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Abstract

Stepwise regression approach was used to predict the final stature of
Japanese children. A sample of 509 boys and 311 girls was considered.
After removing the outliers and influential data points, regression equa-
tions (highly cross validated) to predict final stature have been proposed
for Japanese boys and girls, separately.
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1 Introduction

Accurate predictions of final stature are important for children growing or maturing
at unusual rates and for children with diseases, such as hypothyroidism, that can alter
their potentials for growth in stature. Therefore, it might have been a great concern
not only to pediatricians but, also parents having a child with short stature. Many
researchers have tried to estimate the final stature through different methods (Ali
and Ohtsuki, 2001; Bayley and Pinneau,1952; Khamis and Guo, 1993; Khamis and
Roche, 1994; Onat, 1975; Roche et al., 1975a,b; Wainer et al., 1978;). Most of the
above researchers predicted the final stature through skeletal age. Recently, Ali and
Ohtsuki (2001) proposed some predicting equations based on growth parameters, e.g.,
stature at peak height velocity, and stature at take off. Thus, to predict one’s final
stature using Ali and Ohtsuki’s equations, those two growth parameters are required.
Whereas, to have those parameters one should need a longitudinal data of stature
to fit the model. Also, it can be possible to predict the final stature after finding
the relationship of the final stature with statures at different ages drawn from the
well-fitted distance curve.

To get well-fitted distance curve with greater precision, researchers are dealing
with different models (Ali et al., ND; Bock et al., 1973; Berkey and Reed, 1987;
Count, 1943; Jenss and Bayley, 1937; Jolicoeur et al., 1988, 1992; Karlberg, 1989;
Preece and Baines, 1978 etc.). However, for a good prediction, it is necessary to select
a good model. Jolicoeur et al., 1992 declared that, till then, JPA-2 had the best fit
compared with other structural growth models. Recently, Ali et al. (ND) pointed out
through an unpublished data that the average root mean square error of the estimate
for triphasic generalized logistic model (BTT model) were smaller than that for JPA-2
model, and added that JPA-2 model can’t estimate the mid-growth spurt whereas the
BTT model can.

Significant correlation between final stature and predicted stature at different
statures from age 2 to 13 have been reported by Ali (2000). This should be a strong
clue to find out some relationships (equations) between final stature and the statures
at different ages from 2 to 13 years.

The purpose of the present study is to apply the BTT model to longitudinal data
of stature of Japanese boys and girls to predict the distance curve, and then find
out some equations to predict the final stature of the Japanese based on statures at
different ages drawn from the distance curve.

2 Data and Methods

2.1 Data

Longitudinal data of 820 Japanese children and youths (509 boys and 311 girls), rang-
ing in age from 0 to 20 years and born from 1967 to 1977, were collected from their
personal records. Several universities from the Kanto District were selected and all
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students of some classes of those selected universities were included except those who
had incomplete information (Here ”incomplete” indicates that the lack of information,
i.e., missing of variables). Though the database includes serial data for many vari-
ables, including stature, weight, sitting height, and chest circumference, only stature
was analyzed in this study. For a brief discussion of the data, see Ali and Ohtsuki
(2001).

2.2 Methods

To estimate statures at different ages, the BTT model was applied on the individual
longitudinal data of stature to get the distance curve as previously described by Ali et
al. (ND). Stature at age i (denoted by Si), i = 2, 3, · · · , 13, drawn from the predicted
distance curve for each individual were then considered for further analysis to predict
the final stature of the Japanese. According to the Bock et al. (1994), predicted final
stature (PFS) has been considered in this study as S25 (i.e., stature at age 25 years)
for each individual. However, the definition of age at final stature is different by the
researchers (Kato et al., 1998).

Final stature of individuals followed by their growth pattern as well as different
statures at their previous ages. The function of stature on age of every individual
is monotonically increasing over the period of birth to young age. To understand
the pattern, either linear or nonlinear, between the final stature and stature at one’s
previous ages can be easily shown from the correlation matrix plot. Very often, the
relationship between predicted final stature (PFS) and stature at different previous
ages are found to be as linear (Figs. 1 and 2).

