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Abstract

The role of the shape parameter in determining the properties of the shrink-
age and positive-rule shrinkage estimators of the mean vector of multivari-
ate populations is of main interest in this paper. The preliminary test ap-
proach to shrinkage estimation is used to define two Stein-type estimators
based on the sample information and uncertain prior non-sample informa-
tion. The impact of the change in the value of the shape parameter on
the performances of the estimators with respect to the criteria of unbiased-
ness and quadratic risk is investigated. Graphical analysis of the effect of
the shape and dimension of the population on the above properties is also
provided.
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1 Introduction

There has been many studies in the area of ‘improved’ estimation following the sem-
inal work of Stein (1956), and James and Stein (1961). Earlier, Bancroft (1944) and
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later Han and Bancroft (1968) developed the preliminary test estimator that uses un-
certain non-sample prior information, in addition to the sample information. In a
series of papers Saleh and Sen (1978, 1985) explored the preliminary test approach
to James-Stein type estimation. Many authors have contributed to this area, notably
Sclove et al. (1972), Judge and Bock (1978), Stein (1981), Ahmad and Saleh (1989),
Maatta and Casella (1990), and Ahmad (1992) to mention a few. All the above inves-
tigations are based on the normal model. Hence the impact of the shape parameter
on the properties of the estimators has not been explored by any of the above stud-
ies. Investigations on improved estimation for the Student-t model have rather been
a fairly recent development. Zellner (1976), Ullah and Walsh (1984), Khan and Haq
(1990), Giles (1991), Anderson (1993), Tabatabaey (1995), and Khan and Saleh (1997)
studied various linear models with multivariate Student-t errors. However, Khan and
Saleh (1995) investigated the problem from the sampling theory approach. Lange et
al. (1989) discussed a wide range of applications of the Student-t distribution as a
model for robust statistical procedures. None of the above studies investigated the
impact of the change in the value of the shape parameter on the properties of the
James-Stein estimator. It is well known that the flat or heavier tailed distributions
are often modelled by the Student-t distribution, rather than the normal distribution.
The main difference between the normal distribution and the Student-t distribution is
the involvement of the shape parameter (ν) in the latter distribution. For a sufficiently
large value of the shape parameter, the Student-t distribution is not significantly dif-
ferent from the normal distribution. However, in the absence of a large number of
degrees of freedom, the properties of the Stein-type estimators depend very much on
the value of the shape parameter.

In this paper we investigate some of the important properties of two well known
Stein-type estimators, namely, the shrinkage and the positive-rule shrinkage estima-
tors, as the value of the shape parameter changes. Also, we study the relative perfor-
mances of the two estimators under different conditions. Moreover, the effect of the
change in the dimension of the multivariate population on the quadratic bias and risk
functions are discussed. Some remarks on the effect of the sample size on the behavior
of the estimators are also included. In addition to the analytical comparison, extensive
computations have been used to produce graphs to critically check the impact of the
change in the value of the shape parameter on the properties of the estimators.

Let X1,X2, · · · ,Xn be a random sample of size n from a p-dimensional multi-
variate Student-t population with unknown mean µ, common scaled covariance matrix
σ2Ip and arbitrary shape parameter ν. Note that the covariance of X is ν

ν−2σ2Ip. Also
assume that uncertain non-sample prior information on the value of µ is available.
This can be expressed in the form of a null hypothesis H0 : µ = µ0 which may or may
not be true. As suggested by R.A. Fisher, this uncertain prior information should be
treated as a nuisance parameter, and its uncertainty can be removed by performing an
appropriate test on the null hypothesis. We wish to incorporate both the sample data
and the uncertain non-sample prior information in estimating the mean vector µ. In-
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clusion of such a non-sample information in the definition of the estimators is likely to
improve the performance of the estimators with respect to some well known statistical
criteria. First we obtain the unrestricted maximum likelihood estimator (mle) of the
mean vector µ and the common scaled variance σ2 from the likelihood function of the
parameters. Based on the unrestricted and restricted (by H0) mle of σ2, we derive the
likelihood ratio test for testing H0 : µ = µ0 against the alternative, H1 : µ 6= µ0. As
discussed by Anderson (1993), this test is robust and is applicable to the entire class
of elliptical models. Following Bancroft (1944), the preliminary test estimator (PTE),
µ̂pt of µ has been defined by using an appropriate test statistic and the unrestricted as
well as the restricted mle’s of µ. Then the preliminary test approach has been applied
to define James-Stein estimators, namely, the shrinkage estimator (SE), µ̂s and the
positive-rule shrinkage estimator (PRSE), µ̂s+ for the unknown mean vector, µ. The
bias, quadratic bias and quadratic risk functions are obtained for the aforesaid estima-
tors. The relative performance of the estimators is investigated by analyzing the risks
under different conditions. The effect of the shape parameter on the performance of
the estimators is of special interest. For the computations and derivations of the main
results of the paper the multivariate Student-t distribution is viewed as a mixture of
the multivariate normal distribution and Inverted Gamma (IG) distributions.

