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Abstract
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1 Introduction

A random variableX is said to have a two- parameter exponential distribution (Exp(µ, σ))
if its probability density function (pdf) is of the form

f(x) =
1

σ
e−

(X−µ)
σ , µ ≤ x < ∞, σ > 0, (1)

and the cumulative distribution function is of the form

F (x) = 1− e−
(X−µ)

σ , µ ≤ x < ∞, σ > 0. (2)

Note that for two- parameter exponential distribution we have
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f(x) =
1

σ
(1− F (x)) , µ ≤ x < ∞, σ > 0. (3)

The one-parameter exponential distribution Exp(σ) can be obtained from the two-
parameter exponential distribution given in (1) by setting µ = 0.

Record values are found in many situations of daily life as well as in many statis-
tical applications. Often we are interested in observing new records and in recording
them: e.g. Olympic records or world records in sports. Motivated by extreme weather
conditions, Chandler (1952) introduced record values and record value times. Feller
(1966) gave some examples of record values with respect to gambling problems.Theory
of record values and its distributional properties have been extensively studied in the
literature. For more details, see Nevzorov (1987), Arnold, Balakrishnan and Nagaraja
(1998), Ahsanullah (1988,1995) and Kamps (1995).

We shall now consider the situations in which the record values (e.g. successive
largest insurance claims in non-life insurance, highest water-levels or highest tempera-
tures) themselves are viewed as ‘outliers’ and hence the second or third largest values
are of special interest. Insurance claims in some non-life insurance can be used as
an example. Observing successive k-th largest values in a sequence, Dziubdziela and
Kopociónski (1976) proposed the following model of k-th record values, where k is
some positive integer.

LetX1, X2, · · · · · · be a sequence of independent and identically distributed random
variables from two-parameter exponential distribution given in (1). Let Xj:n denote
the j− th order statistic of a sample (X1, X2, · · · · · · , Xn). For a fixed k ≥ 1, we define

the sequence U
(k)
1 , U

(k)
2 , · · · · · · of k−th upper record times of X1, X2, · · · · · · as follows:

U
(k)
1 = 1

U
(k)
n+1 = min

{
j > U (k)

n : Xj:j+k−1 > X
U

(k)
n :U

(k)
n +k+1

}
.

The sequence {Y (k)
n , n ≥ 1}, where Y (k)

n = X
U

(k)
n

is called the sequence of k− th upper

record values of the sequence {Xn, n ≥ 1}. Let us define Y
(k)
0 = 0. Note that for

k = 1 we have Y
(1)
n = XUn , n ≥ 1, which are record values of {Xn, n ≥ 1} [Ahsanullah

(1995)].

In this paper, we shall make use of the properties of the k− th upper record values
to develop inferential procedures such as point estimation. We shall derive the BLUE’s
and the maximum likelihood estimates of the parameters of the two- parameter ex-
ponential distribution in terms of k − th upper record values. Similar work based
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on record values (k = 1) has been done for other distributions like two- parameter
rectangular distribution (Ahsanullah,1986) and power function distribution (Ahsanul-
lah,1989).

At the end we give characterization of the considered distribution using the recur-
rence relation for the single moments of k − th upper record values.

2 Auxiliary Results on Distributions of K − th Record
Values

The probability density function of k − th upper record values Y
(k)
n , n = 1, 2, · · · · · · ,

as given by Dziubdziela and Kopociónski (1976) is as follows :

f
Y

(k)
n

(x) =
kn

(n− 1)!
[H(x)]n−1[(1− F (x))]k−1f(x), (4)

where H(x) = −ln[1− F (x)], ln is the natural logarithm.

The joint density function of Y
(k)
m and Y

(k)
n , (1 ≤ m < n), n = 2, 3, · · · · · · , as discussed

by Grudzieón (1982) is given by :

f
Y

(k)
m ,Y

(k)
n

(x, y) =
kn

(m− 1)!(n−m− 1)!
[H(y)−H(x)]n−m−1[H(x)]m−1

h(x)[(1− F (y))]k−1f(y), x < y, (5)

where h(x) = H ′(x).

Also the joint density of the first n k − th record values is given by :

f
Y

(k)
1 ,Y

(k)
2 ,······ ,Y (k)

n
(y1, y2, · · · · · · yn) = kn

n−1∏
i=1

f(yi)

1− F (yi)
(1− F (yn))

k−1f(yn),

y1 < y2 < · · · < yn. (6)

(cf. Kamps (1995)).

In order to derive BLUE’s for the parameters of two-parameter exponential distri-
bution, we need some recurrence relations for single and product moments of k − th
upper record values which have been established in the next section.