Considering that we have to predict the final stature with respect to statures at
different ages from 2 to 13 years. As Fig. 1 and 2 show the relationship between
PFS and statures at different previous ages are linear, we can consider multiple linear
regression of PFS on stature at previous ages. How many stature-variables are essen-
tial to explain the maximum percentage of variation (Here, the maximum percentage
of variation explained by the regression is referred to as maximum R2) can be deter-
mined by the forward stepwise regression analysis method (Draper and Smith, 1966,
pp.169-171) as also previously described by Ali and Ohtsuki (2001). The STATISTICA
software was used.

Like Ali and Ohtsuki (2001), a regression equation without an intercept (intercept
forced to zero, regression through the origin) is applicable in this study, too. Because
one can not think predicted final stature (PFS) if stature at any previous age considered
in this study is zero. In such a situation, inclusion of intercept term result low value
of R2.

Since multiple regression is a mathematical maximization procedure, it can be very
sensitive to data points within ”split off” or are different from the rest of the points,
that is, to outliers. Just 1 or 2 such points can affect the interpretation of the results,
and it is certainly debatable as to whether 1 or 2 points should be permitted to have
such a profound influence.
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Figure 1: Correlation matrix plot between PFS and stature at different ages for
Japanese boys.
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Figure 2: Correlation matrix plot between PFS and stature at different ages for
Japanese girls.
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Therefore, it is important to be able to detect outliers and influential points. There
is a distinction between the two because a point that is an outlier (either on y or for the
predictors) will not necessarily be influential in affecting the regression equation. There
are various statistics for identifying outliers on y and on the set of predictors, as well as
for identifying influential data points. Mahalonobis distance (Stevens, 1996, pp.111-
115) to detect outlier and Cook’s distance (Cook, 1977; Cook and Weisberg, 1982)
to detect influential data points were applied in the present study as also previously
described by Ali and Ohtsuki (2001). Cook and Weisberg (1982) have indicated that a
Cook distance > 1 would generally be considered large, implying an influential point.

Multiple regression estimates (the B coefficients) are not very stable particularly
if the size of the sample is very small (less than 100). In other words, single extreme
observations can greatly influence the final estimates. Therefore, it is always necessary
to review these statistics, and to repeat crucial analyses after discarding any outliers
and influential data points. Finally, inference should be drawn with the data set that
is free from any outlier and influential point.

To know how well the regression equations will predict on independent samples of
the population individuals, cross-validated correlation, a model validation technique,
is considered (Khan and Ali, 2003; Stevens, 1996; p. 96). The cross validity predictive
power, denoted by ρ2

cv , is defined as:

ρ2
cv = 1− (n− 1)(n− 2)(n + 1)

n(n− k − 1)(n− k − 2)
(1−R2);

where n is the sample size, k is the number of predictors in the regression equation
and the cross-validated R is the correlation between observed and predicted values
of the dependent variable. Using the above statistic, it can be concluded that if the
prediction equation is applied to many other samples from the same population, then
(ρ2

cv × 100)% of the variance on the predicted variable would be explained by the
regression equation (Stevens, 1996; p. 100).

3 Results

BTT model was run on the individual longitudinal data of stature to find out the
distance curve for each individual. The predicted statures from the distance curve
considered in this study were: stature at age 2(S2), stature at age 3(S3), stature at
age 4(S4), stature at age 5(S5), stature at age 6(S6), stature at age 7(S7), stature at
age 8(S8), stature at age 9(S9), stature at age 10(S10), stature at age 11(S11), stature
at age 12(S12), stature at age 13(S13), and predicted final stature (PFS).