The multivariate Student-t model along with some of its applications have been
introduced in the next section. Section 3 provides the unrestricted, restricted, prelim-
inary test, shrinkage and positive rule shrinkage estimators of the mean vector. Some
useful results for the computation of the bias and quadratic risk of the estimators are
included in section 4. The bias of the estimators, as function of the shape parame-
ter, are computed and analyzed in Section 5. Section 6 evaluates the expressions of
quadratic risks of the estimators that directly depend on the shape parameter. The
performances of the estimators, including the graphical comparisons, are studied in
section 7.

2 The Student-t Model

Fisher (1956) discarded the normal distribution as a sole model for the distribution of
errors. Fraser (1979) showed that the results based on the Student-t distribution for
linear models are applicable to those of normal models, but not vice-versa. Prucha and
Kelejian (1984) critically analyzed the problems of normal distribution and advocated
for the Student-t distribution as a better alternative for many econometric problems.
The failure of the normal distribution to model the fat-tailed distributions has led
to the use of the Student-t model in such a situation. Apart from being robust, the
Student-t distribution is a ‘more typical’ member of the elliptical class of distributions.
Moreover, the normal distribution is a special (limiting) case of the Student-t distribu-
tion. Extensive work on this area of non-normal models has been done in recent years.
A brief summary of such literature has been given by Chmielewiski (1981), and other
notable references include Zellner (1976), Fang and Zhang (1980), Ullah and Walsh
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(1984), Khan and Haq (1990), Fang and Anderson (1990), Gupta and Vargava (1993),
Khan (1997), and Khan and Saleh (1997).

Let X be a p-dimensional random vector that follows a multivariate normal dis-
tribution with mean vector µ and covariance matrix, τ2Ip. Assume that τ follows
an Inverted Gamma distribution with a scale parameter σ and a shape parameter ν.
Then the density function of τ is given by

p(τ ; ν, σ2) =
(

2
Γ(ν/2)

)(
νσ2

2

)ν/2

τ−(ν+1)e−
νσ2

2τ2 . (2.1)

The distribution of X, conditional on τ , can be denoted by [X|τ ] ∼ Np(µ, τ2Ip), and
the unconditional distribution of τ can be denoted by τ ∼ IG(ν, σ2).

Now, consider a random sample of size n, X1, X2, · · · , Xn, from the above p-
variate normal population. Conditional on a given τ , the joint density function of the
sample is given by

p(x1, . . . ,xn;µ, τ) = (2πτ2)−np/2 exp
{
− 1

2τ2

n∑

j=1

(xj − µ)′(xj − µ)
}

. (2.2)

Then, it is well known that the mixture distribution of the random sample and τ is a
multivariate Student-t distribution with p.d.f.

p(x1, . . . ,xn; µ, σ, ν) = kn(ν, p)(σ2)−np/2


1 +

1
νσ2

n∑

j=1

(xj − µ)′(xj − µ)



− ν+np

2

(2.3)

where kn(ν, p) = {Γ ((ν + np)/2)}
{

(πν)
np
2 Γ (ν/2)

}−1
is the normalizing constant.

The above density is a multivariate Student-t density with shape parameter ν,
location parameter µ and scaled covariance matrix σ2Ip. Note that σ2Ip is the scaled
covariance matrix of Xj up to a multiplication factor of ν

ν−2 . In the conventional
notation we write Xj ∼ tp (µ, σ2Ip, ν) for all j. A method of moment estimator of ν
can be found in Singh (1988).