4 International Journal of Statistical Sciences, Vol. 4, 2005

3 Recurrence Relations for Single and Product Moments

Theorem 3.1: Fix a positive integer k ≥ 1 . For n ≥ 1 and r = 0, 1, 2, · · · · · · ,

E
(
Y (k)
n

)(r+1)
=

(r + 1)σ

k
E
(
Y (k)
n

)r
+ E

(
Y

(k)
n−1

)(r+1)
. (7)

Proof: For n ≥ 1 and r = 0, 1, 2, · · · · · · , on using (3) and (4), we get

E
(
Y (k)
n

)r
=

kn

(n− 1)!σ

∫ ∞

µ
xr [H(x)]n−1[1− F (x)]k dx. (8)

Integrating (8) by parts, treating xr as the part to be integrated and the rest of the
integrand for differentiation, we get

E
(
Y (k)
n

)r
=

k

(r + 1)σ

[
E(Y (k)

n )r+1 − E(Y
(k)
n−1)

(r+1)
]
.

The relation in (7) can be obtained on rewriting the above expression.

Remark 3.1: Setting σ = 1 in (7), we deduce the recurrence relation for single mo-
ments of k − th upper record values from standard exponential distribution Exp(1),
which has been obtained by Pawlas and Szynal (1998).

Remark 3.2: Putting k = 1 and σ = 1 in (7), we shall deduce the recurrence rela-
tion for single moments of upper record values from standard exponential distribution
Exp(1), established in Arnold, Balakrishnan and Nagaraja (1998 , pp.52) .

Theorem 3.2: For 1 ≤ m ≤ n− 2, r, s = 0, 1, 2, · · · · · · ,

E
[(

Y (k)
m

)r(
Y (k)
n

)s+1]
=

(s+ 1)σ

k
E
[(

Y (k)
m

)r(
Y (k)
n

)s]
+ E

[(
Y (k)
m

)r(
Y

(k)
n−1

)s+1]
, (9)

and for m ≥ 1, r, s = 0, 1, 2, · · · · · · ,

E
[(
Y (k)
m

)r(
Y

(k)
m+1

)s+1]
=

(s+ 1)σ

k
E
[(

Y (k)
m

)r(
Y

(k)
m+1

)s]
+ E

[(
Y (k)
m

)]r+s+1
. (10)

Proof: For 1 ≤ m ≤ n− 1 and r, s = 0, 1, 2, · · · · · · , on using (5), we obtain

E
[(

Y (k)
m

)r(
Y (k)
n

)s]
=

kn

(m− 1)!(n−m− 1)!

∫ ∞

µ
xr[H(x)]m−1 h(x)I(x)dx, (11)
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where

I(x) =

∫ ∞

x
ys [H(y)−H(x)]n−m−1 [1− F (y)]k−1 f(y)dy.

Solving the integral in I(x) by parts, treating ys for integration and the rest of the
integrand for differentiation, we get, on using (3)

I(x) = −(n−m− 1)

(s+ 1)σ

∫ ∞

x
y(s+1) [H(y)−H(x)]n−m−2 [1− F (y)]k h(y)dy

+
k

(s+ 1)σ

∫ ∞

x
y(s+1) [H(y)−H(x)]n−m−1 [1− F (y)]k−1 f(y)dy.

Substituting the above expression for I(x) in (11) and simplifying further, we obtain

(s+ 1)σ

k
E
[(

Y (k)
m

)r(
Y (k)
n

)s]
= E

[(
Y (k)
m

)r(
Y (k)
n

)s+1]
− E

[(
Y (k)
m

)r(
Y

(k)
n−1

)s]
,

which on rearrangement of terms leads to (9). Proceeding in a similar manner one can
easily obtain the relation (10) for the case n = m+ 1.

Remark 3.3: Setting σ = 1 in (9) and (10), we deduce the recurrence relations for
product moments of k−th upper record values from standard exponential distribution
Exp(1), which have been obtained by Pawlas and Szynal (1998).

Remark 3.4: Putting k = 1 and σ = 1 in (9) and (10), we shall deduce the recur-
rence relations for product moments of upper record values from standard exponential
distribution Exp(1), established in Arnold, Balakrishnan and Nagaraja (1998 , pp.53).

