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Abstract

In linear regression, it is common practice to use the ordinary least squares
(OLS) residuals as estimates of the true random disturbances since the
latter are unobserved. It is well-known that in many circumstances these
OLS residuals are not good estimates of the true disturbances. Residuals
based on case deletion have been much studied in recent years particularly
in regard to the identification of outliers in linear regression. Masking and
swamping can make them unsuccessful in this respect. The least squares
method is intended to produce a low sum of squared deviations (SSD)
between residuals and true errors. It might be expected that excluding
outliers when fitting a model should improve the estimation of errors and
hence reduce the SSD. But standard theory tells us that instead of lower-
ing the SSD, arbitrary case deletion usually increases the sum of squared
deviations between residuals and true errors. In this paper we propose a
new method based on a conditional expectation rule to identify unusual
observations in data whose omission from the OLS fitting will tend to re-
duce SSD between the residuals and errors. We consider some examples
and then report a Monte Carlo experiment to see how the newly proposed
method can be effective in the identification of outliers in linear regression.
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1 Introduction

Practitioners often use OLS residuals mainly because of tradition and ease of compu-
tation. But unfortunate consequences of using the OLS residuals in regression diag-
nostics are well reported [see Huang and Bolch (1974), Rousseeuw and Leroy (1987)] in
the statistical literature. Predictive residual error sum of squares (PRESS) residuals
proposed by Allen (1974) were devised to be better than OLS in some respects. But
it is now evident [Imon (1999)] that PRESS residuals may have similar disadvantages
to the OLS counterparts and may not be very useful for diagnostics. Residuals based
on single case deletion or modifications of the OLS residuals are also suggested [Cook
and Weisberg (1982), Chatterjee and Hadi (1988), Ryan (1997), Imon (2000) and Imon
(2002)] in the quest for a better representation of the true disturbances. Robust regres-
sion methods such as least median of squares (LMS) and least trimmed squares (LTS)
proposed by Rousseeuw (1984) and reweighted least squares proposed by Rousseeuw
and Leroy (1987) should produce residuals which are less affected than least squares
by the presence of outliers. But most robust techniques are too prone to declare ob-
servations as outliers [see Cook and Hawkins (1990)]. Hampel et al. (1986) claimed
that a routine data set typically contains 5-10% outliers and even a high quality data
cannot be guaranteed free from it. For practical purposes, a technique is needed which
works well to handle data sets with roughly 10% of outliers than with 50% outliers.
The main objective of this paper is to consider a criterion for the identification of a
single or a group of observations whose omission could improve the OLS residuals, in
the sense that the resulting residual set has a lower mean squared error as an estimate
of the true error set than the set of residuals based on estimation using all data. We
set out basic results relating to the OLS fit of a regression model and deletion resid-
uals in section 2. In section 3, we introduce the conditional expectation approach to
the analysis of residuals to see whether the deletion residuals have better conditional
properties than the OLS residuals. In section 4, we propose a conditional deletion
(CD) criterion, which considers whether, conditional on the omission of a single case
in estimation, the residual set is close in the mean square error sense to the true error.
The criterion is used to define a series of rules for finding a good subset to use in
estimation. In section 5, we consider some examples and report simulation results to
investigate the usefulness of the proposed method in improving residual estimation
and, as a by-product, the identification of outliers.

2 The OLS and Deletion Residuals

Consider a standard linear regression model

Y = Xβ+ ∈

where Y is an n-vector of observed responses, X is an n × p matrix representing p
explanatory variables with full column rank, β is a p-vector of unknown finite param-
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eters and ∈ is an n−vector of uncorrelated random disturbances with E(∈) = 0 and
V (∈) = σ2I, where σ2 is an unknown parameter and I is an identity matrix of order
n. The OLS estimator of β is β̂ = (XT X)−1XT Y and the vector of fitted values is
Ŷ = Xβ̂ = WY , where W = X(XT X)−1XT is known as weight or leverage matrix.
The i−th diagonal element of W matrix, denoted by wii, is known as the i-th leverage
value. The OLS residual vector is