Using forward stepwise regression, it was found that only three stature-variables
can able to explain the maximum percentage of variation by the regression equation
(i.e., R2). The model is as follows:

PFS = β1Si + β2Sj + β3Sk + ε
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where β1, β2 and β3 are the partial regression coefficients, and ε is the random
error term assumed to be distributed as normally with mean zero and variance unity;
Si, Sj , and Sk are the stature-variables defined at age i, j, and k, respectively, i, j, k =
2, 3, · · · , 13; i 6= j 6= k. The set i, j, k is different for different cases (case 1, case
2, and case 3). The case 1, case 2, and case 3 refer to analysis based on whole
sample individuals, individuals who have the mid-growth spurt, and individuals who
don’t have the mid-growth spurt, respectively. A summary of the forward stepwise
regression of the dependent variable PFS for different cases was found and shown in
Table 1.

Table 1: Summary of the stepwise regression for the dependent variable PFS (Pre-
dicted final stature)

Cases Sample Variable Step Coefficient Standard F – to p-level R2 Variables
size +in error enter/remove included

Boys
Case 1 410 S9 1 1.270660 0.096113 377603.7 0.000000 0.99892 1

S3 2 0.638750 0.079237 54.2 0.000000 0.99905 2
S12 3 -0.377094 0.072787 26.8 0.000000 0.99910 3

Case 2 213 S9 1 1.281532 0.153105 225484.9 0.000000 0.99906 1
S3 2 0.493674 0.097118 27.5 0.000000 0.99917 2
S12 3 -0.296906 0.114832 6.7 0.010398 0.99920 3

Case 3 191 S5 1 -0.304324 0.345247 139935.2 0.000000 0.99864 1
S9 2 1.080969 0.212497 10.8 0.001185 0.99872 2
S2 3 0.730981 0.172769 17.9 0.000036 0.99883 3

Girls
Case 1 262 S13 1 3.20074 0.143402 393773.6 0.000000 0.99934 1

S12 2 -3.29566 0.280664 196.9 0.000000 0.99962 2
S11 3 1.11848 0.155298 51.9 0.000000 0.99969 3

Case 2 96 S13 1 3.09039 0.109926 216090.1 0.000000 0.99956 1
S12 2 -3.23795 0.230637 194.4 0.000000 0.99986 2
S11 3 1.16692 0.142226 67.3 0.000000 0.99992 3

Case 3 134 S13 1 3.18652 0.197888 243768.8 0.000000 0.99946 1
S12 2 -3.03767 0.368247 129.1 0.000000 0.99972 2
S11 3 0.86965 0.192203 20.5 0.000013 0.99976 3

Case 1, Case 2 and Case 3 refers to the analysis based on whole sample, individuals who have the mid-growth spurt and who
without the mid-growth spurt, respectively. The classification of Case 2 and Case 3 is considered here for each individual on
the results of BTT model on AUXAL. The sample sizes among three cases are not consistent due to omitting the outliers.

Table 1 shows that the regression coefficients are highly significant at 100p% level
(p-values are given in Table 1). Moreover, standard errors of the estimate attain
smaller amount. This table also exhibits that for three-variable regression equation,
maximum R2 is attained in case 2 (As R2 for the predicted equation is the same as
in step 3 here.). Also, the average standard errors of the predicted equation in case 2
are smaller than those in case 3 for both sexes (Table 2).

It should be noted that, though, the present study has been started with a sample
of 820 individuals (509 boys and 311 girls), but the result (Table 1) shows a contra-
diction (why?). Because, the present study have lost some sample individuals in two
steps. First, some sample individuals, when they were run on BTT model through the
software AUXAL (Bock et al., 1994), were not convergent because of having extreme
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Figure 3:   At 5% level critical value of Mahalanobis Distance (D2) when the number of 
predictor, k, is 3. This figure is made using the tabulated value given in Stevens, 1996, p. 
115.  

 
 
 
 
 

outliers or missing observations in the raw data. Second, some individuals have been
lost when it was intended to predict final stature and to repeat the crucial analyses to
discard any outliers and influential data points. The well-known statistical software
STATISTICA 6.0 was used to find the calculated value of Mahalanobis Distance (D2)
and Cook’s Distance. It was then compared with tabulated value given in Figure 3.
The sample observation for which the calculated value of D2 was greater than its corre-
sponding tabulated value was considered as the outlier. Also, the sample observation
for which the Cook’s Distance was greater than 1 was considered as the influential
data point. Both outliers and influential data points were discarded from the analysis.
Thus, the final predicted equations from the stepwise regression methods presented
here are free from the problem of inclusion of outlier and influential data points.

