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Abstract

In this article we compile all basic and well-known inequalities useful in
probability and statistics. Proofs are given only for two less known in-
equalities.
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1 Introduction

Rao (1996) wrote an article entitled, “Seven inequalities in statistical estimation the-
ory”, that has appeared in the journal, Student[6]. The present article is almost a
complement of Professor Rao’s article. Professor Rao’s inequalities were on estima-
tion theory, whereas our inequalities are primarily on probability theory. Most of the
inequalities are well-known, but some of the inequalities may not be known to all. This
compilation of basic inequalities is expected to serve as reference to most researches
in probability and statistics.

2 Basic Inequalities

In this section we state fifteen basic well-known inequalities.
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2.1 Markov’s Inequality.

Suppose that X is a nonnegative random variable with finite mean, E(X). Then for
any t > 0,

P (X ≥ t) ≤ E(X)
t

.

2.2 Chebyshev’s Inequality.

Suppose that X is a random variable with finite mean µ and variance σ2. Then for
any t > 0,

P (|X − µ| ≥ t) ≤ σ2

t2
or

P (|X − µ| < t) ≥ 1− σ2

t2
.

2.3 One-sided Chebyshev’s inequality.

Let X be a random variable with mean µ and variance σ2. Then for any t > 0,

(i) P (X ≥ µ + t) ≤ σ2

σ2 + t2

(ii) P (X ≤ µ− t) ≤ σ2

σ2 + t2
.

2.4 Chernoff bounds.

Let X be any r.v. with moment generating function MX(t). Then,

(i) P (X ≥ s) ≤ MX(t)
ets

for all t > 0

(ii) P (X ≤ s) ≤ MX(t)
ets

for all t < 0.

2.5 Basic Inequality.

Let g be a nonnegative and nondecreasing function on R on the range of the random
variable X. Further assume that ess.sup g(X) < ∞. Then

E{g(X)} − g(a)
ess. sup g(X)

≤ P (X ≥ a) ≤ E{g(X)}
g(a)

.

In addition, if g is an even function, replace P (X ≥ a) by P (|X| ≥ a) in the above.
Here ess. sup g(x) is the least among constants below which almost all values of g(x)
lie.
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2.6 Corollary to the Basic Inequality.

Let g(X) = |X|r for r > 0.Then by basic inequality, we have

E(|X|r)− ar

ess.sup g(X)
≤ P (|X| ≥ a) ≤ E(|X|r)

ar
.

(i) For r = 1 right hand side becomes the Markov’s inequality.
(ii) For r = 2 right hand side becomes the Chebyshev’s inequality.

2.7 Cauchy-Schwarz Inequality.

Let X and Y be any two random variables. Then

[E(XY )]2 ≤ E(X2)E(Y 2),

or equivalently,

|E(XY )| ≤ [E(X2)]
1
2 [E(Y 2)]

1
2 .

2.8 Cr-inequality.

Let X and Y be any two random variables. Then for r ≥ 0,

E{|X + Y |r} ≤ Cr[E{|X|r}+ E{|X|r}],

where

Cr =
{

1 for r ≤ 1
2r−1 for r > 1.

2.9 Holder’s inequality.

Let X and Y be any two random variables. Then for r > 1, s > 1 with 1
r + 1

s = 1

E{|XY |} ≤ [E(|X|r)] 1
r [E(|Y |s)] 1

s .

2.10 Lyapounov’s inequality.

For a random variable X

(E(|X|α))1/α ≤
(
E(|X|β)

)1/β
, 0 < α ≤ β.
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2.11 Minkowski Inequality.

Let X and Y be any two random variables. Then for r ≥ 1,

[E(|X + Y |r)]1/r ≤ [E(|X|r)]1/r + [E(|Y |r)]1/r.

2.12 Jensen’s inequality.

Let g be a convex function and E(X) be finite. Then

E(g(X)) ≥ g(E(X)).

2.13 An Inequality on the Expectation of E|X|ν.
Let X be a random variable such that E|X|β < ∞ for some β > 0. Then for 0 ≤ α ≤ β

E|X|α ≤ 1 + E|X|β

and
E|X|α < ∞.

2.14 Bernstein Inequality (Binomial case).

Let Sn follow binomial distribution with parameters n and p. Then for ε > 0

P (|Sn − np| ≥ nε) ≤ 2 e−nε2/2.

That is, the probability that Sn exceeds its expected value np more than a multiple
nε of n, converges to zero exponentially fast as n → ∞. Here Sn may also be viewed
as the sums of n independent Bernoulli trials.

