
International Journal of Statistical Sciences ISSN 1683–5603
Vol. 3 (Special Issue), 2004, pp 259–268
c© 2004 Dept. of Statistics, Univ. of Rajshahi, Bangladesh

Double Sampling for Stratification with Application to
Fisheries Surveys

D. R. Bellhouse
Department of Statistical and Actuarial Sciences

University of Western Ontario
London, Ontario
Canada N6A 5B7

W. C. Liu
Statistics Canada
Ottawa, Ontario
Canada K1A 0T6

[Received April 15, 2004; Accepted August 14, 2004]

Abstract

Under double sampling for stratification scheme, a density estimate is ob-
tained for the distribution of the measurements taken on the second phase.
Estimates of quantiles and their standard errors are derived from this esti-
mated density. Further, estimates and standard errors are obtained for the
mean of the first phase measurements conditional on certain values of the
second phase measurements. The results are applied to a double sampling
scheme for length and age measurements on fish taken from trawl surveys
in fisheries. At the first phase the lengths of the fish are determined and the
fish are stratified by length. For the second phase independent subsamples
are selected within each stratum and the ages of the subsampled fish are
determined. We consider estimation of the age distribution of the fish and
estimation of the average length of the fish at each age.
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1 Introduction and Notation

Double or two-phase sampling is a technique used when the cost to measure a variable
y is relatively high either in terms of time or money. A second variable x is less costly
to measure. The general idea is to obtain an initial or first phase sample and make
the less costly measurement. Then a subsample of the initial sample is chosen and the
more costly measurement is made on this smaller sample. The information collected
from the first phase is used to improve the efficiency of the estimation scheme. Cochran
(1977, Ch. 12) has given the theory for estimating the finite population mean of the y-
variable using a regression estimator based on the sample means of the x’s taken at the
first and second phases and on the sample mean of the y’s taken at the second phase.
Rao (1973) has stratified on the x-variable and then has taken a stratified sample at
the second phase, again to estimate the finite population mean of the y-variable.

In this paper, double sampling for stratification has been used in trawl surveys for
fisheries. This work was motivated by a problem in the estimation of the mean and
standard error in the length of fish at certain ages as well as estimation of the age
distribution of the fish taken from a trawl survey in an off-shore fishery on the east
coast of Canada. A first phase sample was chosen and the lengths (x) of the fish were
quickly determined. The data at this phase are binned on the lengths. Within each
bin or stratum a second phase subsample of the fish was selected and the age in years
(y) of the fish was determined. The determination of age is more time consuming than
the determination of length and hence more costly. Estimation of the mean age of
fish in a catch based on double sampling was initiated by Ketchen (1949). A review
of the methodology in this field is given in Gulland and Rosenberg (1992) who give
variance estimates similar to Rao (1973) for estimation of mean age. The theory for
stratification of the trawl survey comprising several catches has been given in Cotter
(1998).

Initially, our work is similar to Rao’s and hence Gulland and Rosenberg’s. Assume
that the x-variable is binned and that the bin values are given by xi for i = 1, · · · , I.
A random sample of n is taken and the data are binned according to the I bins with ni

units observed in the ith bin. These bins are taken as strata so that at the second phase
a simple random sample without replacement of mi from the ni is chosen independently
for each i = 1, · · · , I and the measurement x is obtained. This measurement at the
second phase can also be binned with bin values given by yj for j = 1, · · · , J . Rao
(1973) proceeds without binning on y to estimate the finite population mean of the
y-variable. Here we wish to estimate the distribution of y using binned data and
to estimate the conditional mean of the x-values given a bin value for y. For the
purpose of moment calculations we make an assumption that appears in Rao (1973):
the sample sizes mi at the second phase are determined by the relationship mi = vini,
where the fractions vi have been fixed in advance of sampling.

Let πij be the population proportion that would be observed in both the ith bin on
the x’s and the jth bin on the y’s. The marginal totals πi+ and π+j are the population
proportions for the ith bin on the x’s and the jth bin on the y’s respectively. The finite
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population mean of the y’s at each distinct x-value is given by

ȳi =
J∑

j = 1

πijyj , (1)

and the overall population mean of the y’s is

ȳ =
J∑

j=1

π+jyj . (2)

The mean in (2) is the estimand in Rao (1973).
Consequently, based on the binning, the distribution for y is given by π+j for

j = 1, · · · , J . It may also be of interest to estimatef(y), the underlying density
function for y rather than the discretized version given by π+j . The density function
f(y) may be obtained on assuming an infinite population and on letting the bin size
approach 0. Details of the possible superpopulation assumptions that can be made to
justify f(y) are found in Bellhouse and Stafford (1999). In particular, we assume that
there is a nested sequence of finite populations such that the “empirical” cumulative
distribution functions on the finite populations in the sequence converge to a smooth
function F (y). The density function f(y) = dF (y)/dy. The other quantity of interest
is the conditional mean of the x’s given yj , which may be expressed as

x̄j =
I∑

i = 1

xiπij/π+j . (3)

