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Abstract

This paper examines the covariate dependence in a three state Markov
model. Muenz and Rubinstein (1985) introduced a Markov model of first
order for analyzing covariate dependence employing logistic regression. In
this paper, the covariate dependent Markov model is proposed for more
than two states. For the sake of notational convenience, a three state
Markov model is considered that can be increased to any finite number
of states. The proposed model can be used for a wide range of practical
applications. This paper shows the estimation and test procedures for a
covariate dependent three state Markov model. The model is illustrated
for analyzing longitudinal data on pregnancy complications.
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1 Introduction

In analyzing the longitudinal data, the use of Markov chain models have increased to
a large extent during the recent past. Following papers indicate the variety of work in
the use of Markov models: (i) Regier (1968) introduced a two state transition matrix
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for estimating odds ratio, (ii) Prentice and Gloeckler (1978) proposed a grouped data
version of the proportional hazards regression model for estimating computationally
feasible estimators of the relative risk function, (iii) Korn and Whittemore (1979)
proposed a model in order to incorporate role of previous state as a covariate to analyze
the probability of occupying the current state, (iv) Muenz and Rubinstein (1985)
introduced a discrete time Markov chain for expressing the transition probabilities
in terms of function of covariates for a binary sequence of presence or absence of a
disease.

Among the more recent works, noteworthy are Albert (1994), Albert and Myron
(1998), Raftery and Tavare (1994). In recent years, there is a great deal of interest
in the development of multivariate models based on the Markov Chains. These mod-
els can be employed for analyzing data generated from meteorology, epidemiology and
survival analysis, reliability, econometric analysis, biological concerns, etc. Muenz and
Rubinstein (1986) employed logistic regression models to analyze the transition prob-
abilities from one state to another. The technique proposed by Muenz and Rubinstein
considers only two intercommunicating states.

In this paper, a Markov chain model for three intercommunicating states has been
proposed to analyze the covariate dependence of the transition probabilities. The
risk factors that contribute to specific transitions can be identified from the proposed
model.

2 Covariate Dependent First Order Model

A brief overview of the covariate dependent first order Markov model proposed by
Muenz and Rubinstein (1986) is presented in this section. Let us consider a two state
Markov chain for a discrete time binary sequence as follows:

π =
[

π00 π01
π10 π11

]

We can define the following: π00 = 1−π01 and π10 = 1−π11. Probability of a transition
from 0 at time tj−1 to 1 at time tj is π01 = P (Yj = 1/Yj−1 = 0) and similarly the
probability of a transition from 1 at time tj−1 to 1 at time tj is

π11 = P (Yj = 1/Yj−1 = 1).

The transition probabilities can be defined in terms of function of the covariates as
follows:

π01(Yj = 1/Yj−10, X) =
eβ′0X

1 + eβ′0X
, (1)

and

π11(Yj = 1/Yj−1 = 1, X) =
eβ′1X

1 + eβ′1X
(2)
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where

X ′
i = [1, Xi1, · · · , Xip] = vector of covariates for the ith person;

β′0 = [β00, β01, · · · , β0p] = vector of parameters for the transition from 0;
β′1 = [β10, β11, · · · , β1p] = vector of parameters for the transition from 1.

Then the likelihood function can be defined as

L =
n∏

i=1

ni∏

j=1

[
{π00}δ00ij {π01}δ01ij

] [
{π10}δ10ij {π11}δ11ij

]
(3)

where ni = total number of follow-up observations since the entry into the study for
the ith individual; δmsij = 1 if a transition type m-s is observed during jth follow-
up for the ith individual (m,s=0,1), 0 otherwise. The log likelihood function, after
substituting (1) and (2) in (3), can be expressed as

ln L = ln L0 + ln L1

where L0 corresponds to the first part and L1 corresponds to the second part of (3).
Hence,

lnL0 =
n∑

i=1

ni∑

j=1

[
δ01ij

{
β′01Xi

}− (δ00ij + δ01ij) ln{1 + eβ′01Xi}
]

and

ln L1 =
n∑

i=1

ni∑

j=1

[
δ11ij

{
β′11Xi

}− (δ10ij + δ11ij) ln{1 + eβ′11Xi}
]
.

Differentiating with respect to the parameters and solving the following equations we
obtain the likelihood estimates for 2(p+1) parameters:

∂ ln L0

∂β01q
= 0, q = 1, 2, · · · , p;

and
∂ ln L1

∂β11q
= 0, q = 1, 2, · · · , p.

