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Abstract

Most of the classical literature on discriminant analysis assumes that the un-
derlying populations are normally distributed. In this paper, we investigate
discrimination problems under the assumption that the populations origi-
nate from a generalized multivariate modified Bessel distribution, which is
a much more general model that includes both the multivariate normal and
t distributions as special cases. We examine Fisher’s linear discrimination
criterion and the probabilities of misclassification under this model. It is
shown that while the discriminant criterion remains robust, the misclassi-
fication probabilities depend heavily on the underlying model.
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1 Introduction

A discrimination problem deals with classifying an individual into one of several pop-
ulations on the basis of a number of measurements taken on the individual. Fisher [9]
was the first to introduce the terminology. Other descriptive terms used for this type
of problem include separation, classification, or allocation. There is a vast amount of
literature on discrimination problems using various criteria, namely:

• the use of linear discriminant functions (see Fisher [8, 9]);

• the use of information theoretic procedures (see Kullback [19]);

• the use of predictive or Bayesian techniques (see Geisser [12] and Logan and
Gupta [22]);

• the use of the likelihood ratio test criterion (see Anderson [1], Choi [6], and
Gupta [15, 16]);

• the use of linear programming approaches (see Freed and Glover [11], Lam and
Choo [21], and Ragsdale and Stam [26]);

• the use of the k nearest-neighbour method, which is based on finding the k
nearest neighbours of the observation to be classified in the sample, and then
using a majority vote for classifying observations (see Fix and Hodges, Jr. [10]);

• the use of the CART (classification and regression trees) method, which starts
with the entire sample space and constructs split binary tree structures of the
sample space into subsets (see Breiman et al. [5]).

For a detailed treatment of the topic, we refer the reader to the following monographs:
Hand [17], Lachenbruch [20], and Van Ryzin [32]. Other multivariate texts that cover
the topic include Anderson [1], Johnson and Wichern [18], Morrison [24], and Muirhead
[25].

At this stage, it is important to realize that much of the literature on classifica-
tion problems assumes that the data are normally distributed. However, we remark
that Sutradhar [28] examined the behaviour of Fisher’s linear discriminant function
assuming a multivariate t distribution for the data. In this paper, we focus on Fisher’s
linear discriminant criterion and study the problem under the assumption that the
populations originate from a generalized multivariate modified Bessel (GMMB) distri-
bution. The GMMB distribution provides a good model for practical situations where
data may be dependent but uncorrelated, or the data distribution may possess heavier
tails than the normal. Furthermore, because of its rich parametric structure, the re-
sults under the GMMB model are expected to provide a good general solution to the
problem since the model includes as special cases several multivariate distributions of
practical interest, including both the multivariate normal and t distributions.
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The remainder of the paper is as follows. In the next section, we provide the
basic probability model underlying a GMMB data distribution, as well as the joint
probability density function (pdf) for the samples under consideration in this paper. In
Section 3, we present Fisher’s discriminant function for classifying an observation into
one of two GMMB populations. We consider the discrimination criterion as well as
the misclassification problem when parameters of the GMMB model are both known
and unknown. We also provide some numerical results to assess the probabilities
of misclassification and to make comparisons with the standard multivariate normal
model. We conclude the paper with a numerical example.

2 Models for the data and samples

In the remainder of the paper, we adopt the usual convention that random variables
will be denoted with uppercase letters and the realized values of the variable (or its
range) will be denoted by the corresponding lowercase letter. Thus, let the joint pdf
of the p-dimensional random variable Y = (Y1, . . . , Yp)

′
be given by

p(y|µ,Σ) =
|Σ|− 1

2

(
λ
ψ

) p
4

(2π)
p
2 Kν

(√
λψ

)
{

1 +
1
ψ

(y − µ)
′
Σ−1(y − µ)

} 2ν−p
4

× K 2ν−p
2

(√
λψ

[
1 +

1
ψ

(y − µ)′Σ−1(y − µ)
])

for −∞ < y < ∞, (1)

where µ is a p × 1 location vector, Σ is a p × p positive definite scale matrix, and
Kν(z) is the modified Bessel function of the third kind of order ν (see Gradshteyn and
Ryzhik [14], p. 970). The domain of the shape parameters (ψ, λ, ν) is:

ψ > 0, λ ≥ 0 for ν < 0,

ψ > 0, λ > 0 for ν = 0,

ψ ≥ 0, λ > 0 for ν > 0. (2)

Equation (1) is the pdf of the GMMB distribution and some of its statistical
properties were studied by Thabane and Haq [29]. A matrix-variate extension of (1)
was also considered by Thabane and Haq [31]. Moreover, this pdf is: (i) a member of
the elliptically symmetric class of distributions (see Ng et al. [7]), and (ii) a special
case of the symmetric multivariate hyperbolic distributions of Barndorff-Nielsen [3].
We will denote Y having pdf of the form (1) by

Y ∼ GMMBp(µ, Σ, ψ, λ, ν).

In addition to the multivariate normal and t distributions, Thabane and Haq [29]
have also indicated several other special cases of the GMMB distribution, such as the



212 International Journal of Statistical Sciences, Vol. 3 (Special), 2004

multivariate Bessel and modified Bessel distributions (see Bhattacharya and Saxena
[2] and Fang et al. [7]), the Pearson Type VII distribution (see Fang et al. [7]), and
the Rao-type t distribution (see Rao [27]).

The basic probability model (1) can be extended to model the situation where
one utilizes two samples in order to assign a new observation into one of two groups.
Analogous to the approach of Sutradhar [28], we can express the joint pdf of two un-
correlated samples chosen from two different p-dimensional GMMB data distributions
as follows. Suppose we let X = (Y1,Y2) represent the two samples of size n1 and n2,
respectively. Therefore, Yi = (Yi1, . . . ,Yini) is a p × ni matrix for i = 1, 2, where
Yij is a p-dimensional random variable for j = 1, 2, . . . , ni. Letting N = n1 + n2, we
assume that the joint pdf of the two samples is given by

f(x|µ1, µ2,Σ)

=
|Σ|−N
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By applying successive integrations, one can readily verify from (3) that Yij ∼
GMMBp(µi,Σ, ψ, λ, ν) for each i = 1, 2 and j = 1, 2, . . . , ni. Moreover, it follows from
(3) that the elements of X, the combined sample of size N , are pairwise uncorrelated,
but not necessarily independent.

3 Discrimination between two populations

3.1 Known parameters

In what follows, let π1 and π2 represent the two populations GMMBp(µ1, Σ, ψ, λ, ν)
and GMMBp(µ2, Σ, ψ, λ, ν), respectively, where the parameters µ1, µ2, and Σ are
assumed to be known. We also assume that an observation y is equally likely to
have been drawn from either π1 or π2. Therefore, according to the classical rule for
discrimination (see Anderson [1], pp. 199-202), we would assign y to π1 if

p(y|µ1, Σ) ≥ p(y|µ2, Σ). (4)

However, Thabane and Haq [29] have shown that

p(y|µi, Σ) =

∞∫

0

g(y|µi, Σ, τ)h(τ)dτ, (5)
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where
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We remark that (6) is the joint pdf of an Np(µi, τΣ) random variable, while (7) is
the pdf of the generalized inverse Gaussian distribution (see Barndorff-Nielsen [3] and
Barndorff-Nielsen et al. [4]). The domain of the parameters (ψ, λ, ν) in (7) is also
given by (2). Let T denote the random variable having pdf (7).

Equation (5) implies that, conditional on T = τ > 0, the observation y either comes
from an Np(µ1, τΣ) or an Np(µ2, τΣ) population. According to the discrimination
criterion for two known multivariate normal populations (see Anderson [1], pp. 204-
205), (4) is equivalent to

1
τ
(µ1 − µ2)

′
Σ−1y − 1

2τ
(µ1 − µ2)

′
Σ−1(µ1 + µ2) ≥ 0,

from which it immediately follows that we assign y to π1 if

w(y) = (µ1 − µ2)
′
Σ−1y − 1

2
(µ1 − µ2)

′
Σ−1(µ1 + µ2) ≥ 0. (8)

We note that (8) is Fisher’s linear discriminant rule, which therefore implies that the
classical discrimination criterion remains robust under the GMMB model. This is
consistent with Sutradhar’s [28] findings in the multivariate t model. This result is
not too surprising however, since, as remarked by Giri [13], most classical procedures
studied under the normal model remain robust under the elliptical class of distribu-
tions. Nonetheless, while the discriminant rule remains robust under the t model,
Sutradhar [28] did indicate that the probabilities of misclassification depended heavily
on the degrees of freedom of the model. In the following subsection, we explore the
behaviour of the rule through misclassification probabilities and compare the results
with those obtained under the standard normal model.

