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Abstract

As the world advances, statisticians/mathematicians are being involved into
more and more complex surveys for the development of society and human
beings. Consequently, these complex survey data requires complicated and
high-dimensional models for final analysis. We need sophisticated and effi-
cient statistical/mathematical tools for estimation and prediction of these
models. Frequently, we simulate samples from these complicated models to
estimate parameters because direct estimation is sometimes not efficient.
Markov chain Monte Carlo (MCMC) methods have been developed for
simulation and efficient estimation. In these times of availability of high-
speed computing facilities, MCMC methods are popular tools to generate
samples from these complex and high-dimensional distributions. There are
some MCMC methods available for application, for instance, Gibbs sam-
pler, Metropolis-Hastings algorithm, etc. In this paper we compare the
performance of two MCMC methods, namely the Hybrid (HY) algorithm
and the Random Walk Metropolis-Hastings (M-H) algorithm, by employ-
ing two logistic regression models and a multivariate normal distribution.
We get data used in one of the examples from a Prostate Cancer Study
presented in a book by D.W. Hosmer and S. Lemeshow. The Bayesian
approach is followed to fit the two logistic regression models. Evaluation
of performance is based on convergence of Markov chains, efficiency of es-
timation and Monte Carlo error variances of the two methods.
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1 Introduction

In recent times, Markov chain Monte Carlo (MCMC) methods are being used ex-
tensively to generate samples from complicated, high-dimensional distributions. In
many situations, the target distributions do not have closed mathematical conditional
distributions, especially in Bayesian framework. MCMC techniques provide an an-
swer to the difficult problem of simulation from the high-dimensional distribution of
the unknown quantities that appear in complex models (Gamerman, 1997; Gilks et.
al., 1998). MCMC is essentially Monte Carlo integration using Markov chains. We
need to integrate over the target posterior distribution of model parameters given the
data. Monte Carlo integration draws samples from the required distribution until
it approaches equilibrium, known as the limiting distribution, and then forms sam-
ple averages to approximate expectations. So our limiting distribution is usually the
posterior distribution when we apply Bayesian statistics or could be any other dis-
tribution. Markov chain Monte Carlo (MCMC) draws samples by running a cleverly
constructed Markov chain for a long time.

Some MCMC algorithms use more information about the posterior distribution or
any other target distribution than others; generally one expects algorithms that use
more information to be more efficient. The Gibbs sampler (Geman and Geman, 1984;
Gelfand and smith, 1990) requires draws from the posterior conditional distribution
of each parameter, given the other parameters. Hybrid algorithm (Duane et. al.,
1987; Neal, 1993) requires evaluation of the log un-normalized posterior density along
with its first partial derivatives. In contrast, simpler forms of the Metropolis algo-
rithm (Metropolis et.al., 1953; Hastings, 1970) require only un-normalized posterior
density evaluations. For instance, the random walk Metropolis algorithm operates by
proposing that the Markov chain move to a candidate state obtained by adding noise
to the current state. This algorithm is commonly used in practice, often to update a
few ’tricky’ parameter components that are not amenable to Gibbs sampling. Before
discussing these two selected algorithms, namely the Hybrid (HY) algorithm and the
Random Walk Metropolis-Hastings (M-H) algorithms in detail, we are going to define
Bayes’ estimator and Monte Carlo integration which will be useful to understand the
methodologies of this paper.

1.1 Bayes’ Estimator

A Bayes’ estimator of θ, say, is the mean of the posterior distribution of θ ∼ p(θ|y),
say, called the posterior expectation, i.e.

θ̂B = E(θ|y)

=
∫

θp(θ|y)dθ

=
∫

θp(θ)p(y|θ)dθ∫
p(θ)p(y|θ)dθ

, (1)
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where p(θ) is the prior distribution of θ, and p(y|θ), is the sampling distribution of the
observed data y.

The integrations in (1) have until recently been the source of most of the practical
difficulties in Bayesian inference, especially in high dimensions. In most applications,
analytic evaluation of E(θ|y) is impossible. The best alternative way of evaluation is
the MCMC.