3 Three State Markov Model

In reality, we have to face more than two states in many different situations. As an
example, we may consider three states of health status, normal, moderately sick, and
severely sick. Then we can show the Markov Chain as follows:

π =




π00 π01 π02

π10 π11 π11

π20 π21 π22






244 International Journal of Statistical Sciences, Vol. 3 (Special), 2004

where π00 = 1− π01 − π02, π10 = 1− π11 − π12, π20 = 1− π21 − π22 and . Here, 0 and
1 and 2 are the three possible outcomes of a dependent variable, Y . The probability
of a transition from m (m = 0, 1, 2) at time tj−1 to s (s = 0, 1, 2) at time tj is

πms = P (Yj = s/Yj−1 = m). It is evident that for any m,
2∑

s=0
πms = 1, m = 0, 1, 2.

Let us define the following notations: Xi = [1, Xi1, · · · , Xip] = vector of covari-
ates for the ith person; β′ms = [βms0, βms1, · · · , βmsp]= vector of parameters for the
transition from m to s.

Then the transition probabilities can be defined as conditional probabilities in
terms of function of the covariates as follows (Hosmer and Lemeshow, 1989):

πms(Yj = s/Yj−1 = m,X) =
egms(X)

2∑
k=0

egmk(X)

, m = 0, 1, 2 (4)

where

gms(X) =

{
0, if s = 0
ln

[
πms(Yj=s/Yj−1=m,X)
πms(Yj=0/Yj−1=m,X)

]
if s =1,2.

Hence
gms(X) = βms0 + βms1X1 + · · ·+ βmspXp.

Then the likelihood function for n individuals with each individual having ni (i =
1, 2, · · · , n) follow-ups can be expressed as

L =
n∏

i=1

ni∏

j=1

2∏

m=0

2∏

s=0

[
{πms}δmsij

]
(5)

where ni = total number of follow-up observations since the entry into the study for the
ith individual; δmsij = 1 if a transition type m → s is observed during jth follow-up
for the ith individual, δmsij = 0, otherwise, m, s = 0, 1, 2. The log likelihood function,
after substituting (1) and (2) in (3), can be expressed as

ln L =
2∑

m=0

lnLm,

where Lm corresponds to the m-th component of the likelihood function.
Hence,

ln Lm =
n∑

i=1

ni∑

j=1

[
2∑

s=0

δmsijgms(Xi)− ln

(
2∑

k=0

egmk(Xi)

)]
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Differentiating with respect to the parameters and solving the following equations we
obtain the likelihood estimates for 6(p + 1) parameters:

∂ lnLm

∂βmsq
=

n∑

i=1

ni∑

j=1

Xqi(δmsij−πmsij), q = 0, 1, 2, · · · , p; m = 0, 1, 2.

The observed information matrix can be obtained from the following second deriva-
tives:

∂2 ln Lm

∂βmsq∂βmsq′
= −

n∑

i=1

ni∑

j=1

Xq′iXqiπmsij(1− πmsij),

q, q′ = 0, 1, 2, · · · , p; s = 0, 1, 2; m = 0, 1, 2, and

∂2 ln Lm

∂βmsq∂βms′q′
= −

n∑

i=1

ni∑

j=1

Xq′iXqiπmsijπms′ij ,

q, q′ = 0, 1, 2, · · · , p; s, s′ = 0, 1, 2; m = 0, 1, 2.

4 Test of Hypothesis

A straightforward test procedure was first proposed by Anderson and Goodman (1957),
Billingsley (1961), and then used by Kalbfleisch and Lawless (1985) and Raftery and
Tavarey (1994). The modified test statistic for the multistate Markov model is defined
as follows assuming equal number of follow-ups for each subject (ni = r).

χ2 =
2∑

m=0

2∑

s=0

n∑

i=1

r∑

j=1

{nmsij − emsij}2

emsij

where essentially nmsij = δmsij and emsij is the expected number corresponding to the
observed number of transitions nmsij . The expected number of transitions, nmsij , can
be obtained from the following steps:

(i) estimate for πmsij needs to be obtained for given values of Xmsi which is π̂msij ;
and

(ii) then we have emsij = (π̂msij).(nmsi.) where nmsi. =
ni∑

j=1
nmsij .

If none of the transition probabilities is restricted to be zero then the test statistic
is the familiar Pearson statistic with 9n(r − 1) degrees of freedom. The degrees of
freedom will be further reduced for the estimates of transition probabilities zero or
nearly zero (Kalbfleisch and Lawless, 1985).
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The vectors of 6 sets of parameters for the three state Markov model can be
represented by the following vector:

β = [β1, β2, · · · , β6] .

To test the null hypothesis H0 : β = 0, we can employ the usual likelihood ratio test

−2[lnL(β0)− ln L(β)] ≈ χ2
6p.