∈̂ = Y − Ŷ = (I −W ) ∈ (1)

Assuming that Y = (y1, y2, · · · , yn)T , X = (x1, x2, · · · , xn)T , and ∈= (∈1,∈2, · · · ,∈n)T ,
the j-th OLS residual is defined as

∈̂j = yj − xT
j β̂, j = 1, 2, · · · , n (2)

The j-th residual can also be expressed [see Weisberg (1980)] in terms of the true
errors and the leverage values as

∈̂j = (1− wjj) ∈j −
n∑

k 6=j

wjk ∈k (3)

Let β̂(−i) be the OLS estimate of β with the i−th case deleted. Then the j-th deletion
residual is defined as

∈̂(−i)
j = yj − xT

j β̂(−i), j = 1, 2, · · · , n (4)

The deletion residual set has a similar definition to the PRESS residuals, but to
compute the j-th PRESS residual only the j-th residual is reestimated from the rest
after the deletion of that observation. For deletion residuals, not only the deleted
residual is reestimated, but also the entire residual set is reestimated from the rest
after deleting the i-th observation. Using the result of Miller (1974) for β̂(−i), the j-th
deletion residual can be expressed in terms of the OLS residuals as

∈̂(−i)
j = yj − xT

j β̂ +
xT

j (XT X)−1xi

1− wii
∈̂i = ∈̂j +

wij

1− wii
∈̂i (5)

Replacing i with j in (5) we obtain the j-th deletion residual as

∈̂(−j)
j = ∈̂j +

wjj

1− wjj
∈̂j =

∈̂j

1− wjj
, j = 1, 2, · · · , n (6)

which is another well-known form of the j-th PRESS residual.
A review of various properties of the deletion residuals is available in Chatterjee

and Hadi (1988), Imon (2002), Sengupta and Jammalamadka (2003). The standard
theory tells us that for any observation j = 1, 2, · · · , n, we obtain E (∈̂j) = 0 and
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V (∈̂j) = σ2 (1− wjj). We observe from (5) that the expected value of the j-th deletion
residual after deleting the i-th case is equal to zero, i.e.

E
(
∈̂(−i)

j

)
= 0, j = 1, 2, · · · , n (7)

It is also easy to show [see Imon (2002)]

V
(
∈̂(−i)

j

)
= V (∈̂j)−

w2
ij

1− wii
σ2 for j 6= i

=
σ2

1− wjj
for j = i (8)

We observe from (8) that when the j-th observation is deleted to estimate the entire set
of residuals, the variances of all residuals except the deleted one have lower variances
than the OLS, but the variance of the deleted residual is increased.

3 Conditional Distribution of OLS and Deletion
Residuals

It is customary to estimate σ2 by using a sample variance estimate of residuals. Imon
(2002) pointed out that irrespective of which observation is deleted, the sample vari-
ance of deletion residuals is always greater than that of the OLS residuals. That
statement might give the impression that deletion of unusual cases from the least
squares fitting would not help the estimation of the entire set of true errors. The fol-
lowing lemma will show in what sense the deletion residuals can remove, on average,
the deleterious effect of a deleted observation from the residual analysis.

Let E(i) {(∈j)} denote the expectation operator with respect to all errors {∈j}
except ∈i, i.e., conditioning on the i-th one. Lemma 1 gives the expected (conditional)
difference of any individual residual from its corresponding true error term when both
the OLS and deletion residuals are considered.

Lemma 1: If random errors {∈j} are distributed independently and identically with
zero mean, then

(i) E(i) {(∈̂j− ∈j)} = −wij ∈i

(ii) E(i)

{ (
∈̂(−i)

j − ∈j

)}
= 0.

