
International Journal of Statistical Sciences ISSN 1683–5603
Vol. 3 (Special Issue), 2004, pp 61–67
c© 2004 Dept. of Statistics, Univ. of Rajshahi, Bangladesh

Some Robust Distributions for the
Structural Multilinear Model

Vee Ming Ng
School of Engineering Sciences

Murdoch University, Murdoch 6150, Australia.

[Received April 15, 2004; Accepted August 10, 2004]

Abstract

The structural approach to inference for location parameters and future
responses are considered for the multilinear model with elliptical error dis-
tribution. We show that the structural and prediction distributions under
elliptical errors assumption are the same as those obtained under normally
distributed errors. This gives inference robustness with respect to depar-
tures from the reference case of normally distributed errors.
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1 Introduction

Statistical and predictive inference using the structural approach for linear models with
non-normal errors have been explored by several authors. For example, Khan and Haq
(1994) provided optimal β- expectation tolerance region when the error distribution is
heavy-tailed, namely, the multivariate-t distribution. Fraser and Ng (1980) described
statistical analysis involving generalization to multivariate elliptically contoured error
distributions.

Statistical inference involving multivariate-t distributed errors have also been con-
sidered by Zellner (1976) and its generalization to elliptical errors by Sutradhar and
Ali (1989) and Fang and Anderson (1990), among other, from a Bayesian and clas-
sical viewpoint. However problems of prediction from Bayesian and classical ap-
proaches have largely concentrated on normal errors, for example, in Geisser (1965)
and Guttman and Hougaard (1985).



62 International Journal of Statistical Sciences, Vol. 3 (Special), 2004

In this paper, we show that the assumption of multivariate elliptically contoured
error distributions leads to some structural and prediction distributions that are ro-
bust with respect to departures of any elliptically contoured density from the reference
case of independent sampling from the normal density, that is, these distributions re-
main unaffected by the change in error distribution from normal to elliptical. Thus,
statistical and predictive inference is robust with respect to departures of any ellip-
tically contoured density from the reference case of independent sampling from the
normal density. This robustness result holds for a large class of density functions since
elliptically contoured distributions include the multivariate normal, matric-t and the
multivariate Cauchy.

The structural and prediction distributions are obtained by integrating over the
relevent parameter spaces and the prediction distribution so derived extends and gen-
eralizes some results of Kibria and Haq (1999) and Khan and Haq (1994). Although
the structural distribution of the regression parameters has been considered under pa-
rameter and distribution factorization methods in Fraser and Ng (1980), it is derived
here for completeness.

In section 2, the structural distribution of regression parameters is derived and
in section 3, the predictive distribution is obtained. Some concluding comments are
made in section 4.

2 The Structural Model

Consider the multivariate regression model with elliptical errors,

Y = BX + E (1)

where Y is a m x n matrix, representing n vectors each of m components; X is a r x
n design matrix of known values of rank r, and B is the m x r matrix of regression
parameters, n > m+r. The m x n error component E is assumed to have an elliptically
contoured distribution with the probability density function

f(E|Σ) ∝ |Σ|−n
2 h{tr (Σ−1EE′)} (2)

which is of the form given in Fang and Anderson (1990), where h{.} is a non-negative
function over m x m positive definite matrices such that f(E|Σ) is a density function
and Σ is a m x m covariance matrix of full rank.

Under the structural approach, the above model is written as the pair:

Y = [B,Γ]E
f(E)dm(E) (3)

where
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- [B, Γ] is an element of the transformation group, G, that operates on the space
of E through the matrix X, producing a observed response Y , in the following
manner:

Y = [B, Γ]E = BX + ΓE; (4)

- the error component has a known probability density function f(E) (which is (2)
with Σ equals to the identity matrix) with respect to the invariant probability
measure m(.),

- ΓΓT = Σ, ΓT is the transpose of Γ and is a mxm matrix.

Following Fraser (1968), a reduced model resulting from the structural model above
is:

t(Y ) = [B, Γ]t(E)
k(D)f{t(E)D}dµ(t(E)) (5)

where t(.) is a transformation variable assuming values in the transformation group
G such that t(gE) = gt(E) for all g in G and for all E in the sample space, D =
t−1(E)E = t−1(Y )Y is a reference point on the orbit of E for a given Y and k(D) is
the normalizing constant such that f{t(E)D} is a density function with respect to the
left invariant measure µ(.) on G. A suitable transformation variable for the multilinear
model is

t(E) = [B(E), C(E)] (6)

where B(E) = EXT (XXT )−1 and S(E) = C(E)CT (E) = (E−B(E)X)(E−B(E)X)T .
A transformation on the space of E of the form Ẽ = gE where g = [B, C] yields the

Jacobian of transformation |g|n = |C|n and the invariant measure dm(E) = |g|−ndE =
|C|−ndE. A left transformation of the group via [B̃, C̃] = g[B∗, C∗] = [B, C][B∗, C∗] =
[B + CB∗, CC∗] yields the Jacobian of transformation |g|m+r = |C|m+r and the left
invariant measure dµ([B, C]) = |C|−m−rdBdC

