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Abstract

The partial sums of squared regression residuals are used to define the
squared residuals process. This process is characterized in terms of regressor
functions, the serial correlation structure and the distribution of the noise
process. It is shown that these factors affect the process independently thus
making it possible to investigate separately the effects of regression, serial
correlation and non-normality, and then to combine them as required to
determine joint effects. Since the total sum of squared regression residuals is
a particular partial sum, the results of this paper apply to a variety of second
moment statistics such as variance estimators in regression problems. The
results concerning the effects of serial correlation and/or non-normality
on such statistics expand upon previously available results. The squared
residuals process finds application in the change-point problem.
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1 Introduction

This paper examines the properties of partial sums, or cusums, of squares of regression
residuals. These partial sums are used to define a stochastic process referred to below
as the squared residuals process. This process is characterized in terms of: the regressor
functions; the serial correlation structure of the noise process; and the distribution of
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the noise process which, for linear time series, is characterized by the fourth cumulant
of the innovations series.

Our results indicate these three factors affect the squared residuals process inde-
pendently; hence one can study separately the large sample effects of regression, serial
correlation and non-normality, and then combine them as required to determine joint
effects. The linear regression models we consider are defined in terms of non-stochastic
regressor functions of time. The family of models considered is sufficiently large that
it includes all commonly used models of the type. The noise models considered are
stationary time series satisfying a cumulant condition; specific analysis is provided for
linear time series, which include ARMA models.

Examples of the use of the methodology are presented for several common regres-
sion models where, inter alia, the effects of serial correlation and/or non-normality in
the noise process are examined.

Since the total sum of squared regression residuals is a particular partial sum, the
results presented below apply to a variety of second moment statistics such as variance
estimators in regression problems. Our results concerning the effects of regression, se-
rial correlation and non-normality on such statistics expand upon previously available
results. Since these effects can be substantial they should not be ignored.

The sequence of partial sums of (unsquared) regression residuals and the corre-
sponding residual processes have been treated by MacNeill (1978a,b) and Jandhyala
and MacNeill (1989). A principal application area for residual processes is the change-
point problem. These statistics are usually defined in terms of partial sums of re-
gression residuals, and are derived using the Bayes-type methods introduced to this
area by Chernoff and Zacks (1964). Hsu (1977) applied these methods to derive a
test for variance shift in a series of independent observations; the test is based on
the reversed sequence of partial sums of squared residuals. Inclén and Tiao (1994)
studied the problem of multiple change points in the variance of a sequence of inde-
pendent observations; their tests are based on iterative cumulative sums of squares.
Tsay (1988) discussed variance changes for autoregressive-moving average models. A
closely related problem is that of testing for heteroscedasticity. An example of such
tests, which are usually based on ordinary least squares residuals, is that of Harrison
and McCabe (1979). A related problem involving partial sums of lagged cross-products
of regression residuals is discussed by De Gooijer and MacNeill (1999).

A substantial literature exists on the properties and applications of partial sums
of residuals, but although the total sum of squares of residuals is ubiquitous in statis-
tics, the extent of the literature on partial sums of squared residuals is quite modest.
The joint effects of non-normality and general serial correlation on sums of squares
of regression residuals seem not to have been examined. These effects are studied
and discussed in the context of tests for variance shifts at unknown times and for
heteroscadesticity

The plan of this paper is as follows. In section 2 we present the regression models
to be considered, and define the “squared residuals process” and two related processes.
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The large sample properties of these processes are investigated in sections 3, 4, and
5. In section 6 we discuss the properties of cumulant expressions which arise in our
discussion of the joint effects of non-normality and serial correlation. Variable sampling
rates are discussed in section 7. In section 8 we apply our results to commonly used
linear regression models. Sections 9 contains a discussion of the use of the squared
residual processes to the change-point problem.