1.2 Monte Carlo Integration

Let X be a vector of k random variables, with distribution π(.), where X consists of
model parameters and missing data. Our task is to evaluate the expectation

E[f(X)] =
∫

f(x)π(x)dx∫
π(x)dx

,

for some function of interest f(.). Monte Carlo integration evaluates E[f(x)] by draw-
ing samples {Xt, t = 1, 2, . . . , n} from π(.) and then approximating

E(f(X)] ≈ 1
n

n∑

t=1

f(Xt).

So the population mean of f(X) is estimated by a sample mean. When the samples
{Xt} are independent, the laws of large numbers ensure that the approximation can
be made as accurate as desired by increasing the sample size n.

In general, drawing samples {Xt} independently from π(.) is difficult. However,
the samples {Xt} need not necessarily be independent. They can be generated by any
process, which draws samples throughout the support of π(.) in the correct propor-
tions. One way of doing this is through a Markov chain having π(.) as its stationary
distribution. This is then Markov chain Monte Carlo.

2 The Metropolis-Hastings (M-H) algorithm

The Metropolis-Hastings algorithm is the fundamental building block of most MCMC
algorithms. Given a target distribution Π, which would be the posterior distribution
in Bayesian applications, we wish to construct a Markov chain {Xi}∞i=0 with Π as
its stationary distribution. If Xn = xnis the current state of the chain, then the
Metropolis-Hastings algorithm proceeds by simulating a candidate or proposal value
y from a transition density, q(x, .). The next state Xn+1, is then randomly assigned
to be either y with probability α(xn, y), or xn with probability 1− α(xn, y), where

α(x, y) = min
{

π(y)q(y, x)
π(x)q(x, y)

, 1
}
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is the acceptance probability. By choosing different proposal transition densities q(., .)
we obtain different MCMC algorithms, including Gibbs sampler, the Langevin algo-
rithm and the random walk Metropolis algorithm amongst others.

In the case that Π is a continuous univariate distribution on R, the random walk
Metropolis algorithm works as follows. The candidate state is obtained by adding
noise to the current state; specifically, q(x, y) = f(y − x), for some density f which is
symmetric about zero. Commonly f is taken to be normal (mean zero and variance
σ2), in which case the algorithm for updating from Xn = xn to Xn+1 = xn+1 can be
expressed as:

y ← xn + z, where z ∼ N(0, σ2)

α ← min
(

π(y)
π(xn)

, 1
)

xn+1 ←
{

y with probability α,
xn with probability 1− α.

Note that the symmetry property of the proposal transition, q(x, y) = q(y, x), leads
to a simple form for the acceptance probability.

This method randomly searches for regions of high probability, that is, the direction
in which the Markov chain (MC) attempts to move is randomized at each transition.
This behavior could be inefficient, because it might take many iterations to converge
to the target stationary distribution. For some target distributions the MC might
not converge after many iterations and we may not get the desired sampler output.
A natural modification of this behavior is to bias the noise distribution in favor of
candidate states which lies ‘uphill’ from the current state. Hybrid (HY) algorithm is
the modification of random walk M-H algorithm in which the following two ideas are
implemented:

(i) to incorporate derivative evaluations of the target density to use more informa-
tion, and

(ii) to suppress random walk behavior of the MC, that is, to avoid the random search
for high probability regions we attempt to force moves in more consistent manner
for faster convergence and efficiency.

3 Hybrid (HY) algorithm

Let X ∼ Π be the target density having an unnormalized density function π(x) on a
subset of <k. The algorithm works by extending the state from X to (X,Y ), and the
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unnormalized target density from π(x) to

π(x, y) = π(x)π(y)

= π(x) exp

(
−1

2

k∑

i=1

y2
i

)
(2)

where Y has a N(0, Ik) distribution independent of X. Thus we can sample from π(x)
by sampling (X, Y ) from (2) and simply discarding the Y values.

The following three steps should be followed to construct a Markov chain for (
X, Y ) having (2) as its stationary distribution. Also it is necessary to specify a step
size ε > 0, a function g : <k → <k, and a constant δ ∈ [0, 1).

