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Abstract

The number that has been studied longer than any other number is π, the ratio
of the circumference of a circle to its diameter. Starting with Archimedes, the
first theoretical analysis of π has grown from 3 or 4 digits of accuracy to billions
of digits of accuracy. Here we explore the recent developments in retrieving the
digits of π. We extend the statistical analysis regarding randomness of the digits
in π. A Discrete version of the Anderson Darling goodness-of-fit test is used along
with the Normal and the Chi-square tests in testing randomness of the digits in
π.
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1 Introduction

If one asks a person, “think of a number that has been studied longer than any other
number on Earth” they would most likely answer π, the ratio of the circumference of
a circle to its diameter. Mathematicians have often wondered how an elementary ratio
can have such an incredibly complex structure. This ratio has fascinated mathemati-
cians for many centuries. Many early mathematicians spent days calculating digits of
π. Following Ramanujan (see Bailey (1988) and Borwein et. al. (1989) for details),
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a famous experiment completed by Bailey et.al. (1997) known as the BBP formula
(BBP stands for David H. Bailey, Peter B. Borwein and Simon Plouffe) which can
give the d-th digit of π without calculating the d − 1 previous digits. The formula
requires little memory and no multiple-precision arithmetic software. This formula is
truly unique since before its discovery no mathematician thought that it was possible
to calculate the d-th digit without first calculating the d − 1 preceding digits. This
demonstrates that currently there are still some new formulas of π being found.

Currently, we know a lot about π, but questions still arise when thinking about the
decimal expansion. For instance, in the decimal expansion of π, is there a place where
a thousand consecutive digits are all zeros? There is strong evidence that the digits
of π are random, but such questions have not yet been proven precisely. A popular
tool used in answering this age old question lies in statistical tests for randomness.
Although these statistical tests have been around for a while they are dwarfed when
compared with how long people have thought of the decimal expansion of π. This
implies that rigorous statistical analysis is fairly new and many possibilities for new
testing procedures can still be found.

1.1 Past Ideas of π

The early Babylonians, Egyptians, and Greeks wrestled with π in a slow process of
geometry. This tedious process influenced people to come up with faster methods
for finding π. Various formulas evolved through the imagination of some of the most
prominent mathematicians. These formulas were faster, but again became tedious
after very few digits were calculated by hand. Many pioneers of math thought that
someone would find the exact ratio of π. The mystery of πs’ digit expansion lasted until
when Johann Lambert in 1791 showed that π was an irrational number. However, this
did not satisfy the ever present hunger to find out more about the decimal expansion
of π. The first theoretical calculation seems to have been carried out by Archimedes
(287-212 BC). He obtained the approximation 223/71 < π < 22/7. This calculation
was found by geometry. For nearly the next two centuries variations of this geometrical
scheme were the basis for all high-accuracy calculations of π. Discovered in the 19th

century was a simple recursion that can be stated as follows:

Set:

a0 = 2
√
3 and b0 = 3

Then define:

an+1 =
2anbn
an+bn

bn+1 =
√

an+1bn .

(1)

An important observation to be made is that Archimedes did not have this notational
advantage and had to derive all calculation from a geometrical perspective. Even
more impressive is the fact that Archimedes did not have the knowledge of our current
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Hindu Arabic decimal system. This forced Archimedes to write his calculations using
lengthy strings of Greek numbers. His calculations stopped at a6 < π < b6 which is a
rather impressive achievement to complete using Greek Numbers manually.

1.2 Present Ideas of π

Presently, the advent of the computer has taken away the tedious manual calculations
and has led to fast computer algorithms for present day experimental mathematics.
Calculating a 100 digits of π would take a person in the early 1700’s months and
possibly years, but now it takes less than a second. One of the most fruitful imple-
mentations of calculating π was discovered in 1914 by the mathematician Ramanujan
in his work with modular equations. His famous notebook contains many theorems
and formulas with no rigorous proofs, but very few of these formulas have been flawed.
After his death in 1920, efforts were made to demystify his simple yet complex theo-
rems and identities. His 1914 paper “Modular Equations and Approximations to π”
gives the famous equation:

1

π
=

√
8

9801

∞∑
n=0

(4n!)
(n!)4

[1103 + 26390n]
3964n

. (2)

Equation (2) rests on a modular identity of order 58 and appears, like most of his
work, without proof. This formula also shows that Ramanujan was the first to find
a connection between the transformation theory for elliptic integrals and the rapid
convergence to π.