From the properties of the Student-t distribution, it may be noted that the X ′
js

are uncorrelated but not independent (cf. Anderson, 1993). However, for a given value
of τ , each Xj is independently normally distributed, that is, [Xj |τ ] ∼ Np(µ, τ2Ip) for
all j.
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3 The Estimators

From the expression (2.3), the log-likelihood function of the parameters based on the
given sample can be written as

ln L(µ, σ2, ν) = ln kn(·)−np

2
ln σ2−ν + np

2
ln


1 +

n∑

j=1

1
νσ2

(xj − µ)′(xj − µ)


 . (3.1)

Then, following Khan (1997), the unrestricted maximum likelihood estimator (UE) of
µ and σ2 is obtained as

µ̃ =
1
n

n∑

j=1

Xj = X̄ and (3.2)

σ̃2 =
1
np

n∑

j=1

(xj − µ̃)′(xj − µ̃) = s2 (3.3)

respectively, and the corresponding restricted maximum likelihood estimators (RE)
become

µ̂ = µ0 and σ̂2 =
1
np

n∑

j=1

(xj − µ̂)′(xj − µ̂). (3.4)

The likelihood ratio statistic for testing H0 : µ = µ0, as specified in section 1, is given
by

λ =


s−2 ×

n∑

j=1

(xj − µ̂)′(xj − µ̂)



−np

2

. (3.5)

Under the null hypothesis, the statistic

T 2 = s−2 ×
n∑

j=1

(xj − µ0)
′(xj − µ0) (3.6)

follows a scaled F -distribution with p and m = (n − p − 1) degrees of freedom (cf.
Zellner, 1976). As discussed by Anderson (1993), the F -test stated above is robust,
and it is valid for all the members of the elliptical class of distributions, not just for
the normal or Student-t distributions. Therefore, the test of H0 : µ = µ0, can be
based on

p

m
F = T 2 =

χ2
p(ψ)
χ2

m

(3.7)

where ψ =
(µ− µ0)′(µ− µ0)

2σ2
is the non-centrality parameter when the H0 is not true.
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The preliminary test estimator (PTE) of µ as a function of the UE, RE and T 2 is
defined by

µ̂pt = µ̂I(T 2 ≤ T 2
α) + µ̃I(T 2 > T 2

α) (3.8)

where I(A) is an indicator function of the set A; and T 2
α is the (1−α)th quantile of the

distribution of the T 2-statistic. Ahmed and Saleh (1989) defined a similar preliminary
test estimator for the two-sample multivariate normal problem.

The PTE is an extreme choice between the UE and RE, as it does not allow any
smooth transition between the two extremes. This problem, along with the depen-
dency of the PTE on the choice of the level of significance (α) of the test, reduces
the attractiveness of the estimator in many practical applications. The Stein-type
shrinkage estimator (SE) can be defined by using the T 2 statistic that allows a smooth
transition between µ̃ and µ̂. Moreover, the SE does not depend on the choice of the
level of significance. The SE for µ, by using the preliminary test approach, is defined
as

µ̂s = µ̂ + (1− k∗T−2)(µ̃− µ̂) (3.9)

where k∗ is a shrinkage constant which is optimal in the sense of minimizing the
quadratic risk, and an optimal value of k∗ for the current problem is found to be

k =
p− 2
m + 2

.

The SE becomes unstable and unreliable when the value of the T 2-statistic is too
close to zero. To avoid this difficulty the positive-rule shrinkage estimator (PRSE) for
µ is defined as

µ̂s+ = µ̂ + (1− kT−2)(µ̃− µ̂)I(T 2 > k). (3.10)

The above two shrinkage estimators (SE and PRSE) are of the same form as for
the multivariate normal model. However, as the forthcoming analysis reveals, the
properties of the above Student-t based estimators are different from that of the normal
model. The main objective of this paper is to study the effect of the shape parameter on
the relative performance of the two shrinkage estimators based on the criteria of bias,
quadratic bias and quadratic risk. A detailed study of the risk analysis with respect
to the change in the shape parameter as well as the dimension of the multivariate
Student-t model is also provided.

4 Some Useful Results

Stein investigated the multivariate normal model and proved a number of useful results
regarding the expectation of non-central chi-square variables. Since those results are
necessary for the evaluation of the bias and the risk expressions of the estimators under
study, we extend those results for the multivariate Student-t model as follows.
Lemma 4.1. If U is an n × 1 vector of Student-t variables with ν d.f., mean β and
scaled covariance matrix σ2In, in which In is an identity matrix of order n, then

E[φ(U ′U)U ] = βE[φ(χ2
n+2, λ

∗)] (4.1)
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where φ(·) is a Borel measurable function, and λ∗ =
ν − 2

ν
λ in which λ =

β′β
2σ2

.