1. Determine a candidate state (x∗, y∗) as

x∗ ← x + ε[y + (ε/2)g(x)],
y∗ ← −y − (ε/2)[g(x) + g(x∗)],

and randomly assign

(x, y) ←
{

(x∗, y∗) with probability p,
(x, y) with probability 1− p,

where

p = min
{

π(x∗, y∗)
π(x, y)

, 1
}

.

2. Unconditionally negate y, i.e.
y ← −y

3. Perform an autoregressive update to y, i.e.

y ← N(δy, (1− δ2)1/2Ik).

We will choose g(x) = ∆ log π(x), the gradient vectors of the parameters from the
target distribution and δ close to one to suppress the random walk behavior of the
MC.

The above random walk M-H and HY algorithms can be applied in a univariate
fashion, to update individual components of a multivariate state vector one-by-one,
or in a multivariate fashion, to update all the components simultaneously. They are
sensitive to choice of step sizes. Tuning is based on trial and error. To get a reasonable
acceptance rate while ensuring a proper mixing of the sampler output, step sizes should
be tuned very carefully.

Now to evaluate the performances of these two algorithms, firstly we draw samples
from the log posterior densities of Ordinary Logistic Regression Model (OLRM) and
a modified Logistic Regression Model. Bayesian methods are followed for estimation.
Then we compare the two methods on the basis of acceptance rate of samples and
convergence of the respective Markov chains. In the next two sections, we introduce
briefly the two logistic regression models.
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4 Ordinary Logistic Regression

Let Y be a binary response variable indicating presence (Y = 1) and absence (Y = 0)
of a disease. Let X = (X1, X2, . . . , Xp) denote a p explanatory variables or risk factors.
The X’s may be continuous or binary. For simplicity, we assume that X’s are binary.
Further assume β = (β0, β1, β2, · · · , βp) are regression coefficients to be estimated.
The linear logistic regression model in the logit scale can be written as:

logit Pr(Y = 1|X) = β0 + β1X1 + · · ·+ βpXp,

= g(x, β), say

where

Pr(Y = 1|X) = π(x)

=
1

1 + e−g(X,β)
.

4.1 Likelihood Function and the Posterior distribution

Suppose that we have total n number of cases in the study. The responses y1, y2, · · · , yn

are the observed values of independent random variables Y1, Y2, · · · , Yn. The Yi’s, for
i = 1, 2, · · · , n, are distributed as binomial with index mi, the number of observations
in each group and parameter πi. We assume mi = 1. Let us assume a diffuse prior for
β, that is, π(β) ∝ 1. The likelihood function may be written in the form:

L(β) =
n∏

i=1

π(xi)yi [1− π(xi)]1−yi .

Therefore, the posterior distribution is: P (β|y, x) ∝ L(β) π(β).
Rearranging terms, we get the log posterior distribution as:

log P (β|y, x) = K +
n∑

i=1


yi




p∑

j=0

βjxij


− log



1 + exp




p∑

j=0

βjxij









, (3)

where K is an unknown constant and xi0 = 1. As before let g(x, β) =
∑p

j=0 βjxij . For
implementing the HY algorithm we need to evaluate derivatives of (3) with respect to
β0, β1, β2, · · · , βp. The derivatives are computed as follows:

δ log P

δβ0
=

n∑

i=1

[
yi − exp(g(x, β̂))

1 + exp(g(x, β̂))

]

=
n∑

i=1

(yi − π̂i),
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where π̂i = exp(g(x,β̂))

1+exp(g(x,β̂))
. Similarly,

δ log P

δβj
=

n∑

i=1

(yi − π̂i)xij for j = 1, 2, · · · , p.

5 New Logistic Regression Model

The ordinary logistic regression model is extended to include non-additive interaction
effects. Let us assume that the probability of presence of a disease is a non-linear
function of the risk factors in the logit scale. Then the non-linear regression model is
defined as:

logit Pr(Y = 1|X) = β0 + {βλ
1 X1 + · · ·+ βλ

p Xp}1/λ, (4)

where λ is an additional parameter.
The likelihood function can be obtained by following the previous procedure. We

re-parameterize λ by defining φ = logλ for numerical simplicity. To get the posterior
distribution we assume a diffuse prior for β and a normal prior for φ, that is, π(φ) ∼
N(0, c2). To avoid some numerical complexities associated with enormous λ values we
assume c = log(2). The joint posterior distribution is defined as:

P (β, φ|y) ∝ L(β, φ) π(β) π(φ).

