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Abstract

Various notions of slope-rotatability of response surface designs are con-
sidered. Existing results are reviewed and some current problems are dis-
cussed. Two new examples of unbalanced symmetric A-rotatable second-
order designs in two dimensions are provided.
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1 Introduction

Since its introduction by Box and Hunter (1957), rotatabilty has been considered to
be a desirable property of response surface designs, particularly when very little prior
information is available about the nature of the response surface being investigated.
Unlike in classical designs, in response surface designs usually the interest is in es-
timating the response at various points in the factor space and rotatability of the
design ensures that the variance of the estimated response at a point is a function
of the distance of the point from the centre of the design, conveniently taken to be
the origin. However, since the factors in response surface experiments are usually all
quantitative, smooth functional relationship is assumed to exist between the response
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and the factors, and sometimes the investigator has greater interest in estimating the
slopes of the response surface. This is particularly true in situations where the exper-
imenter is interested in optimizing the response and needs to determine points where
the maximum (or minimum) occurs. When estimation of slopes is of greater interest,
it is preferable to have notions of rotatability in terms of the estimated slopes rather
than the estimated response.

Several concepts of slope-rotability (or rotatability in terms of slopes) have been
introduced in recent years for dealing with second-order designs. In particular, Hader
and Park (1978) introduced slope-rotatability over axial directions and Park (1987)
introduced slope-rotatability over all directions (SROAD). In what follows we consider
more general notions of slope-rotatability

2 Background

Consider the usual response surface design set-up involving an univariate response
y depending on k quantitative factors x1, · · · , xk through a smooth functional rela-
tionship y = Ø(x, θ) where x = (x1, · · · , xk)t and θ = (θ1, · · · , θp)t is a p-component
column vector of unknown parameters. A design ξ is a probability measure on the ex-
perimental region χ which is that part of the factor space in which experimentation is
permissible. Let yi be the observation at the point xi = (xi1, · · · , xik)t (i = 1, · · · , N)
chosen according to the design ξ. It is assumed that yi = Ø(xi, θ) + ei where the ei’s
are uncorrelated zero-mean random errors with a constant variance σ2. Let θ̂ be the
estimate of θ. Typically, it will be the least squares estimate. Then ŷ(z) = Ø(z, θ̂) is
the estimated response at a point z. Further, dŷ/dz = (∂ŷ(z)/∂z1, · · · , ∂ŷ(z)/∂zk)t is
the column vector of estimated slopes along the factor axes at a point z. Let V (ξ, z)
denote (N/σ2) cov (dŷ/dz), the standardized variance-covariance matrix of the esti-
mated slopes where N is the total number of trials. Note that V (ξ, z) depends both
on the design ξ used and on the point z at which the slopes are estimated.

It is also worth noting that the vector dy/dz not only displays the rates of change
along the axial directions but also provides information about the rates of change
in other directions. The estimated directional derivative at point z in the direction
specified by the vector of direction cosines c = (c1, · · · , ck)t is ctdŷ/dz. Further,
{(dŷ/dz)t(dŷ/dz)}−1/2dŷ/dz is the direction in which the derivative is largest.

3 Notions of slope-rotatability

Since we are dealing with the k×k matrix V (ξ, z) when we are concerned with slopes,
there are several possibilities for defining slope-rotatability, each corresponding to a
different scalar function of the matrix. We may consider the following concepts of
slope rotatablity.
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(a) A design ξ is to be called A-(slope)-rotatable if and only if trV (ξ, z) depends on
z through ρ2 = ztz.

(b) A design ξ is to be called D-(slope)-rotatable if and only if the determinant of
V (ξ, z) depends on z through ρ2 = ztz.

(c) A design ξ is to be called E-(slope)-rotatable if and only if the largest eigen-value
of V (ξ, z) depends on z through ρ2 = ztz.

(d) A design ξ is to be called Axially-(slope)-rotatable if and only if V (ξ, z)ii (i =
1, · · · , k) depend on z through ρ2 = ztz where V (ξ, z)ii is the i-th diagonal
element of V (ξ, z).