2.15 Hoeffding’s Inequality.

We propose to give a more general version of this important inequality. Let X1, X2,
· · · , Xn be independently distributed random variables with finite means E(Xi) = µi

and ai ≤ Xi ≤ bi for all i. Also, let Sn =
∑n

i=1 Xi. Then for ε > 0

P (|Sn − E(Sn)| ≥ nε) ≤ 2 e−2n2ε2/
∑n

i=1(bi−ai)
2
.

3 Further Inequalities

In this section we state two additional less known inequalities on quantiles and the
expectation of harmonic mean. In both cases we supply the proofs.
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3.1 An Inequality on Quantiles.

Let ζp be the pth quantile of the random variable X that has mean µ and variance σ2.
Then

µ− σ

√
1− p

p
≤ ζp ≤ µ + σ

√
p

1− p
.

For 0 < p < 1, the quantity ζp is said to be the pth quantile of the random variableX if
P (X ≤ ζp) ≥ p and P (X ≥ ζp ) ≥ 1− p.

Proof. By definition, ζp satisfies the inequality

p ≤ P (X ≤ ζp) = P

(
X − µ

σ
≤ ζp − µ

σ

)
= P (Z ≤ t),

where Z = X−µ
σ which has mean 0 and variance 1, and t = ζp−µ

σ . Now for ζp < µ, we
have t < 0, and consequently using one-sided Chebyshev’s inequality on P (Z ≤ t) we
have

p ≤ P (Z ≤ t) ≤ 1
1 + t2

,

i.e.
p ≤ 1

1 + t2
=

1

1 +
(

ξp−µ
σ

)2

i.e.

−
√

1− p

p
≤ ζp − µ

σ

µ− σ

√
1− p

p
≤ ζp.

Again by definition, ζp satisfies the inequality

1− p ≤ P (X ≥ ζp) = P

(
X − µ

σ
≥ ζp − µ

σ

)
= P (Z ≥ t).

Now for ζp > µ, we have t > 0, and consequently using one-sided Chebyshev’s inequal-
ity on P (Z ≥ t) we have

1− p ≤ P (Z ≥ t) ≤ 1
1 + t2

,

i.e.
1− p ≤ 1

1 + t2
=

1

1 +
(

ξp−µ
σ

)2



14 International Journal of Statistical Sciences, Vol. 3 (Special), 2004

i.e.
ζp − µ

σ
≤

√
p

1− p

or equivalently

ζp ≤ µ + σ

√
1− p

p
.

Now combining both limits, we have

µ− σ

√
1− p

p
≤ ζp ≤ µ + σ

√
p

1− p
.

Corollary. The lower and upper bounds on ζ 1
2

(median) are given by

µ− σ ≤ ζ 1
2
≤ µ + σ.

3.2 An Inequality on the Expectation of Harmonic Mean (see Rao,
1996).

Let X > 0 and Y > 0 be random variables. Then

E

(
XY

X + Y

)
≤ E(X)E(Y )

E(X + Y )
.

Proof ( in a special case ). Let E(X)
E(Y ) = r

s be rational, and take X1 = X
r , Y1 = Y

s so
that E(X1) = E(Y1) = µ > 0. Since geometric mean is greater than or equal to
harmonic mean, thus we have

r + s
r
Y1

+ s
X1

≤ Y
r/(r+s)
1 X

s/(r+s)
1 .

Now taking expectations on both sides we get

E

(
r + s

r
Y1

+ s
X1

)
≤ E

(
Y

r/(r+s)
1 X

s/(r+s)
1

)
.

Note that XY
X+Y = rs

r+s · r+s
r

Y1
+ s

X1

. Thus we have

E

(
XY

X + Y

)
=

rs

r + s
E

(
r + s

r
Y1

+ s
X1

)
≤ rs

r + s
E

(
Y

r/(r+s)
1 X

s/(r+s)
1

)
.
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Using Holder’s inequality, we obtain

E
(
Y

r/(r+s)
1 X

s/(r+s)
1

)
≤ (E(Y1))

r/(r+s) (E(X1))
s/(r+s) = µ.

Finally, we establish

E

(
XY

X + Y

)
≤ rs

r + s
µ =

E(X)E(Y )
E(X + Y )

.

4 Concluding remarks

The inequalities given in this article are useful for solving problems and proving results.
These inequalities are a useful tool even for solving research problems. The proofs of
the inequalities in section 2 are omitted since these are available in standard text books
cited below. The collection of all these inequalities in a compact form becomes handy
to students and teachers for reference purposes.
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