To test the significance of the qth parameter of the 6 sets of parameters, the null
hypothesis is H0 : βmq = 0 and the corresponding Wald test is

W =
β̂mq

se(β̂mq)
.

5 Application

This study employs data from the survey on Maternal Morbidity in Bangladesh con-
ducted by the Bangladesh Institute for Research for Promotion of Essential and Re-
productive Health Technologies (BIRPERHT) during November 1992 to December
1993. The data were collected using both cross-sectional and prospective study de-
signs. This study is based on the data from the prospective component of the survey.
The subjects comprised of pregnant women with less than 6 months duration. All the
selected pregnant women were followed on regular basis (roughly at an interval of one
month) throughout the pregnancy. During the follow-up visits, pregnancy complica-
tions were recorded. A total of 1020 pregnant women were interviewed in the follow-up
component of the study. For the purpose of this study, we have selected 993 pregnant
women, with at least one antenatal follow-up. The following pregnancy complications
are considered under the complications in this study: hemorrhage, fits, convulsion,
edema, excessive vomiting, and cough or fever for more than three days. If one or
more of hemorrhage, fits, convulsion occurred to the respondents, we considered as
major complications and coded was as 2, if edema, excessive vomiting, and cough or
fever for more than three days occurred to the respondents, we considered as minor
complications and was coded as 1, if no complications then coded as 0.

The explanatory variables are: age at marriage (15 years or lower, more than 15
years), index pregnancy was wanted or not (no, yes), visit to health care facilities (yes,
no), pregnancies prior to the index pregnancy (yes, no), and education of respondent
(no schooling, some schooling).

The number of transitions for the three-state Markov chain of first order is dis-
played in Table 1. The estimates of parameters of covariate dependent Markov models
are presented in Table 2.

Table 2 provides estimates from some of the transitions for a three-state Markov
model with covariate dependence for analyzing the pregnancy complications. The
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Table 1: Number of Transitions for Pregnancy Complications

Transitions → 0 → 1 → 2
First Order
0→ 1416 275 17
1→ 363 602 31
2→ 41 39 50

Table 2: Estimates of Parameters of Covariate Dependent Markov Models for Analyz-
ing Pregnancy Complications

Variables Estimates Std. error t-value p-value
0→ 1
Constant -1.31 0.155 -8.44 0.000
Age at marriage (≤ 14 = 1) -0.06 0.099 -0.59 0.553
Wanted pregnancy (Yes=1) -0.19 0.107 -1.76 0.078
Visit to HC (yes=1) 0.61 0.107 5.69 0.000
Previous pregnancies (Yes=1) -0.06 0.117 -0.54 0.591
Education of women (Yes=1) 0.05 0.099 0.49 0.622
1→ 1
Constant 0.19 0.211 0.90 0.366
Age at marriage (≤ 14 = 1) -0.02 0.133 -0.12 0.902
Wanted pregnancy (Yes=1) 0.01 0.140 0.04 0.969
Visit to HC (yes=1) -1.40 0.135 10.37 0.000
Previous pregnancies (Yes=1) 0.13 0.155 0.85 0.396
Education of women (Yes=1) 0.40 0.132 3.00 0.003
2→ 2
Constant -0.51 0.616 -0.83 0.405
Age at marriage (≤ 14 = 1) 0.10 0.365 0.27 0.790
Wanted pregnancy (Yes=1) 0.45 0.381 1.19 0.234
Visit to HC (yes=1) -0.47 0.391 -1.19 0.233
Previous pregnancies (Yes=1) 1.15 0.421 2.73 0.006
Education of women (Yes=1) 0.32 0.374 0.85 0.396
Chi-square (p-value) 973.91 (0.0000)
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transitions of the types 0 → 1, 1 → 1 and 2 → 2 are considered in Table 2. It is
observed from the results that visit to healthcare facilities is positively associated with
0 → 1, and negatively associated with 1 → 1 and number of previous pregnancies is
positively associated with the transition of the type 2 → 2.

6 Conclusion

The discrete time Markov models are used in characterizing the pattern of transition in
the disease states. A number of researchers have used different Markov models. This
paper uses a simple method of linking the transition probabilities with their potential
risk factors by employing the logistic regression model. Muenz and Rubinstein (1985)
proposed a covariate dependent model for two intercommunicating states. In this
paper, a three state Markov model is used to show the covariate dependence, and the
proposed model can be generalized for any finite number of states. The likelihood
function, estimation procedure and test procedures are discussed in the paper. The
proposed method generalizes the estimation and test procedures as well as the utility
of the two-state covariate dependent Markov model for any finite number of states.
An application is included in this paper to illustrate the use of the proposed model for
real life problems.
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