4 Best Linear Unbiased Estimates of The Parameters µ
and σ

On using (1), (2) and (4), we have

E
(
Y (k)
n

)
=

kn

(n− 1)!σ

∫ ∞

µ
x
(x− µ

σ

)n−1
e−

k(x−µ)
σ dx,

which on simplification gives

E
(
Y (k)
n

)
= µ+

nσ

k
. (12)
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Similarly, it can easily be shown that

E
(
Y (k)
n

)2
= µ2 +

n(n+ 1)σ2

k2
+

2nµσ

k

and

V ar
(
Y (k)
n

)
=

nσ2

k2
. (13)

Further, on using the recurrence relations given in (7) and (9) in the relation

Cov
(
Y (k)
m , Y (k)

n

)
= E

(
Y (k)
m , Y (k)

n

)
− E

(
Y (k)
m

)
E
(
Y (k)
n

)
,

one can easily establish that

Cov
(
Y (k)
m , Y (k)

n

)
= Cov

(
Y (k)
m , Y

(k)
n−1

)
, n > m.

Proceeding recursively in the similar manner, we get

Cov
(
Y (k)
m , Y (k)

n

)
= V ar

(
Y (k)
m

)
, n > m. (14)

For the estimation of the parameters µ and σ, let us consider the following transfor-
mation

V
(k)
1 = Y

(k)
1

V
(k)
2 = Y

(k)
2 − Y

(k)
1

V
(k)
3 = Y

(k)
3 − Y

(k)
2

...
...

...

V (k)
n = Y (k)

n − Y
(k)
n−1

Then on using (12), we obtain

E
(
V

(k)
1

)
= E

(
Y

(k)
1

)
= µ+

σ

k
(15)

and
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E
(
V

(k)
i

)
= E

(
Y

(k)
i − Y

(k)
i−1

)
=

σ

k
, i = 2, 3, · · ·n. (16)

Further on using (13), we get

V ar
(
V

(k)
i

)
=

σ2

k2
, i = 2, 3, · · ·n. (17)

Also Cov
(
V

(k)
i , V

(k)
j

)
= 0, for i ̸= j, 1 ≤ i < j ≤ n. (18)

Let V ′ =
(
V

(k)
1 , V

(k)
2 , · · · · · · , V (k)

n

)
. Then

E(V ) = Aθ, (19)

where


1 1

k
0 1

k
0 1

k
...

...
0 1

k

 , θ =

(
µ
σ

)
.

The best linear unbiased estimates µ̂, σ̂ of µ and σ, respectively, based on

Y
(k)
1 , Y

(k)
2 , · · · , Y (k)

n are given by

θ̂ =

[
µ̂
σ̂

]
= (A′A)−1 A′V. (20)

We have

(A′A)−1 =
k2

(n− 1)

(
n
k2

− 1
k

− 1
k 1

)
.

Substituting for (A′A)−1 in (20) and simplifying the resulting expression, we obtain

θ̂ =
k2

(n− 1)

(
n−1
k2

− 1
k2

· · · − 1
k2

0 1
k · · · 1

k

)
V

(k)
1

V
(k)
2
...

V
(k)
n

 ,
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which on further simplification gives

µ̂ = V
(k)
1 − σ̂

k

and

σ̂ =
k2

(n− 1)

[1
k

(
V

(k)
2 + V

(k)
3 + · · · · · ·+ V (k)

n

)]
.

Hence

V ar(µ̂) =
n

n− 1

σ2

k2
, (21)

V ar(σ̂) =
σ2

n− 1
(22)

and

Cov(µ̂, σ̂) = − σ2

(n− 1)k
. (23)

Remark 4.1: Putting k = 1 in (21), (22) and (23), we shall deduce the variances and
covariance of BLUE’s of µ and σ in terms of upper record values from two-parameter
exponential distribution (Exp (µ, σ)), established in Arnold, Balakrishnan and Na-
garaja (1998 , pp. 1).

The generalized variance Σ̂ of µ̂ and σ
(
Σ̂ = V ar(µ̂)V ar(σ̂) − (Cov(µ̂, σ̂))2

)
is

σ4

k2(n−1)
. On considering the two k − th record values Y

(k)
s and Y

(k)
r (s > r) it follows

from (12) and (13) that the best linear unbiased estimates of µ and σ based on these
two k − th record values are as follows:

µ∗ = Y (k)
r − rσ∗

k
,

σ∗ = k

(
Y

(k)
s − Y

(k)
r

)
(s− r)

.

The variances and covariances of µ∗ and σ∗ are

V ar(µ∗) =
rsσ2

k2(s− r)
,
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V ar(σ∗) =
σ2

(s− r)

and

Cov(µ∗, σ∗) = − rσ2

k(s− r)
.