In the 1980’s Chudnovsky and Chudnovsky (1988) found the following variation of
(2),

1

π
= 12

∞∑
k=0

(−1)k (6k)! (13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
. (3)

Equation (3) is implemented in the software of Mathematica for calculating π.
The development of computers in the 1950’s was clearly the turning point in nu-

merical mathematics. No longer did it take mathematicians months or even years to
calculate a thousand decimal places to π. Computers also give mathematicians the
freedom to search massive vectors, such as X = (x1, x2, · · ·, xn) made up of real or
complex numbers, to detect an integer relation. Currently, the best known algorithm
for this is the PSLQ algorithm. The name “PSLQ” comes from its usage of the par-
tial sum of squares vector and a LQ (lower-diagonal-orthogonal) matrix factorization.
Bailey (2000) gives more information on integer relation detection algorithms. Bailey,
et.al. (1997) performed a computer experiment using the PSLQ algorithm and found
an extraordinary property about the log(2), where ‘log’ stands for logarithm. The
log(2) has an uncomplicated infinite-sum-formula that can reveal the millionth binary
digit of log(2) with no need to compute the 999,999 preceding digits. They had an
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inclination that π may also contain this same property. By using the PSLQ algorithm
and several inspired guesses they found the BBP formula:

π =

∞∑
n=0

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)(
1

16

)n

. (4)

This infinite sum is not as quick to converge to π, but it is an essential identity for
finding, say, the d-th digit of π given in base 16. The identity is of a special form,

∞∑
k=1

p(k)

bckq(k)
, (5)

where p and q are polynomials with integer coefficients and c is a positive integer.
Bailey, et.al. (1997)showed that this formula can be computed in polynomially log-
arithmic space with either polynomial or linear time. It is denoted respectfully by
SC or SC∗. The class denoted as SC has space = logO(1)(d) and time dO(1), the class

SC∗ has space = logO(1)(d) and time O(d logO(1)(d)). It is not known whether division
is possible in SC, nor is it known if base changes are possible in SC. Also, it is not
known whether multiplication is possible in SC∗. This problem will not be discussed
in this paper, but more details are in: Borwein (1988); Brent (1974); Cook (1985);
Crandall and Buhler (1995); Knuth (1981). The proof of the identity (4) is fairly
straightforward, and can be found in Bailey, et.al. (1997). Identity (4) can be coded
into Mathematica to give the d-th hex digit of π in base 16. This code and the general
method for finding similar such formulas can be found in Adamchik and Wagon (1996).

Shortly after the announcement of the BBP formula, colleagues of Borwein, Bailey,
and Plouffe began to discover similar formulas for π such as:

π =
∞∑
i=0

(−1)i

4i

(
2

4i+ 1
+

2

4i+ 2
+

1

4i+ 3

)
(6)

π
√
3 =

9

32

∞∑
k=0

1

64k

(
16

6k + 1
− 8

6k + 2
− 2

6k + 4
− 1

6k + 5

)
(7)

π2 =
1

8

∞∑
k=0

1

64k

(
144

(6k + 1)2
− 216

(6k + 2)2
− 72

(6k + 3)2
− 54

(6k + 4)2
+

9

(6k + 5)2

)
(8)

π2 =
2

27

∞∑
k=0

1

729k

(
243

(12k+1)2
− 405

(12k+2)2
− 81

(12k+4)2
− 27

(12k+5)2

− 72
(12k+6)2

− 9
(12k+7)2

− 9
(12k+8)2

− 5
(12k+10)2

+ 1
(12k+11)2

)
. (9)



C. Heien and Rahman: Revisiting the Digits of π and Their 17

The BBP formula may hold the key in answering the question of whether or not
π is truly random. It may be that π is chaotic and acts randomly but is not truly
random. Currently, the BBP formula is being studied extensively to see if there is a
connection between π and chaotic behavior.