Here we pursue estimation of f(y) and x̄j , as well as related quantities, rather than ȳ.
The data that are available are the counts from the first phase showing ni for the ith

bin on the x’s, i = 1, · · · , I and the counts from the second phase showing mij for the
jth bin on the y’s at the subsampled bin i on the x’s. The second phase subsample size
mi =

∑
j mij . Assuming an infinite population or a large finite population and that

the first phase sample is chosen randomly, then the proportions πij are probabilities
from a multinomial distribution.

2 Distribution of Binned Observations Taken at the Sec-
ond Phase

Based on the multinomial assumption at the first phase and simple random sampling
without replacement in each bin at the second phase, an estimate of πij and hence π+j

may be obtained. Had all ni been measured for x in the ith bin, the count would have
been nij and an estimate of πij would be nij/n. From sampling theory, conditional
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on the first phase sample the estimate of nij is n̂ij = nimij/mi so that ultimately
π̂ij = nij/n. The estimate of the distribution of observations in the jth bin for y

π̂+j =
I∑

i = 1

π̂ij (4)

is obtained. The variance of (4) may be derived using conditional expectations and
variances. In particular, V (π̂+j) = EmVd(π̂+j)+VmEd(π̂+j), where Em and Vm denote
the expectation and variance with respect to the multinomial sampling model associ-
ated with the first phase of sampling and where Ed and Vd denote the expectation and
variance with respect to the sampling design within the strata at the second phase.
We find

VmEd(π̂+j) =
π+j(1− π+j)

n
. (5)

On using Rao’s assumption in two-phase sampling that the vi have been fixed in
advance of sampling and that sampling at the second phase is independent between
strata, we find

EmVd(π̂+j) =
I∑

i = 1

πij(πi+ − πij)(1− νi)
(nπi+ − 1)νi

(6)

to a first order approximation. A consistent estimator for V (π̂+j) is found from (5)
and (6) with each π replaced by the appropriate π̂. We obtain

V̂ (π̂+j) =
π̂+j(1− π̂+j)

n
+

I∑

i = 1

π̂ij(π̂i+ − π̂ij)(1− νi)
(nπ̂i+ − 1)νi

,

where π̂i+ = ni/n and where π̂+j and π̂ij have been previously defined.

3 Kernel Smoothing and Related Derived Quantities

In the results that follow it is useful to have the estimated variance of ˆ̄y, where ˆ̄y is the
estimate of the population mean with the estimate given by (2) with the appropriate
π replaced by π̂. Adapting the estimate from Rao (1973, eq. 3) to the notation used
here and letting N →∞, the estimated variance is given by

I∑

i = 1

ni(ni − 1)
n(n− 1)mi

s2
i +

1
n(n− 1)

I∑

i = 1

ni(ˆ̄yi − ˆ̄y)2, (7)

where

s2
i =

J∑

j = 1

mij(yj − ˆ̄yi)2 (8)



Bellhouse and Liu: Double Sampling for Stratification 263

and where ˆ̄yi and ˆ̄y are (1) and (2) respectively with each π replaced by the appropriate
π̂.

The underlying density function f(y) for y may be estimated through kernel
smoothing of the histogram defined by the π̂+j in (4) for j = 1, · · · , J . Following
Bellhouse and Stafford (1999) the kernel density estimate based on any histogram is
the sum over the bins of the estimated proportion of observations in the bin times the
kernel for a given bandwidth. In other words, the kernel estimate is a weighted sum
of the bin proportions with the weights given by the kernel function. This reduces to
the usual kernel density estimate given in Silverman (1986) when the bin contains a
single observation so that the estimated proportion is one over the sample size. For
the data at hand in the fisheries survey, the estimated bin proportion is π̂+j and the
bin observation is yj for the jth bin. This results in the kernel density estimator

f̂(y) =
1
h

J∑

j = 1

π̂+jK(
y − yj

h
). (9)

In (9) K(t) is the kernel evaluated at the point t and h is the bandwidth or smoothing
parameter to be chosen. The kernel K(t) can be any function such that K(t) ≥ 0
for all t,

∫
tK(t)dt = 0 and

∫
t2K(t)dt is finite. Typically, K(t) is chosen to be a

probability density function with mean value 0 and finite higher moments so that the
above conditions on K(t) are satisfied. At any point y the estimated variance of f̂(y),
V̂ (f̂(y)) can be obtained from (7) and (8) with yj in these expressions replaced by
K((y − yj)/h)/h. In the data analysis that follows we use a standard normal kernel,
i.e. K(t) = exp(−t2/2)/

√
2π. Note that as the bandwidth h in (9) increases, more bins

are given nonnegligible weight so that increasing the bandwidth gives greater weight
to bins that are farther from the point y at which the estimate is desired. Similarly,
as h decreases, the estimate at y depends mostly on bins very close to y.