2 Regression Models

The error structure we consider for linear regression models is that provided by a zero-
mean, discrete time, stationary time series, X () (j = 0,£1,+2,...). Results derived
for this error structure, as opposed to independent, identically distributed, normal
random variables, allow one to examine the large sample effects on regression of serial
correlation and non-normality. Of course, results for the standard normal regression
model are obtained as a special case. If we let {gx(¢),t € [0,1]} (k =0,...,p) be a
collection of non-stochastic regressor functions of time, we can define the triangular
array Y,(j) (n>p, j=1,...,n) of dependent variables as follows:

Yo(d) =Y Bigii/n) + X ().
=0

To begin, the total time of observation has been compressed to the interval [0,1],
and observations are assumed to have been taken at equi-spaced time points; variable
sampling rates are discussed in section 7. The matrix formulation of this model is:

where the (7, 7)th component of the design matrix is g;(j/n). The regression parameter
estimators are denoted by:

Bon = (AL A,) ALY,

We denote sequences of partial sums of squared regression residuals by Rgx,, (j) (1 <
j<mn, n>1) where

Rx,(j) = Z{Yn<z’>—Yn<z‘>}2:Zr§Xn<z‘) :
i=1 =1
Ya()) = Boug(i/n)
g'(ifn) = {go(i/n),01(i/n),. .., gp(i/n)}.

Under the mild restriction that the Riemann integrals on [0,1] of g2(-) exist, then the
(r1,72)th component of lim, .., n~'(A}A,) = G is fol 9r, (t)gry (t) dt. If in addition

and
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the regressor functions are linearly independent then the inverse of G exists. Under
these circumstances we define a bilinear form g(s,t) as follows:

g(s,t) = g'(s)G 'g(t).

Since we shall be concerned with weak convergence in the space of functions con-
tinuous on the unit interval, C[0, 1], we use these sequences of partial sums of squared
residuals to define a sequence of stochastic processes {pgx,(t), t € [0,1], n > 1}
possessing continuous sample paths as follows:

Vnpgx,(t) = Ryx, ([nt]) + (nt — [nt])*rg, ([nt] +1) (2)

where [nt] is the integer part of nt. The processes defined by (2) will be referred to as
“squared residuals processes” and will be a principal focus of our interest.

If I,,(t) is an n x n matrix with the first [nt] diagonal elements equal to 1, the next
equal to nt — [nt] and all other elements equal to zero, then

\/ﬁngn (t) = X’I/’L {In - An(AInAn)ilA;L} In(t)In(t) {In - An(A;LA)ilA;L} Xy,

Where there is no confusion we will simplify the notation by dropping the subscripts
on the regression matrices. Of course the expression above is not changed by replacing
X,, with Y,,.

We define a related sequence of stochastic processes {X?Xn (t),t € [0,1]} (n =
1,2,...) as follows:

[nt]
VX, (t) = ZXQ(J') + (nt — [nt])* X*([nt] + 1), 3)

The process defined by (3) will be referred to as the “squared errors process”.
Another related sequence of stochastic processes is defined as follows:

Dyx,(t) = X,AAA)TATOI)X, + X, I(H)I(t)AA'A)TA'X,
— X A(A'A)TTAI(H)I(t)A(A'A) LA X, (4)

The process {Dyx,, (t), t € (0,1]} characterizes the effects of regression on the squared
residuals process; we refer to this process as the “squared regression effects process”.

We then have

\/ﬁngn (t) = \/EX?Xn (t) - Dan (t) (5)

We return to discussion of the noise process X(n) (n = 0,%1,...). The covari-
ance function for this series is Rx(v) = E{X(n)X(n + v)}, |v| < co. If the covari-
ance function is absolutely summable, then the spectral density function fx(\) =
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% E\u|<oo e ™Ry (v), A € [-7, 7], exists. If the spectral density is positive, that is,

fx(A)>a>0, Xe|[-mmn], (6)

then the process can be expressed either as an infinite moving average or as an infinite
autoregression; that is it is invertible.
In the sequel we require a central limit theorem for time series. Conditions that

guarantee convergence in distribution of n~1/2 Zgnjl X(j), t € [0,1], to the normal

with zero mean and variance {27 fx (0)t}, are those given by Brillinger (1973). These
conditions are stated in terms of cumulant functions which are defined as follows:

Cri1(vi, . oyvp) = Cum{X(n+v1), X(n+1v2),..., X(n+ 1), X(n)}. (7)

Stationarity to order k + 1 is implicit in this definition. When necessary we assume
the cumulants exist and satisfy what we call the Brillinger conditions, namely,

Ly,

Tt ) )

‘Ck-Jrl(l/l’ vo..., l/k)| <

for some finite Ly, k=1,2,....
We let Sx,(j) = { 1 X (i) and define a sequence of stochastic processes {fx, (¢),
t €[0,1]}{n =1,...} possessing continuous sample paths by

n36x, (t) = Sx, (o) + (ot = [ X ([nt] +1). (9)

If a stochastic process {Bx(t), t € [0,1]} is defined by Bx(t) = {27 fx (0 )}%B(t)

where B(-) is standard Brownian motion then under conditions (6) and (8) Tang and
)

MacNeill (1993) have shown that {fx, (t), ¢t € [0,1]} (n = 1,2,...) converges weakly
to {Bx(t), t € [0,1]}; that is

1
0x,(t) = Bx(t) = {2nf(0)}2 B(?).

The measure on C|0, 1] corresponding to standard Brownian motion is Wiener measure

denoted by W. We denote the measure corresponding to Bx(-) by Wx.

3 The Squared Errors Process

Since the process {X%(n (t), t € [0,1]} has a non-zero mean value function that grows
with increasing sample size we define a related zero-mean process {x% (t), t € [0,1]}
as follows:

X, (1) = X%, () — E{x%, ()}
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where

E{xk,(t)} = VntRx(0) + O(1/n).

If nt = [nt] then the approximation is exact. We let [nt] = j and [ns] = k. If the
Brillinger condition (8) is assumed to hold then the covariance kernel for the process
may be approximated as follows:

Kx,(s,t) = E{XX )X, (5)}

= fZZE{XQ )X>(1 }—%]ka ) +0(1/n)

=1 [=1
J ok Jj ok

= IS RG0S0 D Cam (XXX ()X W) +O(1/n).
=1 [=1 =1 =1

Again, if nt = [nt] and ns = [ns] then the approximation is exact. Furthermore, with
the notation s A ¢ = min(s, t), condition (8) implies that:

j
%ZZR (i—0)=2({/nNk/n) ZRX )+ O(1/n)

i=1 =1 [v|<oo
and
i k
SN Cum {XEXOXOXD)} = (i/nAk/n) > Cxa(0,v,v)+0(1/n) .
i=1 I=1 lv|< oo

We can now observe that, uniformly in s and t,

Kx, (s,t) — (s ANt)Kx

where
Kx =4x ! fE(\) d\ + Fxy (10)
and where
Fxi1= Y Cxa(0,v,v). (11)
|v|<oo

We establish asymptotic normality in the following theorem.

Theorem 1: Under assumptions (6) and (8) the k-vector {x%, (t1),..., X%, (tx)} has
a non-trivial asymptotic probability distribution that is normal with zero mean and
covariance matric Kx || t; At ||.



MacNeill: Squared Residuals Process 29

Proof: The covariance matrix is derived directly from (10). The Brillinger (1973)
condition (8) can be used to demonstrate that the cumulants of orders higher than
two of a vector component of Y% (t;) are O(n~1/2) or smaller and hence that XX, (ti)
converges in distribution to the normal with zero mean and variance given by (10).
The Cramér-Wold device for demonstrating asymptotic multivariate normality can be
used to complete the proof for this k-dimensional case.