Lemma 4.2. If U is an n × 1 vector of Student-t variables with ν d.f., mean β and
scaled covariance matrix σ2In, and V is a positive definite matrix of order n, then

E[φ(U ′U)U ′V U ] = E[φ(χ2
n+2, λ

∗)]tr(V ) + β′V βE[φ(χ2
n+4, λ

∗)] (4.2)

where φ( ·) is a Borel measurable function and λ∗ =
ν − 2

ν
λ in which λ =

β′β
2σ2

.
Lemma 4.3. If U is an n × 1 vector of Student-t variables with ν d.f., mean β and
scaled covariance matrix σ2In, then

E[φ(U ′U)U ′] = E[φ(χ2
n+2, λ

∗)]In + ββ′E[φ(χ2
n+4, λ

∗)]. (4.3)

where φ( ·) is a Borel measurable function and λ∗ =
ν − 2

ν
λ in which λ =

β′β
2σ2

.

The proof of the above lemmas follow directly from the proof of Judge and Bock
(1978) in Appendix B2 by taking expectations of the respective final expressions with
respect to the IG(ν, σ2) distribution.

5 Study of Bias

The bias of the UE µ̃ is B1(µ̃; µ) = 0. However, the bias of the RE µ̂ depends on the
difference between the true and the suspected value of the mean vector µ, and is given
by B2(µ̂; µ) = (µ0 − µ) = −δ. The bias of the RE is non-zero under the alternative
hypothesis. However, as it is in the following theorems, the bias of both the SE and
PRSE depends on the value of the shape parameter of the Student-t model.
Theorem 5.1.For the p-dimensional Student-t model with ν as the shape parameter
the bias of the SE µ̂s is given by

B3(µ̂s; µ) = δkmE(2)[χ−2
p+2(∆

∗)] (5.1)

where

E(2)[χ−2
p+2(∆

∗)] =
∞∑

r=0

1
p + 2r

h(r, ν, ∆∗) (5.2)

in which

h(r, ν,∆∗) =
Γ

(
ν
2 + r

)

r!Γ
(

ν
2

) ×
[ ∆∗
(ν−2) ]

r

[
1 + ∆∗

(ν−2)

] ν
2
+r

(5.3)

with ∆∗ = n
ν − 2
νσ2

∆ such that ∆ = δ′δ and δ = (µ− µ0).
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Proof: For the proof of the above theorem, and the forthcoming theorems, we use
the following transformation:

y =
√

n

τ
(µ̃− µ0). (5.4)

For a given value of τ , y ∼ Np

(√
n

τ δ; Ip

)
, and hence (under H1) the statistic y′y follows

a non-central chi-square distribution with p degrees of freedom and non-centrality
parameter ∆τ = nτ−2δ′δ. Therefore, the T 2 statistic defined in Section 3 can be
expressed as

T 2 =
y′y
χ2

m

. (5.5)

Thus, under H1 the statistic p
m T 2 follows a non-central F distribution with p and m

degrees of freedom and non-centrality parameter ∆τ = nτ−2δ′δ.
The expression of the bias, conditional on τ, is then obtained by working out the

expected value of the difference between µs and µ, and applying appropriate results
from section 4. The theorem follows from the expectation of the conditional bias with
respect to the IG(ν, σ2) distribution.

The quadratic bias of the SE is obtained as

QB3(µ̂s; µ) = ∆{kmE(2)[χ−2
p+2(∆

∗)]}2. (5.6)

Theorem 5.2. For the p-dimensional Student-t model with ν as the shape parameter
the bias of the PRSE µ̂s+ is given by

B4(µ̂s+; µ) = −δkmE(2)[χ−2
p+2(∆

∗)]− δG
(2)
p+2,m(q2; ∆∗)

+δkmE(2)[χ−2
p+2(∆

∗)I(Fp+2,m(∆∗) ≤ q2)] (5.7)

where

E[(χ−2a
p+b , ∆

∗)] =
∞∑

r=0

h(r, ν,∆∗)
1

ζ(p, r, a)
(5.8)

in which ζ(p, r, a) = {p + b− 2 + 2r}{p + b− 4 + 2r} · · · {p + b− 2(a− 1) + 2r} for
a = 1, 2 and b = 0, 2, 4;

G
(a)
p+a,m(qa;∆∗) =

∞∑

r=0

h(r, ν,∆∗)Iua

(
p + a

2
+ r;

m

2

)
(5.9)

in which Iua(
p+a
2 + r; m

2 ) is the well known incomplete beta ratio, evaluated at ua =
qa

1+qa
= m(p−2)