The BBP formula is a perfect example of how the computer can help find new
formulas that were once thought of as nonexistent. The experimenters who found the
BBP formula ran the PSLQ algorithm on a super computer for several days at a time.
Each time they ran the algorithm they made educated guesses of what parameters
to implement. With this in mind, it is not surprising why mathematicians avoided
this type of algorithm before the advent of the computer. Why would anyone spend
years exhaustively searching for something based on an educated guess? Thanks to
the computer, a risk like this is cheap and not as time consuming.

2 Statistical Analysis of the Digits in π

The incentive for the computation of π is to answer the question of whether or not the
digits of π are truly random. Before Lambert’s proof in 1766 that π was irrational,
there was great interest in examining whether or not its decimal expansion ultimately
repeats. π is known to be irrational but there still remains an unanswered question.
Is the digit expansion of π statistically random?

Statistically, if the digits of π are truly random then a sequence, or string, of n-
digits occur with a limiting relative frequency 10−n. The evidence gathered through
numerous computer experiments on the decimal expansion of π strongly suggests that
the decimal expansion is statistically random. However, the proof still remains un-
found.

The constant π is not random and its digits are from a deterministic sequence. The
mathematicians failed to justify that π is not an irrational number, the statisticians
failed to show that the appearances of the digits of π are not random. In literature,
randomness of π’s digits are described by many authors, here we give some references
of recent works, for example, Peterson (2001), and Preuss (2001), to name a few.

2.1 Normal Approximation to Binomial Probability

In this paper the use of Mathematica and Matlab provided n-long string frequency
counts for analysis of the first million digits in π. The analysis was completed for
n-digit strings ranging from 1 through 6. Table 1 describes the frequency count, Devi-
ation, Z-score, and gives the P-value for each of the one-digit strings. The Z-scores are
computed as the deviation from the mean (np = 1, 000, 000(1/10) = 100, 000) divided
by the standard deviation

√
1, 000, 000(1/10)(9/10) = 300. These statistics should
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follow an approximate normal distribution with mean zero and variance one.

Table 1

One-Digit Statistics

Digit Count Dev. Z-sc P-value

0 99959 -41 -0.14 0.8913

1 99757 -243 -0.81 0.4179

2 100026 26 0.09 0.9309

3 100229 229 0.76 0.4453

4 100230 230 0.77 0.4433

5 100358 358 1.19 0.2327

6 99548 -452 -1.51 0.1319

7 99800 -200 -0.67 0.5050

8 99985 -15 -0.05 0.9601

9 100106 106 0.35 0.7238

In Table 1, all the p-values are high and hence all the digits are random. Table 2
holds the same information as Table 1 for the two-digit strings. For two-digit strings
the mean is 10,000 occurrences and the standard deviation is 99.4987.

Table 2

Significant Strings From Two Digit Strings

String Count Dev. Z-sc P-value

12 9721 -279 -2.80 0.0050

27 10224 224 2.25 0.0244

55 10232 232 2.33 0.0197

94 10239 239 2.40 0.0163

Based on Table 2, only 4% of the two-digit strings appear significantly dif-
ferent than the expected frequency under a 5% level of significance. However, for
simultaneous testing α (the level of significance) should be lower, or more precisely
α/m = 0.05/100 = 0.0005, where m is the number of simultaneous tests (Weisberg
1985). No p-values are less than 0.0005, therefore the two digit strings are random.
In Table 2 the lower p-values were displayed only to point out the strings with smaller
p-values.