Tightness of the sequence of measures Py2 (n = 1,2,...) generated in C|0,1] by
{%2(t), t € [0,1]} (n = 1,2,...) can be demonstrated by showing the existence of a
constant C'x > 0 such that for any to > ¢,

E{32(t2) — ¥2(t1)}" < Cx(ts — t1)%. (12)

This can be shown using arguments similar to those used to derive the covariance
kernel. If the process {Bxz(t), t € [0,1]} is defined by Bx2(t) = {Kx}'/?B(t) and
if Wy is the measure in C[0, 1] corresponding to Byz(:), then we have the following
result.

Theorem 2: Under assumptions (6) and (8)

PX% — WXZ.

Proof: Theorem 1 assures us that the finite dimensional distributions of Px2 converge
to those of W2, and (12) implies that the sequence Px2 (n =1,2,...) is tight. The
proof is completed by applying Theorem 12.3 of Billingsley (1968).

4 Squared Regression Effects Process

We now consider the large sample properties of {D,x,, (t), t € [0,1]} as defined by (4).
First we define a limit process {Dyx(t), t € [0, 1]} as follows:

t 1
Dyx(t) = Hy {Bx(t)} = // (2.) dBx (r) dBx (y)

/// 9(y; s)g(s,x) dBx () dBx (y) ds. (13)

Since Bx (t) = {27 fx(0)}/2B(t) we may write D,x(t) = {27 fx(0)} H,{B(t)}. With
some mild restrictions on g(z,y), which we discuss below, the function H(-) as defined
by (13) is a continuous function from C10, 1] into itself. If P;x denotes the measure
generated in C|0, 1] by Ho{B(t)} then in the notation of Theorem 5.5 of Billingsley
(1968), P,x = W(H,)~! where W is Wiener measure. Also, using the functional
form of (4), we define a sequence of processes {Dyx, (t), t € [0,1]} (n = 1,2,...)
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and sequences of continuous functions Hyx, (-), Hgx,1(-), Hgx,2(), and Hyx,3(-),
(n=1,2,...) from C[0, 1] into itself by

Dgx,(t) = Hgx,{0x,(t)}
= Hgx,1{0x, (1)} + Hox,2{0x, (1)} + Hgx,3{0x, (1)}
= X/ AA'A)TTAINI)X, + X I(t)I(t)A(A'A)"1A'X,
— X! A(A'A)TTAI(HI(t)A(A'A) 1A' X,

If Pyx, (n=1,2,---) denotes the set of measures generated in C[0, 1] by Hyx,{0x, (t)}
then in the notation of Theorem 5.5 of Billingsley (1968), Pyx, = Px, (Hyx,) '

We now state the theorem that characterizes the large sample properties of the
squared regression effects process.

Theorem 3: Assume conditions (6) and (8). Further assume g,(t) (r = 0,1,...,p)
are linearly independent non-stochastic regressor functions that are continuously dif-
ferentiable on [0,1]. Then:

(Z) Pan = PgX;'
(ii) E{Dyx, (t)} — {2nfx(0)} [5 g(x,x)dx; and
(iii) Cov{Dyx,(t), Dyx,(s)} — {27TfX(0)}2Fg(5at)

where
SAt) t ps
I'y(s,t) :4/ g(z,x) dx—2/ / > (x,y) dz dy. (14)
0 0 JO
Proof: We note that
1 D 1
—X;An—> g/(IL‘) dBx(x),
Vn 0
LA nonmx [ ¢ )
\/ﬁ n+n n n 0 I

and
n(AL A, — G7h
Hence it can be shown that Hyx, (-) converges uniformly to Hyx(-). Proof of weak
convergence follows by application of Theorem 5.5 of Billingsley (1968).
Since
dr x=y

0  otherwise,

E{dB(z)dB(y)} = {
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we observe that .
B 1Dy (0] = 2nfx(0)} [ gla)da