Denote the estimated αth quantile from f̂(y) by q̂α. One approach to estimation
of qα for finite populations is through Woodruff’s (1952) procedure. This procedure
involves finding the survey-based estimate of the finite population cumulative distri-
bution function, say FN (y) estimated by F̂N (y) and obtaining the α-quantile from this
estimated cdf. In particular, the Woodruff estimator q̂w

α is the smallest value of y in
F̂N (y) such that the value of F̂N (y) is at least α. Rao, Kovar and Mantel (1990),
for example, have taken this approach when considering covariates in the estimation
procedure. Further, they provide a formula for an estimate of the variance of q̂α (Rao
et al., 1990, eq. 17) due originally to C.A. Francisco and W.A. Fuller. The variance
estimate may be calculated as follows. Let zγ/2 be that number from the standard
normal distribution such that γ/2 of the curve lies to the right of this value. For the

α-quantile estimate and given γ, calculate the interval given by α± zγ/2

√
V̂ (F̂N (q̂w

α ).
Let L(γ) be the length of this interval. Then the variance estimate of q̂w

α is given by
{L(γ)/zγ/2}2/4.
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We use a different approach to variance estimation since our estimation procedure is
based on kernel smoothing rather than the Woodruff method. Since the kernel estimate
obtained here is a smooth function, we use the Newton-Raphson iterative method from
Bellhouse and Stafford (1999) to obtain q̂α. In this approach, the estimated quantile
q̂α is obtained as the solution to the equation

g(q̂α) =
∫ q̂α

−∞
f̂(y)dy − α = 0.

The solution is achieved by iterating the equation

q̂i
α = q̂i−1

α − g(q̂i−1
α )/g′(q̂i−1

α ) (10)

for i = 1, 2, 3, · · · until convergence is achieved. The function g′(q̂i
α) is the kernel

density estimate at the ith iterative step. For a standard normal kernel, g(q̂i
α) has

the same functional form as g′(q̂i
α) with the density replaced by the standard normal

cumulative distribution function. An initial estimate q̂0
α can be obtained through the

associated histogram. A variance estimate of q̂α can be obtained through Serfling’s
(1980) approach. In this approach we start with the identity F (q̂α), i.e. the theoretical
cumulative distribution function of the estimated α-quantile yields an estimate of
α. Consequently, V (F (q̂α)) = V (α̂). On using a Taylor expansion to approximate
V (F (q̂α)), we have V (F (q̂α)) ∼= V (q̂α){dF (qα)/dα}2. On noting that dF (qα)/dα =
f(qα) and rearranging terms, we have

V (q̂α) ∼= V (α̂)/[f(qα)]2

so that an estimate of variance is given by

V̂ (q̂α) = V̂ (F̂ (q̂α))/[f̂(q̂α)]2. (11)

The term V̂ (F̂ (q̂α)), which is the estimated variance of the proportion less than or
equal to q̂α, may be obtained as a special case from (7) and (8) in which yj is replaced
by an indicator variable taking the value 1 for yj ≤ q̂α and 0 otherwise.

On denoting a mode of the distribution by ym, the corresponding estimated mode
ŷm is by definition a solution to f̂ ′(y) = 0. Alternatively, ŷm may be found graphically
or by numerical trial and error. The definition of the mode through the solution to
the estimating equation f̂ ′(y) = 0 leads to variance estimates of ŷm using Binder’s
(1983) approach. In Binder’s approach, suppose we have a parameter vector θ with
a vector of estimating equations U(θ) = 0, the solution of which yields θ̂, where the
entries of U(θ) are themselves survey estimates. On letting J(θ) = ∂U(θ)/∂θ, then the
estimated variance-covariance matrix for θ̂ is given by [J(θ̂)]−1V̂(U(θ̂))[J(θ̂)]−1, where
V(U(θ̂)) is the variance-covariance matrix of the survey estimate U(θ) evaluated at
θ̂. In the current situation we have a single parameter ym (≡ θ, now a 1 × 1 vector)
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and hence the estimating equation is of the form U(ym) = 0. For a standard normal
kernel

U(ym) =
J∑

j = 1

π̂+j(ym − yj) exp{−(ym − yj)2/(2h2)}, (12)

so that

J(ym) =
J∑

j = 1

π̂+j
{

1− (ym − yj)2/h2
}

exp
{ − (ym − yj)2/(2h2)

}
. (13)

Note from the right hand side of (12) that U(ym) is a survey estimate of the finite
population expression

∑J
j = 1 π+j(ym − yj) exp{−(ym − yj)2/(2h2)}. From (12) and

(13), the estimated variance of ŷm is given by

V̂ (ȳ′)[
J∑

j = 1
π̂+j { 1− (ŷm − yj)2/h2} exp { − (ŷm − yj)2/(2h2)}

] 2 , (14)

where

ȳ′ =
J∑

j = 1

π̂+j(ŷm − yj) exp{−(ŷm − yj)2/(2h2)}.