Therefore the log posterior distribution is:

log P (β, φ|y) = K +
n∑

i=1

yi


β0 +




p∑

j=1

βeφ

j xij




e−φ



−
n∑

i=1

log


1 + exp





β0 +




p∑

j=1

βeφ

j xij




e−φ





− 1

2c2
φ2, (5)

where K is an unknown constant.
The derivatives of the new logistic regression model can be obtained by differenti-

ating Equation (5) with respect to the parameters. They are omitted here and given
in the appendix. In the next section we draw samples from Equations (3) and (5) by
using both random walk M-H and HY algorithms, and compare their efficiency.

6 Example 1: The Prostate Cancer Study

This example is taken from the book “Applied Logistic Regression”, by Hosmer and
Lemeshow, John Wiley & Sons, 2nd Edition (2000). In this study data was collected
from 380 male patients who had cancer of the prostate.



228 International Journal of Statistical Sciences, Vol. 3 (Special), 2004

The goal of the study was to determine whether variables measured at a baseline
examination could be used to predict whether the tumor has penetrated the prostatic
capsule. Of these 380 subjects considered, 153 had a cancer that penetrated the
prostatic capsule. The description of the measured variables is given in the following
table 1.

Table 1: Code Sheet for the Prostate Cancer Study.

Variable # Variable Description Codes/Values Name
1 Tumor Penetration of the

Prostatic Capsule
0 = No Penetration
1 = Penetration

CAPSULE

2 Age Years AGE
3 Race 1 = White, 2 = Black RACE
4 Results of the Digital Rectal

Examination
1 = No Nodule
2 = Unilobar Nodule (Left)
3 = Unilobar Nodule (Right)
4 = Bilobar Nodule

DPROS

5 Detection of Capsular in-
volvement in Rectal Exam.

1 = No
2 = Yes

DCAPS

6 Prostatic Specific Antigen
Value

mg/ml PSA

7 Tumor Volume Obtained
from Ultrasound

cm3 VOL

8 Total Gleason Score 0 – 10 GLEASON

Here CAPSULE is the response variable. There are seven risk factors measured in
this study; two of them are binary and the remaining five are continuous. To make this
data compatible with the new logistic regression model we convert the five continuous
risk factors into binary variables by thresholding in comparison to their means.

Firstly, we draw samples from (3) by using the random walk M-H algorithm by
updating parameters component-wise. Since we have eight parameters for this data
including the intercept, the step/jump sizes used are 0.20, 0.25, 0.25, 0.25, 0.35, 0.25,
0.25, and 0.30, respectively. The initial values are taken to be 0.001 for all eight
parameters. After iterating the algorithm 15,000 times the acceptance rates were
around 60% and the chain was stabilized as can be seen from Figure 1 which shows
the sample path of the MCMC output. Secondly, we draw samples from (3) by using
the HY algorithm with the same initial values for the parameters. We assume ε = 0.07
and δ = 0.90 to get a reasonable acceptance rate while ensuring proper mixing of the
sampler output. The acceptance rate was 88% after 15,000 iterations and the chain
was stabilized as can be seen from Figure 2 which shows the sample path of the MCMC
output from HY algorithm. Comparing Figure 1 and 2 we observe that the mixing of
the sampler output from M-H algorithm is good except for the intercept and the last
parameter, whereas mixing of the sampler output from HY algorithm is good too for
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all of the parameters.
We throw away 500 iterations as ‘burn-in’ samples and compute the posterior

means and standard deviations from the remaining samples. These are given in Table
2.

Table 2: Summary results from the posterior distribution of the ordinary logistic
regression model by using both random walk M-H and HY algorithms.