Proof: From equation (3), we observe that

∈̂j− ∈j= −wjj ∈j −
n∑

k 6=j

wjk ∈k = −wij ∈i −
n∑

k 6=i

wjk ∈k (9)
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Taking expectation on both sides of (9) conditioning on i, shows that, E(i) {(∈̂j− ∈j)} =
−wij ∈i which proves part (i) of Lemma 1. From (3) and (5), the deviation of the
j-th deletion residual (after deleting the i-th observation) from the j-th error can be
obtained from (5) as

∈̂(−i)
j − ∈j = −wjj ∈j −

n∑

k 6=j

wjk ∈k + wij ∈i − wij

1− wii

n∑

k 6=i

wik ∈k

= −
n∑

k 6=i

(
wjk +

wijwik

1− wii

)
∈k (10)

Noting that (10) does not depend on ∈i, the proof of the second part of the lemma is
immediate after taking expectation on both sides of (10).

By virtue of the Gauss-Markov theorem, the OLS method produces minimum sum
of squared deviations between observed and fitted responses. Also, in the case of i.i.d.
random errors, it is readily shown that the expected sum of squared deviations between
OLS residuals and true errors is only pσ2 [see Freedman (1981)]. That is,

E

[
n∑

i=1

(∈̂i− ∈i)
2

]
= pσ2 (11)

Lemma 2 provides the corresponding total performance of deletion residuals in this
regard.

Lemma 2: For i.i.d. random errors {∈j} with mean zero and variance σ2,

E




n∑

j=1

(
∈̂(−i)

j − ∈j

) 2


 =

(
p +

wii

1− wii

)
σ2 (12)

Proof: From (10) it follows that

E

[(
∈̂(−i)

j − ∈j

)2
]

=
n∑

k 6=i

(
wjk +

wijwik

1− wii

)2

σ2

=




n∑

k 6=i

w2
jk + 2

wij

1− wii

n∑

k 6=i

wikwjk +
w2

ij

(1− wii)
2

n∑

k 6=i

w2
ik


σ2

=

(
wjj +

w2
ij

1− wii

)
σ2 (13)
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Taking sums on both sides of (13) extending over n and using the properties of the

leverage values that
n∑

j=1
wjj = p and

n∑
j=1

w2
ij = wii, we obtain (12) and thus the proof

of Lemma 2 is completed.
Since 0 ≤ wii ≤ 1, comparing the result of Lemma 2 to that obtained from (11) it

follows that

E

[
n∑

i=1

(∈̂i− ∈i)
2

]
≤ E




n∑

j=1

(
∈̂(−i)

j − ∈j

)2


 (14)

for any observation i = 1, 2, · · · , n. This might give the impression that deletion of
the i-th case from the least squares fitting is likely to worsen the estimation of errors
instead of improving it. But the following theorem using expectation conditional on
case omission establishes conditions in which case omission is likely to be beneficial.

Theorem 1: For i.i.d. random errors ∈j’s with mean zero and variance σ2,

E(i)





n∑

j=1

(
∈̂(−i)

j − ∈j

)2



 ≤ E(i)





n∑

j=1

(
∈̂−j ∈j

)2



 (15)

for any observation i satisfying

∈2
i

σ2
>

2− wii

1− wii
. (16)

Proof: From (10), E

[
n∑

j=1

(
∈̂(−i)

j − ∈j

)2
]

does not depend on the i-th observation so

the expectation of the sum of squared deviation of deletion residuals from the true
errors will not alter by conditioning on i. That is,

E(i)





n∑

j=1

(
∈̂(−i)

j − ∈j

)2



 = E




n∑

j=1

(
∈̂(−i)

j − ∈j

)2


 =

(
p +

wii

1− wii

)
σ2 (17)

Squaring both sides of (9) and summing over j throughout we obtain

n∑

j=1

(∈̂j− ∈j)
2 =∈2

i

∑

j

w2
ij + 2 ∈i

∑

j

wij

∑

k 6=i

wjk ∈k +
∑

j


∑

k 6=i

wjk ∈k




2

(18)