The numerator in (14) can be evaluated from (7) and (8) where y′j replaces yj and

y′j = (ŷm − yj) exp{−(ŷm − yj)2/(2h2)}.

4 Estimation of the Second Phase Mean Conditional on
First Phase Results

The estimator of the conditional mean defined in (3) is

ˆ̄xj =
I∑

i = 1

xiπ̂ij/π̂+j =
I∑

i = 1

xiπ̂ij/
I∑

i = 1

π̂ij . (15)

Given the first phase sample, this is a ratio of sums of independent variables since
samples were chosen independently from each stratum on the second phase. On using
a standard Taylor series expansion for the variance of a ratio, then after some algebra
the variance of ˆ̄xj conditional on yj taken under the expectations Em and Ed can be
expressed as

1
π2

+j

I∑

i = 1

(xi − x̄j)2
(

πij

n
+

πij(πi+ − πij)(1− νi)
νi(nπi+ − 1)

)
(16)
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to a first order approximation. A consistent estimator of the variance of ˆ̄xj can be
found from (15) with each π replaced by the appropriate π̂. When mi = ni there is no
sampling variation within a stratum, so that the second term in the round brackets in
(15) is 0 whenever νi = 1. Consequently, when νi = 1 this term will also be set to 0
in the variance estimate.

5 Example

The data we examine were obtained in 1987 by the Fisheries and Oceans Canada during
their annual fall multi-species bottom trawl survey. At total of 9936 Yellowtail flounder
were initially sampled and their lengths in centimeters were determined. The lengths
were binned using one centimeter as the bin width. Within each bin a subsample of
fish was obtained by simple random sampling without replacement and the ages in
years of the subsampled fish were determined. The data may be found at the web site
for the Statistical Society of Canada.

The estimate of the lengths of the fish at each age, given by (14), and its standard
error, obtained through (15), were calculated for these data. The results appear in
Table 1. It may be noted that there is a near perfect linear trend in lengths with age.

Table 1: Estimated Lengths Conditional on Age

Age in Years Length in cm Standard Error Estimated Distribution

(yj) at Age j, ˆ̄xj

√
V̂ (ˆ̄xj) for Age π̂+j

0 2.58 0.10 0.003950
1 6.04 0.08 0.081457
2 10.66 0.15 0.247526
3 14.52 0.24 0.219273
4 20.48 0.13 0.199192
5 24.54 0.37 0.042416
6 30.12 0.13 0.038824
7 34.95 0.11 0.083389
8 39.10 0.13 0.081961
9 44.26 0.20 0.001711
10 47.50 0.00 0.000201

Figure 1 shows the histogram estimate for age obtained from (4). From this graph
it may be seen that the age distribution is bi-modal. The bin width b = yj+ 1 − yj

for the histogram in Figure 1 has value b = 1. For binning and kernel smoothing
of independent and identically distributed observations, Jones (1989) has suggested
the relationship b = 1.25h between the bin size and the smoothing parameter h.
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Bellhouse and Stafford (1999) have shown that this relationship should be maintained
when moving from the case of independence to complex surveys. Since the bin size has
been fixed at 1, we choose the smoothing parameter h = 0.8. The smoothed histogram,
shown in Figure 2, was obtained from (9). It maintains the bi-modality shown by the
histogram estimate. On using the methodology in (10) with variance estimate given
by (11) we can calculate the quartiles of the distribution shown in Figure 2. The
quartiles and their standard errors are shown in Table 2.

 

Figure 1:  Age Distribution of Yellowtail Flounder
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Figure 2:  Age Distribution of Yellowtail Flounder 
Kernel Estimate
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Table 2: Estimated Quartiles for Age

Quartile Estimate Standard Error
First 2.63 0.289
Second 3.80 0.133
Third 5.44 0.221

Since the distribution shown in Figures 2 is bi-modal, it is of interest to estimate
the locations of the two modes and their standard errors. These may be obtained
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through (12) and (13) respectively. The estimates of the modes of this distribution
are 3.19 and 7.82 with standard errors 0.059 and 0.041 respectively.
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