4 Linear model set-up

In the linear model set-up, Ø(x, θ) = f t(x)θ with f t(x) = (f1(x), · · · , fp(x)) con-
taining p linearly independent functions of x. In this case the least squares esti-
mate θ̂ has the variance-covariance matrix given by (N/σ2)cov(θ̂) = M−1(ξ) where
M(ξ) =

∫
χ

f(x)f t(x)ξ(dx) is the information matrix of ξ. Further (N/σ2)var{ŷ(x)} =

f ′(x)M−1(ξ)f(x), and the standardized variance-covariance matrix of dŷ/dx is given
by V (ξ, z) = (N/σ2)cov(dŷ/dz) = H(z)M−1(ξ)H ′(z) where H(z) is a k × p matrix
whose i-th row is ∂f t(z)/∂zi = (∂f1(z)/∂zi, · · · , ∂fp(z)/∂zi).

The linear models most widely used in response surface designs are the polynomial
models for which f(x) contains the terms of a polynomial of order (degree) d in x.
When d = 1 the model is called a first-order model, when d = 2 the model is a second-
order model and so on. If all the terms of a polynomial of degree d are included in
the model then f(x) (and θ) contains k+dCd components. For example, in the first-
order model one may write f t(x) = (1, x1 · · · , xk). For the second-order model it
is often convenient to write f t(x) = (1, x2

1, · · · , x2
k, x1, · · · , xk, x1x2, · · · , xk−1xk).

For the third-order model the most convenient expression for f t(x) seems to be
f t(x) = (1, x2

1, · · · , x2
k, x1x2, · · · , xk−1xk, x1x2x3, · · · , xk−2xk−1xk, gt

1(x), · · · , gt
k(x))

where gt
i(x) = (xi, x

3
i , xix

2
1, · · · , xix

2
i−1, xix

2
i+1, · · · , xix

2
k) (i = 1, · · · , k). In what fol-

lows only the polynomial models are to be considered. A design ξ is called a d-th order
design if it permits estimation of all the parameters of a d-th order model. Most of
the literature on response surface designs deal with d ≤ 3 except when k = 1.

It would be interesting to find the necessary and sufficient conditions for a d-th
order design to be slope-rotatable. Past literature has been concerned with d = 2 only.
In what follows we also consider the second-order designs only.



254 International Journal of Statistical Sciences, Vol. 3 (Special), 2004

5 Slope-rotatable designs

A d-th order design ξ is called symmetric if all the “odd moments” up to order 2d
are zero, that is, if

∫
χ

xd1
1 · · ·xdk

k ξ(dx) = 0 whenever one or more of the di‘s are odd

integers and
k∑

i=1
di ≤ 2d. A design ξ is called balanced (permutation invariant) if the

moments are invariant with respect to permutations of the factors x1, · · · , xk.
Hader and Park (1975) studied Axial-slope-rotatability of a special class of second-

order designs, namely the central composite designs and derived the necessary and
sufficient conditions for such rotatability in terms of the elements of M−1(ξ) . They
called this kind of slope-rotatability “rotatability over axial directions”. Park (1987)
studied A-rotatability of second-order designs, derived the necessary and sufficient
conditions for it and termed it “slope-rotatability over all directions (SROAD)”. Ying
et al (19995a, b) considered A-rotatability of second-order designs and found some
examples from outside the class of symmetric balanced designs and also obtained for
some special classes of designs the necessary and sufficient conditions in terms of the
elements of M(ξ), thus providing deeper insight into the structure of such designs.

The elements of the information matrix M(ξ), i.e. the moments of a design ξ may
be denoted by [i] =

∫
χ

xiξ(dx), [ij] =
∫
χ

xixjξ(dx), [iij] =
∫
χ

x2
i xjξ(dx), and so on.

For a second-order design only the moments of order 4 and less are involved and
consequently, if the design is symmetric and balanced, the only non-zero moments
are [ii] = α2, [iiii] = α4 and [iijj] = α22, say, (i 6= j = 1, · · · , k). Then one may
write M(ξ) = diag{M1(ξ), α2Ik, α22Ik′} where k′ = k(k − 1)/2, Ik is the identity

matrix of order k, M1(ξ) =
[

1 α21t
k

α21k (α4−α22)Ik + α22Ek

]
, Ek = 1k1t

k and 1k is the

k-component column vector of 1’s. Further,

V (ξ, z) = (1/α2 + ρ2/α22) + {4/(α4 − α22)− 2/α22} diag{z2
1 , · · · , z2

k}
+(1/α22 + 4[1/{α4 + (k − 1)α22 − kα2

2} − 1/(α4 − α22)]/k)zzt (1)

where ρ2 = ztz. (cf. Huda and Al-Shiha (2000)).
From (1) it follows that for a second-order symmetric balanced design to be D-

rotatable a sufficient condition is that the design be rotatable (in the Box and Hunter
(1957) sense). It is yet to be determined if rotatability is also a necessary condition
for D-rotatability. The matter is currently under investigation.