Table 3 displays the strings for the smaller p-values, but none of these p-values are
smaller than 0.05/1000 = 0.00005 hence the three digit strings are random. Similar
computations could be completed for higher n-digit strings, but the focus is turned
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Table 3

Significant Strings From Three Digit Strings

String Count Dev. Z-sc P-value

013 929 -71 -2.25 0.0247

027 1075 75 2.37 0.0176

050 1081 81 2.56 0.0104

067 898 -102 -3.23 0.0013

075 923 -77 -2.44 0.0149

077 921 -79 -2.50 0.0124

126 911 -89 -2.82 0.0049

136 1078 78 2.47 0.0136

160 1089 89 2.82 0.0049

166 926 -74 -2.34 0.0192

172 919 -81 -2.56 0.0104

195 1077 77 2.44 0.0148

238 927 -73 -2.31 0.0209

244 1073 73 2.31 0.0209

270 1073 73 2.31 0.0209

451 915 -85 -2.69 0.0072

453 1089 89 2.82 0.0049

523 910 -90 -2.845 0.0044

654 1092 92 2.92 0.0036

685 923 -77 -2.44 0.0148

735 1078 78 2.47 0.0136

750 919 -81 -2.56 0.0104

934 1086 86 2.72 0.0065

968 925 -75 -2.37 0.0176
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towards combined tests such as the chi-square goodness-of-fit test.

2.2 Chi-Square Goodness of Fit Test

A more appropriate statistical procedure for testing whether or not n-digit strings
follow a discrete uniform distribution is the chi-square test. The chi-square statistic
for k observations X1, X2, ..., Xk is defined as:

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei
(10)

where Ei is the expected frequency of the random variable Xi, and Oi is the observed
frequency of Xi. Here k = 10n and Ei = d · 10−n for all i, where d = 1, 000, 000. The
statistic χ2 has a chi-square distrution with k − 1 degrees of freedom. The results of
the χ2 analysis are shown in Table 4.

Table 4

String Length Chi-square df. P-value

1 5.50676 9 0.7881

2 94.2672 99 0.6157

3 958.121 999 0.8192

4 9978.53 9999 0.5557

5 100378.5 99999 0.1979

6 1001628 999999 0.1247

Table 4 confirms the usual conclusion that the n-digit strings in π appear to be
uniformly distributed. In the analysis of the one-digit string, there is no significant
difference between the observed frequency and the expected mean frequency. The
same conclusion can be found for the other n-digit strings given in Table 4. It should
be noted that the p-values for five-digit and six-digit strings are fairly close to 0.05
compared with the other p-values. This is due to the large amount of combinations that
can arise from five-digit and six-digit strings. If the workstation used in calculating π
could calculate a substantially larger amount of digits, then the p-values would become
larger and less significant. The conclusion is that the digits in π appear to be uniformly
distributed, and hence random.

3 Anderson-Darling Goodness of Fit Test

Another goodness of fit test is the Anderson-Darling test (1954). The test will consider
a sample that has been drawn from a population with a specified continuous cumulative
distribution function F (x). The test procedure proposed by Anderson-Darling is the
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following: Let x1, x2, · · ·xn be n ordered from the smallest to the largest observations
from the sample, and let ui = F (xi). Then compute:

W 2
n = −n− 1

n

n∑
j=1

(2j − 1) [lnui + ln (1− un−j+1)] . (11)

If the number is too large, the hypothesis that the sample is from the specified distri-
bution is to be rejected. This test can be used when a researcher wishes to reject the
hypothesis whenever the true distribution differs from the claimed distribution. The
quantiles for Wn are given in Anderson and Darling (1954).