(p+a+2r)(m+2)+m(p−2) with qa = m(p−2)
(p+a+2r)(m+2) for a = 2, 4; and

E(2)
[
χ−2

p+2 (∆∗)I(Fp+2,m(∆∗) ≤ q2)
]

=
∞∑

r=0

h(r, ν,∆∗)
ξ2(p, r)

Iu2

(
p + 2

2
+ r;

m

2

)
(5.10)
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with ξ2(p, r) = (p + 2r).
Proof. The proof of the above theorem follows from the same procedure and argument
as in the proof of the previous theorem.

The first term in (5.7) is the same as the bias of the SE. The SE and PRSE are
unbiased for µ under the null hypothesis, but they are biased under the alternative
hypothesis. The size of the bias is a function of δ, the magnitude of the difference
between the value of the mean vector µ specified by the H0 and its true value as well
as the value of the shape parameter.

The quadratic bias of the PRSE is found to be

QB4(µ̂s; µ) = QB3(µ̂s; µ) + ∆{G(2)
p+2,m(q2;∆∗)}2 (5.11)

+∆{kmE(2)[χ−2
p+2(∆

∗)I(Fp+2,m(∆∗) ≤ q2)]}2

+2∆kmE(2)[χ−2
p+2(∆

∗)]×G
(2)
p+2,m(q2;∆∗)

−2(km)2E(2)[χ−2
p+2(∆

∗)]×E(2)[χ−2
p+2(∆

∗)I(Fp+2,m(∆∗) ≤ q2)]

−2kmG
(2)
p+2,m(q2;∆∗)×E(2)[χ−2

p+2(∆
∗)I(Fp+2,m(∆∗) ≤ q2)].

5.1 Graphical Analysis of Quadratic Bias

The graphs in Figure 1 demonstrate the change in the value of the quadratic bias of
the two shrinkage estimators for p = 3, n = 20, ν = 3, 5, 10 and 100. The form of the
QB function of the SE and PRSE is quite similar. For both estimators the QB is 0 at
∆ = 0. As the value of ∆ grows larger the QB function very quickly moves upward
and slowly declines after reaching the maximum for some moderate value of ∆ around
∆ = 5. The curve of the QB of the SE is always lower than or same as that of the
PRSE for all values of p and ν. The maximum difference between the two QB curves
of the two estimators is observed near the value of ∆ for which the SE and PRSE
attain their maximum values. However, for ∆ = 0 as well as for very large values of
∆ the difference between the QB functions of the SE and PRSE is negligible.

The minimum value of the QB of both the SE and PRSE occurs at ∆ = 0 regardless
of the choice of p and the value of the shape parameter. However, the maximum value
of the BQ depends on the shape parameter ν. For ν = 3 the maximum value of the QB
of the SE and PRSE is near 0.01 which occurs when ∆ is near 5. Whereas, for ν = 5
the maximum value of the QB of the SE and PRSE is near 0.009 which occurs when ∆
is near 5, and that for ν = 10 is 0.008. Hence the value of the QB function of both the
SE and PRSE decreases as the value of the shape parameter of the model, ν increases.
So, if a Student-t model is wrongly represented by a normal model then the value of
the QB will be less than what it actually should have been under correct model. For
large values of the shape parameter the QB of the PRSE approaches to that of the SE
for smaller values of ∆. Thus in the case of misspecification of a Student-t model by a
normal model would give a false impression that the QB curves of the PRSE converse
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to that of the SE for smaller values of ∆ and does so at a faster rate than it should
be.

The graphs in Figure 2 demonstrate the change in the value of the quadratic bias
of the two shrinkage estimators for fixed n = 20, and varying values of p = 3, 5 and
ν = 3, 10. The top two graphs vary only in the value of p, the dimension of the
population of interest. For smaller value of p the QB of both the SE and PRSE are
smaller than that for larger value of p. For example, the maximum value of the PRSE
is near 0.01 for p = 3 compared to that of 0.08 for p = 5. Moreover, the maximum
value of the QB of the SE is about 0.007 when p = 3 and just over 0.04 for p = 5. The
maximum difference between the QB of the two estimators increases with the increase
in the value of p. The bottom two graphs of Figure 2 illustrate very similar picture.
They also reveal that the QB curve of the PRSE converges to that of the SE for larger
values of ∆ when the value of p is larger. Furthermore, it is observed that the value of
the QB for both the estimators goes up as the dimension of the population increases.