Note that A-rotatability is concerned with the trace of V (ξ, z) which involves only
the diagonal elements of V (ξ, z). Equation (1) shows that for second-order designs
symmetry and balance are sufficient conditions for A-rotatability. Rotatability ( i.e.
α4 = 3α22) is not necessary. In fact it is possible to construct A-rotatable designs that
are not symmetric and balanced. For example when k = 2, the information matrix for
a second-order symmetric design ξ is given by
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M(ξ) = diag {



1 [11] [22]
[11] [1111] [1122]
[22] [1122] [2222]


, diag {[11], [22], [1122]} }, and

H(z) =
[

0 2z1 0 1 0 z2

0 0 2z2 0 1 z1

]
. Consequently, V (ξ, z) is given by

V (ξ, z) =

[
4D([2222]− [22]2)z2

1 + 1/ [11] + z2
2/ [1122] , −4D([1122]− [11] [22])z1z2 + z1z2/ [1122]

−4D([1122]− [11] [22])z1z2 + z1z2/ [1122] , 4D([1111]− [11]2)z2
2 + 1/ [22] + z2

1/ [1122]

]

where D = 1/{[1111][2222]-[1122]2- [11]2[2222] + 2[11][22][1122] - [22]2[1111]}.
Thus for a 2-dimensional symmetric second-order design to be A-rotatable, the

necessary and sufficient condition is that

[2222] + [11]2 = [1111] + [22]2. (2)

It is very easy to construct symmetric designs satisfying condition (2) and two simple
examples are as follows.

Example 1. Consider, a two dimensional design with one trial at each of (±a,
±b), (±c, 0), (0, ±c) and n0 trials at the origin (0, 0). Clearly the design satisfies (2)
and hence is A -rotatable if c2 = (a2 + b2)(n0 + 4)/4. This design is not balanced for
arbitrary values of a and b. Figure 1 shows the design for specific values a = 2, b = 1
and n0 = 4 (giving c =

√
10, [11] = 3, [22] = 2, [1111] = 22 and [2222] = 17).

Example 2. Consider a design given by one trial at each of (±a, ±a), (±b, 0),
(0, ±c) and n0 centre points. This design satisfies (2) if a2 = (b2 + c2) (n0 + 6)/8 and
is A-rotatable. It is also not balanced for arbitrary values of b and c. Figure 2 shows
the design for the specific values b = 1, c = 3 and n0 = 2 (giving a =

√
10, [11] = 4.2,

[22] = 5.8, [1111] = 40.2, [2222] = 56.2).
Ying et al (1995a, b) studied in depth the problem of A-rotatability of second-order

designs and the interested readers should see the asymmetric examples therein.
Equation (1) also shows that rotatability is a sufficient condition for E-rotatability

of second-order designs. But it is not yet known if it is also a necessary condition.
The matter is under investigation.

6 Comments

More work needs to be done regarding D- and E-rotatability. In particular, it would
be very useful to obtain in terms of the elements of M(ξ) the necessary and sufficient
conditions for a design to be D- or E-rotatable. The investigation might be quite
difficult to carry out for a general d-th order design. However, it may be possible to
do the investigation in depth for second-order designs in low dimensions, say for k =
2 or 3, in order to provide some idea about the complexity of the problem in higher
dimensions.
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Figure 1. Plot of Trial Points for Example 1 
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Figure 2. Plot of Trial Points for Example 2 
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From the definitions given in Section 3 it is clear that an Axially- (slope)-rotatable
design is automatically A-(slope)-rotatable. For second-order designs this has been
pointed out in Anjaneyulu et al (1997).

A large volume of work has been done in the past regarding construction of second-
order slope-rotatable designs. The interested readers are requested to see Victorbabu
and Narasimham (1996) and references therein.
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