Random Walk M-H algorithm HY algorithm
Posterior Posterior

Variable Mean Std Dev. Mean Std Dev.
Intercept
AGE
RACE
DPROS
DCAPS
PSA
VOL
GLEASON

−4.1868
0.0339
0.5586
1.3055
1.0737
1.5253
−0.0933
2.0062

0.7045
0.2463
0.4387
0.3178
0.4370
0.2892
0.2493
0.4424

−4.2507
0.0414
0.5867
1.2902
1.0931
1.5287
−0.0911
2.0517

0.7439
0.2479
0.4357
0.3082
0.4293
0.2873
0.2578
0.4934

Scrutinizing Table 2, we see that the posterior means and standard deviations are
almost the same obtained from both algorithms. But after observing the sample path
of the MCMC outputs it can be concluded that most of the times hybrid algorithm
produces satisfactory results that uses the derivative evaluations of the target posterior
distribution.

We now draw samples from Equation (5) by using both M-H and HY algorithms.
The initial values used are from the ordinary logistic regression fit, but we fix βj > 0,
for j = 1, 2, · · · , p for this model. For the M-H algorithm the jump sizes used are
0.20, 0.35, 0.20, 0.20, 0.40, 0.20, 0.35, 0.15, and 0.06, respectively for nine parameters.
The acceptance rates were around 60% for the eight parameters and 50% for λ after
iterating the algorithm 15,000 times. For HY algorithm we assume ε = 0.064, δ = 0.90.
The acceptance rate is 85% after 15,000 iterations. The sample plots are given in
Figures 3 and 4, respectively for M-H and HY algorithms. From Figure 3 we see that
mixing of the sampler output for most of the parameters is poor and the chains might
not converge after many many iterations. On the other hand, although the mixing of
the sampler output in the plots of Figure 4 is slow, the chains will be stationary after
a long number of iterations.

In computing posterior means and standard deviations we throw away 2000 iter-
ations as ‘burn-in’ from the sample MCMC output of the random walk M-H, but we
use 15,000 samples from the sample MCMC output of the HY algorithm to compute
posterior means and standard deviations. These are given in Table 3.



230 International Journal of Statistical Sciences, Vol. 3 (Special), 2004

Table 3: Summary results from the posterior distribution of the new logistic regression
model using both RW M-H and HY algorithm.

Random Walk M-H algorithm HY algorithm
Posterior Posterior

Variable Mean Std Dev. Mean Std dev.
Intercept
AGE
RACE
DPROS
DCAPS
PSA
VOL
GLEASON
λ

−14.7076
4.1086
9.3113
10.8454
9.9646
11.6413
4.2971
11.7252
1.3365

4.0054
3.1278
4.0591
3.7660
4.0384
3.8572
3.2191
3.7871
0.2854

−6.6912
0.7550
2.1640
3.0940
2.8229
3.5141
0.6827
3.9308
1.5797

1.7979
0.7699
1.3934
1.3635
1.4379
1.4509
0.7246
1.5205
0.3799

Observing Table 3 we see that the posterior means and standard deviations ob-
tained from the HY algorithm are much smaller and more stable than those obtained
from the M-H algorithm. Therefore, we may conclude that the new model is challeng-
ing for the M-H algorithm and might not provide satisfactory results. On the other
hand, use of derivative evaluations in the HY algorithm provides better output.

7 Example 2: Multivariate Normal Distribution

Let our target distribution Π for X is now the k-variate normal distribution with
mean vector zero and covariance matrix Σ. Instead of assuming uniform correlation
between each pair of elements of X, we will consider that the pair of elements of X has
exponential correlation. In contrast to the uniform correlation model, the correlation
between a pair of measurements on the same subject decays towards zero as the time
separation between the measurements increases. Let us denote the correlation by ρ.
In this scenario Σ has the form:




1 ρ ρ2 ρ3 . . .
ρ 1 ρ ρ2 . . .
ρ2 ρ 1 ρ . . .
ρ3 ρ2 ρ 1 . . .
...

...
...