Taking expectation on both sides of (18), conditioning on i, we obtain,

E(i)





n∑

j=1

(
∈̂−j ∈j

)2



 =∈2

i wii + (p− wii)σ2 (19)



Davies, Imon and Ali: Residual Estimation and Outlier Identification 197

Comparing (19) with (17), it follows that

E(i)





n∑

j=1

(
∈̂(−i)

j − ∈j

)2



 ≤ E(i)





n∑

j=1

(
∈̂−j ∈j

)2





holds when ∈2
i

σ2 > 2−wii
1−wii

is satisfied. Conversely reversal of the latter inequality leads
to a reversed conclusion.

Thus conditional on the omission of a single case with sufficiently large error, the
estimated residual may be close to their corresponding true errors than OLS in the
sense of possessing lower total mean square of distances.

4 Algorithm for Residual Set Estimation

In this section, we consider a method based on the above result for deciding whether
it is best to omit a single or a group of observations for the improved estimation of
true errors. The observations thus identified are termed as outliers though there is no
unique definition of an outlier which may be multi-attribute. To apply Theorem 1,
plausible estimate of the unknown ∈i and σ2 are needed.

In view of Lemmas 1 and 2, more realistic estimators than those associated with
OLS would be the i-th deletion residual ∈̂(−i)

i and σ̂(−i)2 , the respective estimate of
∈i and σ2 after deleting the i-th data point both in estimating the residuals and in
calculating their mean squared deviation in (16). Then the rule suggests the omission
of any point i which satisfies

∈̂(−i)2

i

σ̂(−i)2
>

2− wii

1− wii
. (20)

The left hand side of the above expression is similar to the diagnostic tools like Cook’s
distance [see Cook (1977)] and DFFITS [see Belsley et al. (1980)] that are widely
used in measuring influences of observations but differ in variance estimates. The
condition (20) is now used to formulate a conditional deletion (CD) rule that involves
the following steps.

Step 1

At the first step (20) is used to identify the suspect cases. It is possible that all deletion
candidates for suspect outliers will be identified at the first step. But it may not be so
simple if masking/swamping occurs due to the presence of a group of outliers. So we
propose repetition of (20) once more on the reduced set to find out more potentially
omitted cases. We must make the proviso that the above steps would not pick more
than 50% observations as suspect. Otherwise it will be simply impossible to distinguish
good observations from bad in meaningless fashion.



198 International Journal of Statistical Sciences, Vol. 3 (Special), 2004

Step 2

It is possible that in Step 1 some observations may be wrongly detected as omission
candidates because of their association with other unusual cases (i.e. due to swamping
and masking effects). The deletion of such harmless cases would not help to produce
a better set of residuals. Hence it is also desirable to be able to test whether observa-
tion(s) should be replaced into the estimation subset when they are wrongly omitted.
Obviously the rule (20) may be over-sensitive because it is based on conditional aver-
aging of the deleted cases. It would be more realistic to consider cases to be genuinely
harmful when their rule statistic exceeds at least two or three times the rule thresh-
old. Consider the rule examining whether or not each of the observations individually
satisfy

∈̂(−d)2

i

σ̂(−d)2
>

3 (2− wii)
1− wii

(21)

where d is the group of observations identified as omission candidates at Step 1. Rule
(21) is analogous to the thrice-the-mean rule suggested by Velleman and Welsch (1981)
in the identification of high leverage points in linear regression. Unless all of the
members of the d set individually satisfy (21), we suggest that members of the deletion
set which do not satisfy the rule (21) are replaced in the estimation set. For the revised
deletion set, ∈̂(−d)

i and σ̂(−d)2 are then recomputed.
For this deletion set d we may define a statistic

D2
i =

(1− wii)
(2− wii)

∈̂(−d)2

i

σ̂(−d)2
i = 1, 2, · · · , n (22)

Henceforth D2
i will be referred to as conditional deletion D (CD-D) statistic. Obser-

vations that satisfy
D2

i > 3 for any i = 1, 2, · · · , n (23)

are finally identified as ‘best omitted ’ or ‘outliers’.