The above graphical analyses of the QB of the SE and PRSE reveals that both
estimators are biased but the SE has smaller QB than the PRSE except for ∆ near 0
or very large values of ∆. However, the magnitude of this large value of ∆ depends
on the choice of the shape parameter ν, and or the dimension of the population p.

6 Evaluation of Risks

The quadratic risk of an estimator θ∗, based on a random sample of size n, for esti-
mating a parameter θ under the quadratic error loss function of the form

L(θ∗; θ) = n(θ∗ − θ)′(θ∗ − θ) (6.1)

is defined as
R(θ∗; θ) = E[n(θ∗ − θ)′(θ∗ − θ)]. (6.2)

of µ, µ̃, conditional on τ2, is pτ2. The expectation of the conditional risk with respect
to the distribution of τ yields

R1(µ̃; µ) =
ν

ν − 2
pσ2. (6.3)

Note that as ν →∞ the risk of the UE reduces to pσ2, the risk of the mle under the
multivariate normal model. However, as it is in the following theorems, the quadratic
risks of both the SE and PRSE depend on the value of the shape parameter.
Theorem 6.1.For the p-dimensional Student-t model with ν as the shape parameter
the quadratic risk of the SE µ̂s in estimating the mean vector µ is

R3(µ̂s; µ) =
νσ2

ν − 2

[
p− 2km + k2m(m + 2)E(0){χ−2

p (∆∗)}
]

+2∆kmnE(2){χ−2
p+2(∆

∗)}. (6.4)
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Proof. The risk of µ̂s with respect to the loss function in (6.1) is

R3(µ̂s;µ) = Eτ [E{n(µ̂s − µ)′(µ̂s − µ)}|τ ] (6.5)

where

E{n(µ̂s − µ)′(µ̂s − µ)|τ} = E{n(µ̃− µ)′(µ̃− µ)|τ}
+ k2E{n(µ̃− µ0)

′(µ̃− µ0)T
−4|τ}

− 2kE{n(µ̃− µ)′(µ̃− µ0)T
−2|τ}. (6.6)

The first term in (6.6) is τ2p, the risk of µ̃ for a given value of τ . For the second term,
by applying the transformation in (5.4) we have

E{n(µ̃− µ0)
′(µ̃− µ0)T

−4|τ} = E

{
χ4

m

(y′y)2
(y′y)τ2|τ

}

= τ2m(m + 2)E{χ−2
p (∆τ )

}
. (6.7)

In the third term, first we note that µ̃ − µ = (µ̃ − µ0) − (µ − µ0), and then using
(5.4) we get

E{n(µ̃− µ0)
′(µ̃− µ0)T

−2|τ} = E

{
χ2

m

(y′y)
× (y′y))τ2

}
= τ2m (6.8)

and
E{n(µ− µ0)

′(µ̃− µ0)T
−2|τ} = ∆mnE{χ−2

p+2(∆τ )}. (6.9)

Now collecting all the terms in equation (6.6) and simplifying, we have

E{n(µ̂s − µ)′(µ̂s − µ)|τ} = τ2p + k2τ2m(m + 2)E{χ−2
p (∆τ )}

− 2k
[
τ2m− nm∆E{χ−2

p+2(∆τ )}
]

= τ2
[
p− 2km + k2m(m + 2)E{χ−2

p (∆τ )}
]

+2knm∆E{χ−2
p+2(∆τ )}. (6.10)

The expectation on the above expression with respect to the IG(ν, σ2) distribution
yields the risk expression in (6.4).

Using the following relationship of the expectation of the noncentral chi-square
variables,

∆τE{χ−2
p+2(∆τ )} = 1− (p− 2)E{χ−2

p (∆τ )} (6.11)
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the expression in (6.10) can be written as

R3(µ̂s;µ) = τ2

[
p− (p− 2)2

m

m + 2
E{χ−2

p (∆τ )}
]

. (6.12)

Theorem 6.2.For the p-dimensional Student-t model with ν as the shape parameter
the quadratic risk of the PRSE µ̂s+ in estimating the mean vector µ is

R4(µ̂s+; µ) =
νσ2

ν − 2
p

[
1−G

(2)
p+2,m(q2;∆∗)

]
− 2

ν

ν − 2
km

[
1−G(0)

p,m(q;∆∗)
]

+
νσ2

ν − 2
k2m(m + 2)

