Box and Jenkins, 1976) of the
disturbance: et is a white noise disturbance term; θ(B) = 1− θ1B− θ2B

2− · · ·− θqB
q
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is the time-lag series of moving average (MA) coefficients; φ(B) = 1− φ1B − φ2B
2 −

· · · − φqB
q is the time-lag series of autoregressive (AR) coefficients; θ(Bs) and φ(Bs)

represents the seasonal MA and AR coefficients with length s; ∇d = 1−Bd represents
order of integration; ∇d

s represents the order of integration seasonally. To detect the
presence and type of outliers in a particular point, we first simply obtain the ARIMA
models for Pt and the produced residual series (εt) can then be written as

εt =


wAπ(B)It + et for AO
wsc(B)It + et for LS,
wIIt + et for IO

(3)

where et is a white noise disturbance term; wA, wS and wI are AO, LS and IO co-
efficients, respectively. The π(B) and c(B) are time-lag series of π-operators and
c-operators respectively defined as

π(B) = 1− π1B − π2B
2 − · · · = φ(Bs)φ(B)∇D

s ∇d

θ(Bs)θ(B) and

c(B) = 1− c1B − c2B
2 − · · · = ∇−1π(B)

Test of null hypothesis that no AO, LS or IO occurs at time i may be performed with
the following likelihood ratio statistic (Pankratz, 1991)

L =


wAk

−1/2
A /σe for AO

wsk
−1/2
s /σe for LS,

wI/σe for IO

(4)

where kA = (1 + π2
1 + π2

2 + · · ·+ π2
n−i)

−1,

ks = (1 + c21 + c22 + · · ·+ c2n−i)
−1 and

σe is the residual standard deviation.

Practically we use the sample estimate of wA, wS , wI , kA, ks and σe. The critical
value for the likelihood ratio statistic L is similar to a critical standard normal value
or t-value. However, it is not feasible to determine the exact repeated sampling distri-
butions of likelihood ratios in(4). Some simulation experiments are reported by Chang
et al. (1988) The common practice to choose critical value is within 3 to 4 (Pankratz.,
1991). If outliers more than one type are detected in the same point, we consider that
type for which the L-statistic gives higher value.
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3 Model Building

To construct a time series model, the stationarity of the time series variable, to be
forecasted, must be verified. The sample autocorrelation function (ACF) and partial
autocorrelation function (PACF) of share index data for Banks and other Financial
Institutions are given in Fig.1 and Fig.2, which lead us to check for a unit root. The
ADF test recommends for a unit root. Therefore, we take first difference to make
the series stationary. Checking the sample ACF (Fig.3) and PACF (Fig.4), of the
differenced data, we made the following ARIMA model.

∇Yt = −0.358∇Yt−15 (5)

t = (−2.841)

R2 = 0.332

σe = 63.2024

The ACF (Fig.5) and PACF (Fig.6) of residuals for model in eq. (5) are stationary.
The normal probability plot (Fig.7) rejects the normality assumption of residuals. The
standardized residuals (Fig.8) show no inadequacy except a very high residual, which
lead to construct an intervention model. To check the existence of external event in
each point, the primary job is now to compute the π-weights and c-weights (Table
1). Application results of the outlier detection procedure to the differenced data (not
shown here) identified only one innovational outlier. With this innovational outlier
the estimated intervention model is

∇Yt = −0.383 B15 ∇Yt + 457.331 It (6)

t = (−6.836) (16.249)

R2 = 0.909

σe = 27.0862,

where It = 1 for t = 45 and 0 otherwise.
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The sample ACFs (Fig.9) and PACFs (Fig.10) are within the limits of two standard
deviation and the normal probability plot (Fig.11) is nearly a straight line. The stan-
dardized residuals (Fig.12) show no inadequacy. That is our fitted intervention model
is adequate.
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4 Forecasting

The table below shows the 8 periods ahead forecast values, forecast errors, root mean
squared forecast error (RMSFE) and MAPE for the constructed models
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5 Result and Discussion

Since significant change at a point in the data level indicates effect of external event,
intervention model is fitted. This intervention point can be explained in the following
way.

In the last week of September 1998 the Federal Reserve moved to stimulate the
US economy. The Fed Chairman Alan Greenspan gave a speech in which he appeared
to signal his intention of moving in the direction of lower interest rates. Greenspan
told lawmakers that foreign economic activity, notability in Asia, was likely to act as
drag on the seven years US expansion and curb inflation. Thus easing US credit cost
would encourage business and consumers to invest and spend more, with effect not
only domestically but also in Asian economic trying desperately to export their way
out of recession.

The reflection of Greenspan’s voice was also found in Asian’s investors. They
thought, a rate cut in the US is likely to prompt local banks to speed up a cut in their
own rates. As a result, most of the Asian stock market got upward. The effect of this
external event is noted by the intervention point in our model.

We observed that ARIMA model gives lower RMSFE and MAPE than those of
intervention model. But intervention model has lower residual variance and higher R2

value. Moreover, the standardized residuals of intervention model are adequate and
approximately normal whereas that of ARIMA model is not. Therefore, our realization
is that intervention model can fit the data appropriately.

6 Conclusion

Our study with share index data was to obtain a better model considering external
events. Our findings established that DR model with intervention analysis have lower
residual variance and fits the data better than the ARIMA model.

We conclude that if the time series variable seems to be affected by some external
events or if the outliers are detected in the data series, it is a good practice to build
a DR model with intervention analysis. The model, developed in this research work,
would be useful for the investors or the researchers to determine the future values of
share indices and thereby take decision for their valuable investment.
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