To compute the covariance kernel we first note that

{// (z,y) dB(z) dB(y }{// (u,v) dB(u dB()}

// // 9(z,y)9(u,v)[E{dB(u) dB(v)} E{dB(z) dB(y)}
+ E{dB(u) dB(x)}E{dB(v)dB(y)}

+ E{dB(u) dB(y)} E{dB(z) dB(v)}]

t s SNt t s
st [ otamyis+ [ sy [ [P
0 0 0 0 JO

We have made use of the fact that fol g*(z,y) dy = g(x, r). Computations similar to
the above applied to E{Dyx (t)Dyx(s)} where Dyx(-) is defined by (13) will complete
the proof of the theorem by verifying that

Cov {Dyx (1), Dyx ()} = {27 fx (0)}T (s.1)

where Iy(s,t) is as defined by (14).
We denote the corresponding zero mean process by Dgyx (t); that is,

Dyx(t) = Dyx (1) — {27 fx(0)} /0 gla,a)do .

The covariance kernel for {D,(t), ¢ € [0,1]} of course remains as that given in Theorem
3. Effects due to non-normality of the error variables disappear for large samples.

5 The Squared Residuals Process

We return to consideration of the partial sums of squared residuals as defined in Section
2. Equation (5) defines these partial sums in terms of the processes discussed in the
two previous sections. Since

Xa(t) = pgu(t) = n~" 2Dy (1)

12 sup |Dgn(t)] — 0 with probability 1, the large sample distribution
0<t<1

and since n~

theory for {ﬁgn(t)_, t €[0,1]} is the same as that for {g,(t), t € [0,1]} where Pgn(t) =
pgn(t) - E{pgn(t)}'
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To account for the effect of regression, the finite sample correction factor for the
mean is approximated by

t
n_1/2{27rfx(0)}/ g(z,x)dx
0
that is,

21 fx (0) [*
\/ﬁ/o g(z,z)dx + O(1/n). (15)

The finite sample covariance kernel is approximated as follows:

E{pgx, (t)} = VntRx(0) -

Cov {pyx, (1), poxa(9)) = Kx(s At) — {2mfx(0))2Ty(5,1)

Ffr (5,4) + O(1/n?) (16)

where

FX2 = ZZCX4(O, I/1,V2). (17)

|vi|<oo

It can be shown that

Cov {Viipyx, (1), Dyx., ()} = 22 y(s.1) +O(1/m)

Thus the two processes {pgx, (t), t € [0,1]} and {Dyx, (t), t € [0,1]} are approx-
imately uncorrelated if the higher order cumulants are zero. Of course this holds
exactly if in addition there is no serial correlation in the noise process and if ¢t = 1.

6 Cumulants for Linear Time Series

We now discuss the nature of cumulant expressions such as those appearing in formulae
(11) and (17) for the case of linear time series defined as follows:

o0
X(t) = aje(t—j) t=0+1,...

where ag = 1, 3772 |a;| < co and the innovations €(j), (j = 0, £1, ...) form a sequence
of 1ndependent and identically distributed random variables such that E{e(j)} =0,
E{2(j)} = 0% < 0o and Cum{e*(5)} = ky, \k4\ < 0o. It may be shown that:

k
FXl = Z Cx4OI/I/ —k‘4 Za iRX() y

|v|<oo
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2

o0
k

Fxo = Z ZCX4 0 1/1,1/2 —k‘4 Za Zaj 74RX( ){QWfX(O)}
i <o0 =0
and 4

k
Fxs = ZZZCX4 v, Ve, 13) = ky Z% :ﬁ{QWfX(O)}z
|vi|<oo

In the event of white noise error structure then Fx1 = Fx9 = Fx3 = k4.