4 Discussion

According to Ali and Ohtsuki (2001) the predictions of final stature, on average, were
underestimated approximately by 0.03 cm in case 1, over-estimated by 0.26 cm in
case 3, but asymptotically unbiased in case 2 for boys. For girls, these predictions,
on average, underestimated by 0.03 cm in both case 1 and case 3, but it was under-
estimated by only 0.002 cm in case 2. On the other hand, the present study shows that
the prediction is, on average, underestimated approximately by 0.11 cm in case 1, 0.13
cm in case 2, but over-estimated by 0.21 cm in case 3 for boys; and under-estimated by
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0.03 cm in case 1, and 0.02 cm in case 2 and 3 for Japanese girls. Also, the standard
errors of the prediction are smaller in case 2 compared to case 3 for both in the present
result and those of Ali and Ohtsuki (2001). This implies, in average, the prediction of
adult stature is rather better in those individuals who have the mid-growth spurt than
those individuals who don’t have this spurt. Thus, the present study fully support
the Ali and Ohtsuki’s postulation (2001) - ”The BTT model gives the asymptotically
unbiased estimate of the growth parameters for those individuals who have the mid-
growth spurt, and gives biased estimate (although the biased is small) of the growth
parameters for individuals who don’t have the mid-growth spurt; the reason may be the
triphasic function itself”.

Analyses of residual for individual cases were considered to understand the pre-
cision of the prediction for final stature. Average values of observed final stature,
predicted final stature, residuals, 90% confidence bounds for residuals, and standard
error of the prediction were calculated and shown together with those of Ali and Oht-
suki (2001) in Table 2. Table 2 shows that the average absolute residuals in case 2 are
smaller than those in case 3 for Japanese boys.

Comparing with Ali and Ohtsuki (2001), the present study shows that the predic-
tion of adult stature based on growth parameters are better than based on statures
at different ages. But the residual and the standard error of the prediction are also
small in the present study. Therefore, the present prediction equations are also useful
for the Japanese population. On the other hand, the present prediction equations are
easy to calculate and need stature-value at only three age points, and need not to fit
any model with longitudinal data from birth to maturity.

To predict final stature from the study of Ali and Ohtsuki (2001), it is necessary
to get STO and SPHV that is possible if a longitudinal data of stature is available to
fit the growth model. Also, many researchers have been used skeletal age to predict
the final stature (Bayley and Pinneau,1952; Khamis and Guo, 1993; Onat, 1975, 1983;
Roche et al., 1975a,b; Wainer et al., 1978). The present prediction method need not
any curve fitting or skeletal age from the x-ray exposure of the subject, however, it is
essential to estimate the skeletal age for the clinical purpose or the pediatric treatment
for a short stature. Also, predicting final stature without skeletal age is applicable,
for example, not only for the purpose of sports talent detection and selection based
on their predicted final stature, but also for giving advice for choosing more suitable
sport event and position from the viewpoint of predicted final stature.

The mean residual of the predicted final stature of the present study (Table 2) are
smaller compared with that of others (Bayley and Pinneau,1952; Khamis and Guo,
1993; Khamis and Roche, 1994; Roche et al., 1975a,b; Wainer et al., 1978). Average
prediction failure, i.e., residual>4.0 cm, was reported by Khamis and Guo (1993) as
about 10% for boys and 8% for girls. In the present study, 12% failure occurred for
boys (for case 3), but only7% for case 1, 2% for case 2, 6% for case 3 occurred for the
data of girls. Case 3 and a part of case 1, that is, sample without mid-growth spurt,
are affected with the triphasic BTT model itself. Standard errors of the predicting
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Table 2: Averages of the observed, predicted, residual, 90% confidence bounds of
residuals and standard error (SE) of predicted equations of final stature based on
stature-variable for different cases together with the results (shown in parenthesis),
based on biological variables, of Ali and Ohtsuki (2001).