5 Examples and Simulation Results

We now consider several well-known data sets that have often been used in the study
outlier identification. The conditional deletion method will be compared with the
standard OLS technique and also the robust regression LMS and RLS techniques
for these examples. Other more recent methods like Peña and Yohai (1995) are not
considered here as they are focused on criteria such as influence measures and not
directly on estimation of a set of residuals. Though related they are therefore not
directly comparable.
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5.1 Hawkins-Bradu-Kass (1984) data

Hawkins, Bradu and Kass (1984) constructed an artificial three-predictor data set
containing 75 observations with 10 high leverage outliers (cases 1-10), 4 high leverage
points (cases 11-14) and 61 good observations (cases 15-75). It has been reported by
many authors [see Rousseeuw and Leroy (1987)] that most of the single case deletion
identification methods fail to identify the true outliers though some of them point
out high leverage points (cases 11-14) as outliers. Table 1 shows that the well-known
Cook’s distance identify only one observation (case 14) but all of the genuine outliers
are masked. On the other hand robust detection techniques like LMS and RLS identify
outliers correctly.

Table 1: Conditional deletion diagnostics for Hawkins et al. (1984) data

Index Cook D CD-D Index Cook D CD-D Index Cook D CD-D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0.040
0.053
0.046
0.031
0.039
0.052
0.079
0.052
0.034
0.048
0.348
0.851
0.254
2.114
0.001
0.003
0.001
0.000
0.001
0.000
0.001
0.002
0.000
0.002
0.000

147.77
161.83
166.56
143.82
158.29
154.60
181.09
167.89
147.22
156.91
0.006
0.061
0.589
0.045
0.396
0.322
0.008
0.002
0.053
0.147
1.226
0.275
1.100
0.798
0.052

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

0.000
0.004
0.000
0.000
0.004
0.000
0.001
0.000
0.001
0.000
0.002
0.000
0.002
0.003
0.000
0.004
0.004
0.010
0.007
0.001
0.004
0.008
0.002
0.001
0.000

0.766
0.858
0.262
0.241
0.008
0.009
0.183
0.549
0.422
0.131
1.170
0.266
1.351
0.625
0.227
0.019
0.309
0.737
0.427
0.317
0.084
1.335
0.022
1.074
0.198

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

0.002
0.006
0.000
0.006
0.001
0.001
0.000
0.000
0.001
0.006
0.000
0.001
0.001
0.001
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.676
0.469
1.577
0.744
0.013
0.004
0.877
0.047
0.051
0.625
0.028
0.823
0.148
0.425
0.843
0.928
0.711
1.081
0.069
1.178
0.078
0.008
0.571
0.824
0.351
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If the proposed algorithm is applied then the initial stage rule (20) identifies 12
observations (cases 1-3, 5-8, and 10-14) to be unusual. Two more observations (cases
4 and 9) as suspects are identified when Step 1 is repeated once more. Thus the
initial deletion set contains 14 observations (cases 1-14) as prime suspects. These 14
observations are now omitted to compute the CD-D values for the entire data set.
At this stage all the deleted cases except observations 11-14 possess significantly high
CD-D values (the results are not shown for brevity). These observations are then put
back into the estimation subset sequentially. When observations 1-10 are omitted from
the OLS fit, we observe from Table 1 that all of their corresponding CD-D values are
over 3 and no other observations possesses high CD-D value. Thus observations 1-10
are finally deemed to be outliers.