3.2 Investigating misclassification probabilities

Let pij be the probability of classifying an observation y into πj when it really be-
longs πi for i, j = 1, 2. Therefore, it immediately follows that the misclassification
probabilities are given by

p12 = Pr{w(Y) ≤ 0|Y ∈ π1}
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and
p21 = Pr{w(Y) ≥ 0|Y ∈ π2},

where w(Y) is defined by (8). In order to calculate p12 and p21, we clearly require the
distribution of the random variable w(Y). Thabane and Haq [29] showed that if

Y ∼ GMMBp (µ, Σ, ψ, λ, ν) ,

then for a p × q matrix A of rank q (q < p) and a constant vector b of dimension q,
the linear combination

A
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squared distance). In a similar fashion, one can also show that if Y ∈ π2, then
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Therefore, by straightforward algebra, it readily follows that
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Table 1 displays the probabilities of misclassification (to 4 decimal places) for
selected values of ∆2 under several different variants of the GMMB model, namely:

1. ψ = r, λ = 0, ν = −r/2, r →∞ (Normal distribution)

2. ψ = 2, λ = 0, ν = −2 (Rao-type t distribution)

3. ψ = 5, λ = 0, ν = −3.5 (Rao-type t distribution)

4. ψ = 1/2, λ = 0, ν = −1.25 (Pearson Type VII distribution)

5. ψ = 0, λ = 1, ν = 0.5 (Bessel distribution)
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6. ψ = 0, λ = 4, ν = 2 (Bessel distribution)

7. ψ = 0.5, λ = 2, ν = 0.5 (Modified Bessel distribution)

There are two important observations one can make concerning the results in Table
1. First of all, the calculation of misclassification probabilities under the normal
model generally leads to overestimation if the populations are not well separated (i.e.
∆2 ≤ 9). Secondly, if the populations are well separated (i.e. ∆2 > 9), the normality
assumption leads to underestimation of the misclassification probabilities. This is not
surprising, however, given the heavier-tailed behaviour of the GMMB models under
consideration in Table 1. Moreover, it is worth noting that these observations are
consistent with Sutradhar’s findings under the multivariate t model (see [28], p. 831).

Table 1: Probabilities of Misclassification

(ψ, λ, ν)
∆2 Normal (2,0,-2) (5,0,-3.5) (0.5,0,-1.25) (0,1,0.5) (0,4,2) (0.5,2,0.5)

0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
1 0.3085 0.2593 0.2864 0.1797 0.2049 0.2759 0.2681
4 0.1587 0.1151 0.1377 0.0645 0.1045 0.1353 0.1283
9 0.0668 0.0506 0.0596 0.0287 0.0561 0.0622 0.0598
16 0.0228 0.0237 0.0249 0.0152 0.0309 0.0275 0.0277
25 0.0062 0.0121 0.0106 0.0090 0.0173 0.0118 0.0129
36 0.0014 0.0066 0.0047 0.0059 0.0098 0.0050 0.0060
49 0.0002 0.0039 0.0022 0.0040 0.0056 0.0021 0.0028

3.3 Unknown Parameters

This is perhaps the most realistic case that commonly arises in many situations. Let
Y1 = (Y11, . . . ,Y1n1) and Y2 = (Y21, . . . ,Y2n2) represent two samples of sizes n1

and n2, respectively, where Y1 and Y2 have joint pdf given by (3). Therefore, Yij ∼
GMMBp(µi,Σ, ψ, λ, ν) for each i = 1, 2 and j = 1, 2, . . . , ni. In what follows, we
assume that the location vectors µ1 and µ2, as well as the common scale matrix Σ,
are unknown. However, we assume that the shape parameters ψ, λ, and ν are known.
The situation where all (or even a subset) of these shape parameters are unknown is
a much more complicated problem, and beyond the scope of this paper.