[
E(0)

{
χ−2

p (∆∗)
}−E(2)

{
χ−2

p+2(∆
∗)I (Fp+2,m(∆∗) ≤ q2)

}]

−∆n
[
G

(4)
p+4,m(q4;∆∗)− 2G

(2)
p+2,m(q2; ∆∗)

]

+∆2kmn
[
E(2)

{
χ−2

p+2(∆
∗)

}
−E(2)

{
χ−2

p+2(∆
∗)I (Fp+2,m(∆∗) ≤ q2

}]
. (6.13)

Proof. The risk of µ̂s+ with respect to the loss function in (6.1) is

R4(µ̂s+; µ) = Eτ [E{n(µ̂s+ − µ)′(µ̂s+ − µ)}|τ ] (6.14)

where

E{n(µ̂s+ − µ)′(µ̂s+ − µ)|τ} = E{n(µ̃− µ)′µ̃− µ)|τ}
+ E{n(µ̃− µ)′(µ̃− µ0)k

2T−4|τ}+ E{n(µ̃− µ0)
′(µ̃− µ0)I(T 2 ≤ k)|τ}

+E{n(µ̃− µ0)
′(µ̃− µ0)k

2T−4kI(T 2 ≤ K)|τ}
−2E{n(µ̃− µ)′(µ̃− µ0)kT−2|τ2} − 2E{n(µ̃− µ)′(µ̃− µ0)I(T 2 ≤ k)|τ}
+2E{(n(µ̃− µ0)kT−2I(T 2 ≤ k)|τ}
+2E{n(µ̃− µ0)

′(µ̃− µ0)kT−2I(T 2 ≤ k)|τ}
−2E{n(µ̃− µ0)

′(µ̃− µ0)k
2T−4I(T 2 ≤ k)|τ}

−2E{n(µ̃− µ0)
′(µ̃− µ0)kT−2I(T 2 ≤ k)|τ}. (6.15)

Now following the same procedure and argument as in the proof of the previous theo-
rem this theorem can be proved after completing appropriate algebraic computations
and simplifications.
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The risk of the PRSE in (6.13) can alternatively be expressed as

R4(µ̂s+; µ) = R3(µ̂s; µ)

+
νσ2

ν − 2

[
2kmG(0)

p,m(q; ∆∗)− pG
(2)
p+2,m(q2;∆∗) (6.16)

−k2m(m + 2)E(2)
{

χ−2
p+2(∆

∗)I (Fp+2,m(∆∗) ≤ q2)
}]

−∆n
[
G

(4)
p+4,m(q4;∆∗)

−2G
(2)
p+2,m(q2; ∆∗) + 2kmE(2)

{
χ−2

p+2(∆
∗)I (Fp+2,m(∆∗) ≤ q2)

}]

7 Analysis of Risks

The UE µ̃ has a constant risk that depends on the shape and the dimension of the
Student-t model. As expected, this risk approaches the risk of the normal model as ν
grows large. However, for smaller values of ν, the risk of µ̃ for the normal model is
smaller than that of the Student-t model. So, there could be a misleading risk figure,
which may appear to be much smaller than it actually should be, if a Student-t model
is mis-specified as a normal model. It is well known that the quadratic risk of the
Stein-type shrinkage estimator µ̂s is smaller than that of µ̃. Near ∆∗ = 0 the risk of
µ̂s is the smallest with compared to that of µ̃. But R3(µ̂s;µ) approaches to R1(µ̃; µ)
as ∆∗ grows larger. For smaller values of ν the risk curve of the SE exceeds the risk
curve of µ̃. Thus µ̂s dominates µ̃ for large values of ν. Hence there is no uniform
dominance of the SE over the UE for all values of ν. However, for larger values of ∆∗
the risk of µ̂s approaches that of µ̃ for all ν. Nevertheless the rate is faster for a larger
value of ν than a smaller ν.

Under H0, the positive-rule shrinkage estimator has a smaller risk than the shrink-
age estimator for any given ν. It dominates µ̂s, and µ̃ when the null hypothesis is
true. R4(µ̂s+; µ) approaches R1(µ̃;µ) as ∆∗ increases, and both risk functions coin-
cide as ∆∗ → ∞ after meeting at some value of ∆∗. Both R3(µ̂s;µ) and R4(µ̂s+; µ)
approaches to R1(µ̃;µ); but the former tends to meet it for a smaller value of ∆∗ than
the later for any fixed ν. Therefore, µ̂s+ not only dominates µ̂s, but also dominates
for a wider (range) of values of ∆∗.