It can be shown that the generalized variance Σ∗ of µ∗ and σ∗
{
Σ∗ = V ar(µ∗)V ar(σ∗)−

(Cov(µ∗, σ∗))2
}
is minimum when s = n and r = 1. Hence the best linear unbiased

estimates of µ and σ based on two selected k − th record values are

µ̃∗ = Y
(k)
1 − σ̃∗

k
,

σ̃∗ =
k

(n− 1)

(
Y (k)
n − Y

(k)
1

)
.

Also

V ar(µ̃∗) =
nσ2

(n− 1)
,

V ar(σ̃∗) =
σ2

(n− 1)

and

Cov(µ̃∗, σ̃∗) = − σ2

k(n− 1)
.

Let e1 =
V ar(µ̂)
V ar(µ̃∗) , e2 =

V ar(σ̂)
V ar(σ̃∗) and e12 =

Cov(µ̂,σ̂)
Cov(µ̃∗,σ̃∗) .

The generalized variance Σ̃∗ of µ̃∗ and σ̃∗ is σ4

k2(n−1)
. Further, it can be seen that

e1 = e2 = e12 = 1. Thus the efficiencies of the best linear unbiased estimates of µ and
σ based on two k− th record values are same compared to the corresponding estimates
based on a complete set of k − th record values.

5 Maximum Likelihood Estimates of µ and σ

Let us denote the MLE’s of the parameters µ and σ of Exp(µ, σ) distribution by µ̃
and σ̃, respectively. Upon using (6) we have the log of the likelihood function in this
case to be

logL = −nlogσ + nlogk − k
(yn − µ)

σ
, µ ≤ y1 < y2 < · · · < yn < ∞.
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Then the MLE’s of µ and σ can be obtained as

µ̃ = y1 and σ̃ = k
n(yn − y1).

Further

E(µ̃) = µ+ σ
k ,

and E(σ̃) = k(n−1)σ
n ,

Also

V ar(µ̃) = σ2

k2
,

V ar(σ̃) = (n−1)k2σ2

n

and

Cov(µ̃, σ̃) = 0.

The unbiased estimators for µ and σ are as follows:

˜̃µ = µ̃− nσ̃
(n−1)k2

and

˜̃σ = n
k(n−1) σ̃.

6 Characterization

This section contains characterization of the two-parameter exponential distribution.
We shall use the following result of Lin (1986).

Theorem 6.1 (Lin): Let no be any fixed non-negative integer, −∞ ≤ a < b ≤ ∞,
and g(x) ≥ 0 be an absolutely continuous function with g′(x) ̸= 0 a.e. on (a, b). Then
the sequence of functions {(g(x))n e−g(x), n ≥ no} is complete in L(a, b) iff g(x) is
strictly monotone on (a, b).

Theorem 6.2: A necessary and sufficient condition for a random variable X to be
distributed with pdf given by (1) is that
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E
(
Y (k)
n

)r+1
=

(r + 1)σ

k
E
(
Y (k)
n

)r
+ E

(
Y

(k)
n−1

)r+1
(24)

n = 1, 2, · · · · · · and r = 0, 1, 2, · · · · · · , where k ≥ 1 is any fixed positive integer.

Proof: The necessary part follows from (7). On the other hand if the recurrence
relation given in (24) is satisfied, then

kn+1

(n− 1)!

∫ ∞

µ
xr+1[H(x)]n−1[1− F (x)]k−1f(x)dx =

(r + 1)σkn

(n− 1)!

∫ ∞

µ
xr[H(x)]n−1

[1− F (x)]k−1f(x)dx+
kn

(n− 2)!

∫ ∞

µ
xr+1[H(x)]n−2[1− F (x)]k−1f(x)dx.

Integrating the last integral on the right hand side of the above equation by parts, we
get

kn+1

(n− 1)!

∫ ∞

µ
xr+1[H(x)]n−1[1− F (x)]k−1f(x)dx =

(r + 1)σkn

(n− 1)!

∫ ∞

µ
xr[H(x)]n−1

[1− F (x)]k−1f(x)dx− (r + 1)kn

(n− 1)!

∫ ∞

µ
xr[H(x)]n−1[1− F (x)]kf(x)dx

+
kn+1

(n− 1)!

∫ ∞

µ
xr+1[H(x)]n−1[1− F (x)]k−1f(x)dx,

which on simplification reduces to

∫ ∞

µ
xr[H(x)]n−1[1− F (x)]k−1

{
k x f(x)− (r + 1)σf(x)

+(r + 1)(1− F (x))− k x f(x)
}
dx = 0.

It now follows from Theorem 6.1, with g(x) = − ln [1− F (x)] = H(x), that

f(x) =
[1− F (x)]

σ
,

which proves that f(x) has the form (1).
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