... . . .




k×k

In general, multivariate distributions with high correlations tend to be challenging for
MCMC methods. Let the likelihood function of the k-variate normal distribution is
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proportional to exp(−1
2θ′Σ−1θ), where θ is k×1 vector of parameters and Σ is the k×k

covariance matrix of θ. Our goal is to sample θ from the k-variate normal distribution.
Therefore the log likelihood function is:

log L = K − 1
2
θ′Σ−1θ, (6)

where K is an unknown constant. Differentiating (6) with respect to θ we have,

∂ log L

∂θ
= −Σ−1θ.

We will simulate samples from (6) by using both the M-H and HY algorithms assuming
moderate and high correlations, e.g., ρ = 0.70, ρ = 0.90, etc. For simplicity, the number
of parameters is taken to be eight, i.e. k = 8. To draw samples from (6) using the
M-H (component-wise updating) algorithm with ρ = 0.70 the jump sizes are set to
1.0, 0.80, 0.90, 0.90, 0.90, 0.90, 0.90, and 1.2, respectively for eight parameters. We
iterate the algorithm 5,000 times with the initial values -3.5 for all eight parameters.
The acceptance rates were around 60%. The sample plots are given in Figure 5.

For HY algorithm we assume ε = 0.40. The acceptance rate is 90% after 5,000
iterations with the same initial values as above. The sample plots from the MCMC
output are given in Figure 6. Comparing Figure 5 and 6 we see that mixing is better
in plots from HY algorithm.

Next we draw samples from (6) assuming very high correlation, that is, ρ = 0.90
with the same initial values as before and iterate for 5,000 times. The jump sizes
for M-H algorithm are 0.70, 0.60, 0.60, 0.60, 0.60, 0.60, 0.60, and 0.70, respectively
for eight parameters. The acceptance rates are between 50% and 60%. For the HY
algorithm the step size is 0.20 and the acceptance rate is 92% after 5,000 iterations.
The sample plots from the MCMC outputs are given in Figures 7 and 8, respectively
for M-H and HY algorithms. For ρ = 0.90, mixing of the sampler output from M-
H algorithm is very slow as can be seen from Figure 7. But from Figure 8 we see
that the mixing of the sampler output from HY algorithm is much better. All of the
chains are converging to zero. Thus our intuition is that HY algorithm performs better
than random walk M-H as the correlation between pair of elements getting higher and
higher.
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Figure 1: Sample path of the MCMC output from Equation (3) by using the random
walk M-H algorithm.
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Figure 2: Sample path of the MCMC output from Equation (3) by using the hybrid
(HY) algorithm.
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Figure 3: Sample path of the MCMC output from Equation (5) by using the random
walk M-H algorithm.
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Figure 4: Sample path of the MCMC output from Equation (5) by using the hybrid
(HY) algorithm.
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Figure 5: Sample path of the MCMC output from Equation (6) by using the M-H
algorithm with ρ = 0.70. The eight panels correspond to eight parameters of θ.
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Figure 6: Sample path of the MCMC output from Equation (6) by using the HY
algorithm with ρ = 0.70. The eight panels correspond to eight parameters of θ.
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Figure 7: Sample path of the MCMC output from Equation (6) by using the M-H
algorithm with ρ = 0.90. The eight panels correspond to eight parameters of θ.
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Figure 8: Sample path of the MCMC output from Equation (6) by using the HY
algorithm with ρ = 0.90. The eight panels correspond to eight parameters of θ.
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8 Monte Carlo Error Variance

The two algorithms can be compared by obtaining an estimate of the Monte Carlo
error variance from the sample MCMC outputs. To get an estimate of this we run each
of the algorithms 5 times with the initial values -3.5, 3.5, -5, 5, and 6, respectively. We
throw away 500 iterations as ‘burn-in’. From each run we get Monte Carlo estimates of
the eight parameters which are actually trying to estimate mean of θ. Let ψ = E(θ) be
the true mean of θ which we assume to be zero and ψ̂i’s are the Monte Carlo estimates
of ψ. An estimate of the Monte Carlo error variance can be computed by the quantity:

1
p

p∑

j=1

(
ψ̂j − ψ

)2
, (7)

where p = 5. The Monte Carlo error variance estimates for each of the eight parameters
obtained by using Equation (7) are given in Table 4.