Based on the foregoing discussion, under H0 and for any given ν, the following
dominance picture of the estimators emerges:

µ̂s+ Â µ̂s Â µ̃ (7.1)

where ‘Â’ stands for domination. However, the picture is not so clear cut under the
alternative hypothesis, as there is no uniform domination of each other for every value
of ν when H0 is not true.
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Figure 3: Quadratic Risk functions of the SE and PRSE for p = 3, and varying shape
parameter ν
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7.1 Graphical Analysis of Quadratic Risk

Without loss of generality, the graphs for the quadratic risk (QR) of the estimators are
produced for some arbitrary value of σ2 and n. The graphs of Figure 3 are produced
for fixed n = 20, p = 3 but varying values of the shape parameter, ν = 3, , 5, , 10, 100.
The form of the QR curves for both the SE and PRSE is very similar.

A common feature of the quadratic risk functions of the SE and the PRSE is that
they start at the minimum (zero) when ∆ = 0. Then it climbs up as ∆ grows larger
and larger at a faster rate near ∆ = 0. The QR curve of the PRSE approaches to
that of the SE from below as the value of ∆ grows larger. Finally, as ∆ → ∞, the
difference between the two curves reduces gradually with the decrease in the rate of
growth in the QR curves.

The general shape of the QR curve is upward increasing as the value of ∆ increases.
But the rate of growth of the curve diminishes as ∆ grows larger and larger. At ∆ = 0,
both the SE and PRSE has the minimum QR. This QR is always smaller than that
of the maximum likelihood estimator (which equals the dimension of the population)
regardless of the value of the shape parameter and the dimension of the population
p > 3. It is observed that the PRSE always has a smaller QR than the SE if ∆ is not
too large, for the same value of the shape parameter as well as for the same p and n.

The difference between the QR of the two estimators decreases as the value of ∆
increases, and finally the two curves meet each other for some large value of ∆. As the
value of the shape parameter ν increases the value of ∆ at which the QR curves of the
two estimators meet decreases. So if a Student-t model is misspecified by a normal
model then the meeting (and converging) of the two curves will occur at a much more
smaller value of ∆ and it should be. Also the rate of convergence of the QR of the
PRSE to the SE is faster for larger values of ν. From the graphs in Figure 3, the two
curves meet a lost faster when ν = 10 than for ν = 3, or 5.

The maximum difference between the QR of the two shrinkage estimators occurs
at ∆ = 0 and grows higher as the dimension of the population increases. That is, the
PRSE performs relatively better than the SE on a higher dimension than on a lower
dimension. It is noted that the difference between the risk curves of the two estimators
is higher when the value of the shape parameter is smaller. Thus for a smaller value of
the shape parameter the QR function of the SE and PRSE are closer to one another
than for a larger value of the shape parameter. Moreover, this difference increases as
the dimension of the population increases.

Finally, the cost of mis-specification of a multivariate Student-t model with smaller
degrees of freedom by a normal model has the potential to be highly significant. How-
ever, the use of an appropriate multivariate Student-t model eliminates the chance of
under stating the actual risk of the shrinkage estimators.

The graphs of Figure 4 are produced for fixed n = 20 but varying values of the
dimension of the population p = 3, 5 and the shape parameter ν = 3, 10. From the
graphs it is clear that the QR of the SE and PRSE is minimum at ∆ = 0, but the
minimum value depends on the value of p. Both the minimum and maximum QR of
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the estimators depend on the value of p.
It is clear from the above analyses of the risk function that the value of the shape

parameter plays a key role in the determination of the value of the QR of the shrinkage
estimators. Also, the risk function is quite sensitive to the change in the dimension of
the population under study. In general, the risk of the shrinkage estimators increases
with the increase in the dimension of the population.

8 Concluding Remarks

The PRSE uniformly dominates the SE for all ν and p in terms of the QR. The QR is
higher for both the SE and PRSE for smaller values of ν. For very large values of ∆
both estimators perform the same. The minimum QR of both the estimators increases
as the dimension of the population increases. Since the value of ∆ depends on the
quality of the uncertain non-sample prior information, and it is often obtained from
expert knowledge or previous studies it is more likely that the value of ∆ would not
be far away from 0. For any value of ∆ near 0, the PRSE always dominates over the
SE for all ν and p, but does more so for smaller ν.
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