7 Variable Sampling Rates

As indicated in Section 2, the time of observation need not be restricted to [0, 1]
nor must sampling be equi-spaced for the above results to apply. Suppose the total
sampling period is [0,7] and the rate of sampling, or the density of observations, is
described by a non-constant, positive function {s(t), t € [0,7]} Riemann integrable
to 1 on the interval [0,T]. If S(¢ fo x) dz, then S(t2) — S(t1) is the proportion of
the observations in the 1nterval [tl, ta]. Also 1f

[nS(#)]

Vs, (t) = Y X2(j) + {nS(t) — [nS@)]Y* X2 ([nS(1)] + 1)

=1

then the mean corrected process )23( Sn() converges weakly to the zero-mean, gaus-
sian process By2g(-) which has covariance kernel Ky2g(s,t) = Kx {S(s) AS(t)}.
But the covariance kernel of the limit process Byz(-) is such that K {S(s),S(t)} =
Kx {S(s) ANS(t)}. Hence, Bx2g4(t) and Bx2 {S(t)} are stochastically equivalent.

Also, if the vector of regressor functions, g(-), is defined on the interval [0, 7], then
expression (14) becomes

Lys(sit) =4 /0 " gs(e,x) dS(a) — 2 /0 /0 g2, y) dS(x) dS(y).

where gs(z,y) = ¢'(x)Gg'g(y) and the i, jth component of Gy is

T
Gsmz/o 6i()g;(x) dS(x) .

The transformations ©v = S(z) and v = S(y) can be used to show that, for 0 <
s,t <1, Iys{S™Y(s),S71(t)} = I,«(s,t) where the bilinear form in (14) becomes
g7 (u,v) = g (WG g*(v) with g*(u) = g{S~1(u)} and G%, = [ g7 (u)g(u) du .

Thus the covariance functions for the limit processes for the variable sampling rates
case are related to those discussed above for the the case of equispaced sampling on
[0,1] as follows:
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i) Coulxks{S™H ()} X5 s {571 (5)}] = Cov{x% (1), x5 (5)},
ii) Cov[Dyxs{S™'(t)}, Dyxs{S™'(s)}] = Cov{Dg-x(t), Dg=x(s)}
and
i) Cov[pgxs{S~' (1)}, pgxs{S~"(s)}] = Cov{pg-x(t), pg=x(s)} -

Note that the noise process is assumed to form a stationary series regardless of
the sampling rate. Care must be taken in the estimation of f(0) to avoid the biases
produced by the regression fit extracting low frequency power from the spectrum of
the noise process (see Tang and MacNeill (1993)) and by unequal sampling intervals
(see Jones (1985)).

8 Examples

A. Polynomial Regression

We consider polynomial regression where g;(t) = t* (i = 0,1,...,p). Jandhyala and
Minogue (1993) have shown that

m=0
where
Ym(t) = ) ( 1)m+J<‘ ) > J
" ]Z:; jjm—j

Hence for p =0, g(z,y) =1 .Forp=1, g(z,y) =1+ 3(1 —2z)(1 —2y) , for p =2,
g(x,y) =1+ 3(1 — 22)(1 — 2y) + 5(1 — 6z + 62%)(1 — 6y + 6y?), etc.

The crucial function defined by the regression model for evaluating first and second
moments of squared residuals processes is I'y(s, t) as defined by (14). This is a bilinear
form in powers of s and ¢, and hence can be expressed as follows: Iy(s,t) = s'I't
For the case p =0, if ' = (1,s), t' = (1,t) and t < s, then

= %)

The transpose of this matrix should be used if s < t. Then Iy(s,t) = 4t — 2st and
I,(1,1) =2.

For the case p = 1, if s’ = (1,5, 2, s%), t' = (1,¢,t%,%) and t < s, then Iy(s,t) =
s'T't where

0 16 —-24 16
r— 0 =32 48 -—-24
0 48 -84 48
0 —24 48 =32
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It can be shown that I},(1,1) = 4.

For the case p = 2, with s’ = (1,s,...,s°),¢ = (1,...,t°) and t < s then I',(s,t) =
s'I't where
0 36 —144 336 —360 144
0 -—162 648 —1224 1080 —360
0 648 —3024 6408 —6120 2160
0 —1224 6408 —15072 15480 —5760
0 1080 —6120 15480 —16740 6480
0 —-360 2160 —5760 6480  —2592

We note that I;(1,1) = 6. Computer algebra systems can be used to evaluate I" for
higher order polynomials.