Several test procedures are based on comparing the specified cumulative distribu-
tion function F (x) with its empirical cumulative distribution function Fn (x). Anderson-
Darling suggested the use of:

W 2
n = n

∞∫
−∞

[Fn (x)− F (x)]2Ψ(F (x)) dF (x), (12)

where Ψ (u) is some nonnegative weight function chosen by the researcher to emphasize
the variation of Fn (x)−F (x), where the test is preferred to have sensitivity. Formula
(11) is obtained by writing (12) as:

1
nW

2
n =

x1∫
−∞

F 2(x)
F (x)[1−F (x)] dF (x) +

x2∫
x1

[Fn(x)−F (x)]2

F (x)[1−F (x)] dF (x) + · · ·+
x2∫
x1

[1−F (x)]2

F (x)[1−F (x)] dF (x) .

Rahman and Chakrobartty (2004) showed that the Anderson-Darling test is more pow-
erful for the goodness-of-fit testing for the continuous uniform distribution compared to
different versions of the Cui-square tests, the Cramer von-misses test, and the Watson
test.

3.1 Anderson-Darling Test for Discrete Random Variable

In conducting a test to determine the uniformity of the digits in π, a continuous
cumulative distribution function is no longer applicable. The test statistic must be
discretized, or changed in a way to accommodate discrete data. The sum of W 2

n for
π where Ψ (u) is a constant function is completed for each discrete value using a test
statistic similar to (12),

W 2
d = n

d∑
i=1

[Fd (x)− F (x)]2 f (x) (13)

where d stands for the number of discrete values, Fd (x) is the empirical cumulative
distribution function, F (x) is the claimed c.d.f. (cumulative distribution function),
and f (x) is the claimed p.m.f. (probability mass function).
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3.1.1 Quantiles of W 2
d

The computation of the W 2
d quantiles was done using a simulation in the Matlab soft-

ware. Since the p.m.f. will always be a constant and hence omitted during simulation;
however, in practice the p.m.f. should be used in the calculation of the quantiles for a
non-uniform null distribution. One hundred thousand random samples were generated
for sample sizes of 20, 30, 40, 50(50)1000 from a discrete uniform distribution with
possible single digit values of {0, 1, 2, 3, ..., 9}. These simulated values were then
ordered and placed into their respective quantile values to compute the P-values of
the tests.

3.1.2 Application: Checking Randomness for the Digits in π

Here the W 2
d statistic is calculated for π as described above. However, since the

simulated test statistic is dependent upon the sample size new quantiles for the test
statistic will have to be computed for analyzing the digits in π. For this reason the
random number generator in Matlab is utilized, and the quantiles are computed as
above with the respective sample sizes. Table 5 shows the the W 2

d statistic for n-digit
strings one through six. In all cases, the results show that the digits in π are uniformly
distributed.

Table 5

String Length W 2
d

1 0.53636

2 7.81901

3 79.12841

4 793.24277

5 7945.20887

6 79275.77655

4 Concluding Remarks and Future Research

One can notice that all three tests; normal, chi-square, and Anderson-Darling give
the same conclusions about the n-digit string distribution in π. One would probably
find that the larger the sample size the more uniformly the n-digit strings would be
distributed. The chi-square test is overall more powerful than the Anderson-Darling
test. However, since the sample size taken is large, the Anderson-Darling test gave
reasonable results. In all three cases it was shown that the digits in π are random.

The Anderson-Darling statistic holds a lot of information about the data being
sampled and therefore, should give better results. However, as shown in this paper,
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the Anderson-Darling test is not as powerful as the chi-square test when analyzing
discrete data. It has been shown that for continuous data, the Anderson-Darling test
is a more powerful test than the standard chi-square test (Rahman and Chakrobartty
(2004)). Given this information, it can be said that more research needs to be com-
pleted for discretizing the Anderson-Darling test.

The age old question of whether the digit expansion of π is random, or only appears
random, is still unanswered. However, thanks to the BBP formula (4) this question
may be close to being answered. Before the discovery of this formula it was thought
that no such formula could exist for π. Thanks to the BBP formula it is now suspected
that π could in fact be chaotic and not random at all. This would fit all conclusions
which arise from any statistical tests, since anything following a chaotic pattern will
most likely appear to be random. Perhaps, better statistical tests will arise that help
conclude whether data follows a chaotic pattern.
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