Figure 1.a. Index plot of Cook’s distances for Hawkins et al. (1984) data 
 
 

Figure 1.b. Index plot of conditional deletion diagnostics for Hawkins et al. (1984) data 
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Figure 1(a) is an index plot of Cook’s distances and CD-D values for this data. Here
the outliers are marked by + while the good observations are plotted as o on this graph.
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All of the outliers are heavily masked in the index plot of Cook’s distances. None of
the 10 outliers is identified, but high leverage points appear as outliers. Figure 1(b) is
an index plot of CD-D values. All 10 outliers are clearly identified by the conditional
method and they are clearly separated from the rest of the data.

5.2 Brownlee’s stack loss data

The next example is a real set of data known as the stack loss data, presented by
Brownlee (1965) which has been extensively analyzed in the statistical literature.
This three-predictor data set (Air flow, Cooling water inlet temperature and Acid
concentration) contains 21 observations with 4 observations 1, 3, 4, and 21 generally
considered to be outliers [see Atkinson (1985)].

Table 2: Conditional deletion diagnostics for Brownlee’s stack loss data

Index Residuals Cook D CD-D Index Residuals Cook D CD-D
1 1.2095 0.154 10.13 12 0.9667 0.065 0.063
2 -0.7051 0.060 0.342 13 -0.4687 0.011 1.830
3 1.6179 0.126 11.90 14 -0.0170 0.000 0.511
4 2.0518 0.131 19.82 15 0.8006 0.039 0.515
5 -0.5305 0.004 0.140 16 0.2912 0.003 0.006
6 -0.9632 0.020 0.477 17 -0.5996 0.066 0.033
7 -0.8260 0.049 0.050 18 -0.1487 0.001 0.003
8 -0.4737 0.017 0.093 19 -0.1972 0.002 0.099
9 -1.0486 0.045 0.330 20 0.4431 0.005 1.142
10 0.4262 0.012 0.037 21 -3.3305 0.692 19.78
11 0.8783 0.036 0.271

When the OLS technique is used only one of the outliers (observation 21) is ap-
parent although robust regression techniques can successfully detect all of them [see
Rousseeuw and Leroy (1987) and Atkinson (1985)]. The index plot (see Figure 2.a.) of
Cook’s distances for this data clearly shows how the other outliers are masked. When
the CD rule is used the prime suspects are observations 3, 4 and 21. At the next
step observations 1 and 13 are marked as suspect. Thus we obtain 5 observations as
possible suspects. When all 5 suspects are omitted from fitting, 4 cases (observations
1, 3, 4, and 21) satisfy condition (21). Table 2 shows the conditional deletion D for
the entire data set after deleting these 4 observations. The D2

i values corresponding to
these 4 observations are all over 3 and thus the 4 outliers are correctly identified. The
index plot of CD-D (see Figure 2.b.) shows the how clearly the outliers are separated
from the rest of the data.
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Figure 2.a. Index plot of Cook’s distances for stack loss data 
 

Figure 2.b. Index plot of conditional deletion diagnostics for stack loss data 
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5.3 Artificial data - Normal errors with 10% of cases as outliers

Table 3 shows an artificial three-predictor data set containing 20 observations. The
X’s are generated from independent Uniform (0,1) distribution and the Y is computed
from equation

Y = 20 + 4.5X1 − 1.5X2 + 2.8X3+ ∈ (24)

The errors for the cases 1 and 2 are fixed as 5 and the last 18 ∈’s are generated from
a Normal (0,1) distribution so that this example can be considered as a 10% outlier
data set.

The index plot of squares of the standardized errors for this data set in Figure
3.a. clearly indicates observations 1 and 2 as outliers. Table 3 also shows that single
case diagnostic like Cook’s distance does not unambiguously identify just these two
observations as outliers. The index plot of Cook’s distances (Figure 3.b) shows that
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Table 3: Conditional deletion residuals and diagnostics for artificial 10% outlier data