The distribution of t(E) describing the error E when expressed in invariant form
is

f(E)dE = f(E)|t(E)|ndm(E)

The conditional distribution of t(E) given the “observed” orbit D(E) = D(Y ) = D is

k(D)f(t(E)D)|t(E)|ndµ(t(E))
= k(D)f(t(E)D)|t(E)|n−m−rd(t(E)) (7)

The distribution above describes possible values for t(E) in the equation
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t(Y ) = [B,Γ]t(E)

where t(Y ) is known and B, Γ are unknown and the distribution reflects the joint
distribution of B and ΓΓT = Σ i.e. the structural distribution of B, Σ:

k(D)f([B,Γ]−1Y )|Γ|−n−m|t(Y )|n−rdBdΓ

= k(∗)f([B, Γ]−1Y )|Σ|−n+m+1
2 dBdΣ (8)

k(∗) is the normalising constant and is used as a generic symbol for a normalising
constant from now on.

For elliptical errors, the joint structural distribution of B and Σ takes the form

k(∗)h(tr(Σ−1(B(Y )− B)XXT (B(Y )− B)T + S(Y ))|Σ|−n+m+1
2 dBdΣ (9)

where B(.) and S(.) are defined above.
Let P be a m x m nonsingular matrix such that
P T P = (B(Y )−B)XXT (B(Y )−B)T +S(Y ). The transformation, W = PΣ−1P T ,

has | P T P |m+1
2 as the Jacobian of transformation. Integrating the above with respect

to W yields the marginal structural distribution of B:

f(B|Y )

∝ |(B(Y )− B)XXT (B(Y )− B)T + S(Y ))|−n
2

∫
h{tr W}|W |n+m+1

2 dW−1

∝ |(B(Y )− B)XXT (B(Y )− B)T + S(Y ))|−n
2 (10)

i.e. the structural distribution of B is matric-t with n−m− r + 1 degrees of freedom:
tmr(B(Y ), (XT X)−1, S(Y ), n− r −m + 1) using the notation of Box and Tiao (1973,
pp. 441-442). The structural distribution of B under normal errors is also matric-t
(Fraser and Haq(1970)) with n−m− r + 1 degrees of freedom.

3 Prediction Distribution

Let Yf be a set of future responses from the multilinear model. Then

Yf = BXf + Ef (11)

where Yf is a m x nf matrix, representing nf vectors each of m component; Xf is a
r x nf design matrix of known values of rank nf ≥ r, and Ef is the m x nf matrix of
future error variable.

The joint density function of (E, Ef ) is given by

f(E, Ef ) ∝ h{tr (EET + EfEf
T )} (12)
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From this joint density and the structural relationships, the prediction distribution
can be obtained from (see Fraser and Haq (1970))

f(Yf |Y ) ∝
∫ ∫

|Σ|−
n1+nf +m+1

2 .

h{tr Σ−1[(Y − BX)(Y − BX)T + (Yf − BXf )(Yf − BXf )T ]}dBdΣ (13)

We can then rewrite the matrix expression in (13) as

(Y − BX)(Y − BX)T + (Yf − BXf )(Yf − BXf )T

= S(Y ) + (Yf −B(Y )Xf )H(Yf −B(Y )Xf )T + (B −B∗)A(B −B∗)T

where

A = XXT + XfXf
T

B∗ = (B(Y )XXT + YfXf
T )A−1

H = Inf
−Xf

T A−1Xf

Inf
is the nf x nf identity matrix.

Making the joint transformation

B̃ = Σ−
1
2 (B −B∗), W = QΣ−1QT

where QT Q = S(Y ) + (Yf − B(Y )Xf )H(Yf − B(Y )Xf )T and the Jacobian of trans-
formation |W |− r

2 | QT Q|m+r+1
2 , (13) becomes

f(Yf |Y )

∝
∫ ∫

|S(Y ) + (Yf −B(Y )Xf )H(Yf −B(Y )Xf )T |−
n+nf−r

2 |W |
n+nf +m−r+1

2 .

h{tr W + tr B̃AB̃T }dB̃dW−1

∝ |S(Y ) + (Yf −B(Y )Xf )H(Yf −B(Y )Xf )T |−
n+nf−r

2 (14)

Hence Yf has a matric-t distribution with n − m − r + 1 degrees of freedom, i.e.
tmnf

[B(Y )Xf ,H−1, S(Y ), n−m−r+1]. The prediction distribution of Yf is the same
as that for normal errors (see Haq and Rinco (1976)). This result extends that in
Kibria and Haq (1999) where the case m=1 was considered.

4 Concluding Remarks

When the errors in a regression model are assumed to have an elliptically contoured
distribution, the structural distribution of the regression parameters and the predictive
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distribution are identical to those obtained under independently distributed normal
errors. Both distributions involve the matric-t distribution which describes the dis-
tribution of “location” variables - the regression parameters and future observations.
Hence the structural approach gives uniqueness and robustness to deviation in the
direction of elliptical distribution with respect to inference of regression parameters
and future observations.
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