In order to discriminate between the two GMMB populations in a meaningful
fashion, we should first assess whether they are significantly separated by testing the
null hypothesis H0 : µ1 = µ2 against the alternative hypothesis Ha : µ1 6= µ2. To aid
in this regard, we define the following random variables:
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We remark that Sp is the pooled estimate of the unknown scale matrix Σ based on
the two samples, and T 2

d is the classical Hotelling’s T 2-statistic.
The above hypothesis testing problem was considered recently by Thabane and

Drekic [30], who showed that the test statistic Fd has a non-central F-Bessel distribu-
tion with parameters (p, n1 + n2− p− 1, δ2

d, ψ, λ, ν) where δ2
d = n1n2∆2/(n1 + n2) (we

refer the reader to Thabane and Drekic [30], pp. 368-369, for the complete details of
this result). We also remark that under the null hypothesis H0, δ2

d = 0 and the distri-
bution of Fd simplifies to the central F distribution with p and n1 +n2−p−1 degrees
of freedom, a result that is consistent with the null distribution obtained under the
multivariate normal model (see Muirhead [25], p. 216) and the multivariate t model
(see Sutradhar [28]).

If the populations are found to be well separated after applying the above testing
procedure, then a suitable discrimination criterion can be formulated to classify an
observation y as originating from either a GMMBp(µ1,Σ, ψ, λ, ν) population or a
GMMBp(µ2, Σ, ψ, λ, ν) population. In particular, one natural approach is to use the
sample discriminant function between the two populations given by

d(y) = (ȳ1 − ȳ2)
′
s−1
p y − 1

2
(ȳ1 − ȳ2)

′
s−1
p (ȳ1 + ȳ2) , (10)

and to classify y as a GMMBp(µ1, Σ, ψ, λ, ν) observation if d(y) ≥ 0. As noted by
Sutradhar [28], however, the distribution of (10) is quite complicated to deal with.
Nonetheless, one could estimate the probabilities of misclassification using
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where ∆̂2 = (ȳ1 − ȳ2)
′
s−1
p (ȳ1 − ȳ2).

3.4 A Numerical Example

To illustrate the procedure outlined in the previous subsection, we consider the flea
beetle data analyzed by Lubischew [23] and subsequently by Sutradhar [28]. In par-
ticular, Sutradhar considered the two variables

Y1 ≡ the length of elytra (measured in 0.01 mm)
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and
Y2 ≡ the length of the second antennal joint (measured in microns)

of two species of the flea beetle, namely π1 ≡ Haltica oleracea and π2 ≡ Haltica
carduorum. We refer the reader to the data in Table 2 of Lubischew [23], p. 461,
which details the n1 = 19 and n2 = 20 measurements sampled under π1 and π2,
respectively.

Sutradhar [28] proceeded to provide evidence which indicated that these data were:
(i) non-normal, and (ii) dependent but uncorrelated. Consequently, Sutradhar pro-
posed that the 19 observations under π1 and 20 observations under π2 were realizations
from a multivariate t distribution, which is contained as a special case of the more gen-
eral GMMB model given by (3). Moreover, Sutradhar applied the same hypothesis
testing procedure described above and found that π1 and π2 are well separated. We
omit the details here, but refer the reader to Sutradhar [28], p. 833, for complete
details.

For comparative purposes, we consider some other GMMB models as possible
alternatives to Sutradhar’s multivariate t model. In particular, Table 2 displays the
estimated probabilities of misclassification (computed to 4 decimal places via (11)) for
several different choices of (ψ, λ, ν) of the GMMB model (see Section 3.2 for a further
description of these models). In calculating the probabilities, we used the raw data in
Lubischew [23], Table 2, to re-calculate ∆̂2, as there appears to be a typographical error
with the value of ∆̂2 reported in Sutradhar [28], p. 834. Specifically, we calculated
∆̂2 = 3.3696. It is worth remarking that for ∆̂2 = 3.3696, we found that p̂12 = p̂21 =
0.1794. Once again, these findings are consistent with those of Sutradhar [28], who
suggested that the use of normal-based misclassification probabilities generally leads
to overestimation.

Table 2: Estimated Probabilities of Misclassification

(ψ, λ, ν) (0.5, 0,−1.25) (0, 1, 0.5) (0.5, 2, 0.5) (0, 4, 2)
Probability 0.0752 0.1162 0.1453 0.1530
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