As a specific example we consider simple linear regression with an MA(2) noise
process defined in terms of uniform errors on the interval [—-0/2,0/2]. Then: ¢? =
02/12, ky = —04/120, Fx1 = kq(1+a?+a2)?, and Fys = ky(1+a?+a2)(1+ai+az)? .
For t < s,

Ty(s,t) = 16t — 24t* + 161> + 32st + 245% 4 245s1> — 485°t — 48st*
—4853t — 485°t3 + 8455%t% + 325533 .
Also
4w f(\) dr = 20" (1+ ai + a3 + 4ai + 4a3 + 4aias + 4aia3)
and

21 fx(0) = o?(1 + a1 + az)?* .

Then from (15) and (16) one can compute the means and covariances of the partial
sums of regression residuals.

If sampling is sparse at first and more dense later, and is characterized by S(t) =
2,0 < t < 1, then the covariances of the partial sums can be computed using g(z,y) =
9 — 122 — 12y + 18xy. Then, for t < s,

Tys(s,t) = 3612 — 641> + 36t — 185%? + 325%1% — 165%t* + 325312 — (544/9)s33

+3253t — 165*2 + 32543 — 1854t |
and Iys(V/3,Vt) = Ly (s,t).

B. Harmonic Regression

As another example we consider harmonic regression with g¢x(t) = cos2rwkt (k =
0,1,...,p) and gx(t) = sin27kt (k =p+1,...,2p). It was shown by MacNeill (1978b)
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that

P
g(s,t)=1+2 Z {sin 27jt sin 27js + cos 2mjs cos 2mjt} .
j=1

If the error process is normal white noise then it may be shown that
o 2E{Dy(t)} = (2p+ 1)t

and
2

t ps p
o~ 4Cov{Dy(t), Dy(s)} = 4(2p+1) min(s, t) — 2 // 1+2 Zcos 2rj(x — y) pdxdy
0J0 -
j=1

We note that E{Dy(1)} = (2p + 1)o?, Var[Dy(1)] = 2(2p + 1)o* and 072Dy(1) is x?
distributed on 2p + 1 degrees of freedom. Furthermore,

[n1]
EQD rix,(d) ¢ ~o’t{n— (2p+1)}
j=1
and
[nt] [ni]
Varq Y riy () p =~ Vard Y €(j) p — Var {Dy(t)}
j=1 j=1

~ 20tnt —4(2p + 1)ott
2

t s p
+204// 1+2Zcos27rj(:v—y) dx dy .
0 Jo -
7j=1

For the particular model with p =1, g(x,2) =14 2cos2n(x — z) , and

2 sin?{27r(s —t)}  2cos2ms
Iy(s,t) = ——5 Cos {2m(s —t)} + 53 t——
-2 g
sin®(2ws)  2cos(2wt)  sin(27wt) 2
- — — — —6st+12¢
PR 272 2 oSt

with I,(1,1) = 6.

9 A Change-Point Statistic Based on Cusums of Squares
of Raw Residuals
A statistic proposed by Hsu (1977) for testing for constancy of variance involves the

sequence of partial sums of squares of residuals normalized by what amounts to an esti-
mate of the variance. In our context this amounts to consideration of pyx,, (t)/pgx, (1).
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It can be shown that the ratio

[nt]

ngn (t) - 1 2 .
vn = - X, (J
D) 53 2"
when properly normalized converges weakly to a Brownian Bridge. That is,

[nt]

1 . Ky \ 12
M;TEXn(]) —Vnt = (RE((O)) By(1). (18)

Since Kx = 4n fjﬂ f)Q((/\) d\+ Fx1, one can determine the effects of serial correla-
tion and non-normality on the large sample distribution of the statistic. As discussed
above, these effects can be substantial.

Change-point statistics can be obtained by defining appropriate functionals on (18).
Large sample distributional results for a variety of Cramér-von Mises type statistics
are presented by Tang and MacNeill (1992).
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