Table 4: Monte Carlo error variance estimates obtained by (7) for ρ = 0.70 and
ρ = 0.90 by using both algorithms.

ρ = 0.70 ρ = 0.90
Parameter M-H HY M-H HY
θ1 0.0025 0.0002 0.0071 0.0060
θ2 0.0021 0.0004 0.0070 0.0062
θ3 0.0018 0.0008 0.0075 0.0066
θ4 0.0013 0.0009 0.0064 0.0055
θ5 0.0012 0.0008 0.0062 0.0030
θ6 0.0022 0.0004 0.0054 0.0019
θ7 0.0028 0.0007 0.0055 0.0015
θ8 0.0020 0.0007 0.0029 0.0011

From Table 4 we see that when ρ = 0.70 estimates of error variances are much
smaller for HY algorithm than those from the random walk M-H algorithm. When
ρ = 0.90, though the error variances increase, still the estimates from HY algorithm
are much smaller than those obtained from the M-H algorithm.

9 Discussion

The hybrid (HY) algorithm appears to provide consistent results over the random walk
Metropolis Hastings algorithm in respect of convergence and efficiency. Assuming two
different types of target distributions we compare the two algorithms under consid-
eration. The first type is posterior distributions from two different logistic regression
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models and the second type is the multivariate normal distribution with exponential
correlation between the pair of elements. In each of the above examples we observed
that HY algorithm is more likely to be efficient than the M-H algorithm. The sig-
nificant issue to notice is that in implementing the random walk M-H algorithm for
component-wise updating, setting up of correct proposal variance or jump sizes for the
parameters is a difficult task, especially when the dimension of the target distribution
is very high. On the other hand, implementation of HY algorithm is not very difficult
and we need to set only one proposal variance for all of the parameters. Though choice
of proposal variance affects both algorithms, hybrid algorithm, in fact, is less sensitive
to this specification. In applications, we require extra human effort to understand and
program the HY algorithm and extra machine time required is negligible.

In the end, it may be concluded, at least from the examples analyzed and discussed
in this paper, that for practical purposes use of the hybrid algorithm for complicated
and high-dimensional target distributions rather than the random walk Metropolis
Hastings algorithm will be a good choice for satisfactory and improved results.

Appendix

Derivatives of Model (4)

Rewriting Equation (5) we have,

log P (β, φ|y) = K +
n∑

i=1

[
yigi(β, φ)− log(1 + egi(β,φ))

]
− 1

2c2
φ2, (8)

where

gi(β, φ) = β0 +




p∑

j=1

βeφ

j Xij




e−φ

. (9)

Differentiating Equation (8) with respect to βj , j = 0, 1, 2, · · · , p and φ we get the
following (p + 2) equations:

δ log P (β, φ|y)
δβj

=
n∑

i=1

[
yi −

(
1− 1

1 + egi(β,φ)

)]
δ

δβj
gi(β, φ), (10)

δ log P (β, φ|y)
δφ

=
n∑

i=1

[
yi −

(
1− 1

1 + egi(β,φ)

)]
δ

δφ
gi(β, φ)− φ

c2
. (11)

To get the (p + 1) equations of (10) we need to differentiate δ
δβj

gi(β, φ) with respect
to βj , j = 0, 1, 2, · · · , p. The derivatives are as follows:
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δgi(β, φ)
δβ0

= 1,

δgi(β, φ)
δβ1

=




p∑

j=1

βeφ

j Xij




e−φ−1

βeφ−1
1 Xi1,

δgi(β, φ)
δβ2

=




p∑

j=1

βeφ

j Xij




e−φ−1

βeφ−1
2 Xi2,

...

δgi(β, φ)
δβp

=




p∑

j=1

βeφ

j Xij




e−φ−1

βeφ−1
p Xip.

Furthermore,

δgi(β, φ)
δφ

=




p∑

j=1

βeφ

j Xij




e−φ 


∑p
j=1

(
βeφ

j log(βj)Xij

)
(∑p

j=1 βeφ

j Xij

) − e−φ log




p∑

j=1

βeφ

j Xij





 .
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