Cases Sample Observed Predicted Residual 90% Confid. Bound SE of
Size Stature Stature (cm) of Residual (cm) Prediction

(cm) (cm) Mean SD Lower Upper (cm)

Boys

Case 1 410 172.34 172.23 0.113 5.17 -6.024 7.497 0.42
(415) (172.40) (172.37) (0.026) (2.70) (-1.896) (3.530) (0.18)

Case2 213 171.68 171.55 0.133 4.89 -4.982 6.150 0.54
(213) (171.72) (171.72) (0.002) (0.84) (-0.830) (0.874) (0.08)

Case3 191 173.01 173.22 -0.213 5.94 -6.739 8.990 0.68
(197) (173.10) (173.37) (-0.264) (2.71) (-2.618) (4.342) (0.31)

Girls

Case1 262 159.00 159.19 0.027 2.80 -2.652 3.512 0.29
(234) (159.05) (159.02) (0.030) (2.92) (-2.651) (4.449) (0.26)

Case2 96 157.86 157.84 0.018 1.45 -1.717 1.708 0.25
(96) (157.86) (157.84) (0.022) (1.94) (-1.855) (2.054) (0.27)

Case3 134 159.74 159.72 0.020 2.48 -2.421 3.389 0.36
(136) (159.82) (159.79) (0.034) (3.25) (-3.304) (4.987) (0.38)

Categories of Cases 1-3 are the same as in Table 1. The sample sizes among three cases are not
consistent due to omitting the outliers.

final stature of the present study (Table 2) are smaller than those of some others
(Onat, 1975, 1983), and about the same as those of Ali and Ohtsuki (2001) for girls
but larger than those for boys. Comparing with 90% confidence bounds for residuals,
the present study for girls (Table 2) shows better prediction than those of some others
(Ali and Ohtsuki, 2001; Khamis and Roche, 1994; Roche et al., 1975a; Wainer et al.,
1978).

Finally, the proposed equations of predicting final stature for the Japanese are as
follows:

For Boys (average)

PFS = 1.27066S9 + 0.63875S3 − 0.377094S12

For Boys (who have mid-growth spurt)

PFS = 1.281532S9 + 0.493674S3 − 0.296906S12

For Boys (who don‘t have mid-growth spurt)

PFS = 1.080969S9 + 0.730981S2 − 0.304324S5

For Girls (average)

PFS = 3.20074S13 − 3.29566S12 + 1.11848S11
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For Girls (who have mid-growth spurt)

PFS = 3.09039S13 − 3.23795S12 + 1.16692S11

and For Girls (who don‘t have mid-growth spurt)

PFS = 3.18652S13 − 3.03767S12 + 0.86965S11

The proposed predicted equations to predict the final stature of Japanese boys and
girls are cross validated by the cross validity predictive power as described in method
section.

Estimated cross validity predictive power, ρ2
cv , of the predicted equations for

different cases of Japanese boys and girls are shown in Table 3. This table indicates
that for any independent sample of the Japanese population more than 99% of the
variance on the predicted variable, PFS, would be explained by the proposed equations.
In other words, the expected amounts of shrinkage of R2 are very small for all cases of
boys and girls, implying a highly cross validated. It should be noted that the predictor
variables are affected with near multicollinearity problem but it did not affect much
the stepwise regression results as the R2 values of all three cases of boys and girls are
very high in step 1 (see Table 1).

Table 3: Estimated cross validity predictive power, ρ2
cv, of the predicted equations

based on stature-variables for different cases of Japanese boys and girls

Cases n k R2 ρ2
cv

Boys
Case 1 410 3 0.99910 0.99908
Case 2 213 3 0.99920 0.99917
Case 3 191 3 0.99883 0.99879

Girls
Case 1 262 3 0.99969 0.99968
Case 2 96 3 0.99992 0.99991
Case 3 134 3 0.99976 0.99975

Categories of Cases 1, 2 and 3 are the same as in Table 1.
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