Index Y X1 X2 X3 ∈ OLS RLS CDR Cook D CD-D
1 25.90 0.1870 0.9745 0.5415 5.0000 2.0507 0.8451 4.7895 0.324 8.65
2 27.40 0.3745 0.8131 0.6880 5.0000 2.5831 2.4719 4.8730 0.161 9.96
3 24.05 0.8082 0.6417 0.9994 -1.4182 -0.8812 -0.9062 -1.1991 0.052 0.568
4 23.73 0.0203 0.2147 0.9236 1.3781 0.0987 0.0574 0.3573 0.001 0.049
5 22.94 0.5424 0.8337 0.4558 0.4733 -0.4351 -2.1042 0.5927 0.009 0.144
6 25.70 0.7970 0.2137 0.9759 -0.3009 0.3278 1.4821 -0.4074 0.011 0.063
7 24.53 0.6284 0.7165 0.9905 0.0069 -0.3183 -0.4308 0.0690 0.005 0.002
8 24.77 0.5453 0.5622 0.8146 0.8764 0.2027 0.1462 0.7501 0.001 0.242
9 21.71 0.1579 0.2709 0.8303 -0.9145 -1.2660 -2.1421 -1.7178 0.073 1.204
10 24.54 0.7342 0.8591 0.7902 0.3103 -0.1679 -0.7204 0.6305 0.001 0.162
11 24.24 0.7715 0.3856 0.7708 -0.8048 -0.2893 -0.2224 -0.7868 0.003 0.257
12 24.34 0.4322 0.2028 0.3519 1.7152 0.8489 0.4680 1.2528 0.039 0.633
13 24.89 0.0247 0.3527 0.9888 2.5431 0.7465 0.9702 1.6204 0.047 1.007
14 22.72 0.0862 0.0910 0.5949 0.8113 -0.1154 -0.7427 -0.1776 0.001 0.012
15 24.65 0.7798 0.3801 0.3600 0.7051 0.5681 0.2341 0.7850 0.018 0.249
16 20.41 0.4802 0.5094 0.0042 -1.0016 -1.5023 -3.9852 -1.1334 0.292 0.449
17 20.57 0.0226 0.6727 0.5304 -0.0048 -1.5261 -3.8453 -0.6314 0.149 0.156
18 24.24 0.8306 0.0855 0.3008 -0.2089 0.4207 0.3024 -0.2778 0.023 0.028
19 25.30 0.8280 0.6874 0.6058 0.9074 0.4891 0.2915 1.2375 0.010 0.635
20 21.83 0.5038 0.9243 0.7216 -1.0680 -1.6041 -3.3706 -0.9639 0.108 0.380

observation 2 is heavily masked. Also the robust detection technique RLS fails to
identify the true outliers and picks the wrong ones (cases 16, 17, and 20) as shown in
Figure 3.c. However the conditional deletion method clearly singles out only cases 1
and 2 as the best omitted for the estimation of residuals. The index plot, Figure 3.d.
of CD-D values is clearly analogous to Figure 3.a. of the true squared errors.

In order to assess a technique’s effectiveness in estimating the true ∈ values, define
the sum of squared distances (SSD) by

SSD(∗) =
n∑

i=1

(∈∗i − ∈i)
2

for any set of residuals ∈∗1,∈∗2, · · · ,∈∗n. As the OLS residuals satisfy E

[
n∑

i=1
(∈̂i− ∈i)

2
]

=

pσ2, a criterion for whether a method performs well in estimating true errors is the
ratio of squared distances (RSD) proposed by Imon (2003) defined by

RSD(∗) =

n∑
i=1

(∈∗i − ∈i)
2

pσ2
(25)

The RSD quantities can be expected not far from 1 when the OLS residuals are used.
Also note that a high correlation coefficient between the residuals and errors does not
necessarily imply a good set of residuals although the converse should be true.



204 International Journal of Statistical Sciences, Vol. 3 (Special), 2004

Figure 3.a. Index plot of squared standardized errors for artificial 10% outlier data 
 

Figure 3.b. Index plot of Cook’s distances for artificial 10% outlier data 
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Figure 3.c. Index plot of squared standardized RLS residuals for artificial 10% outlier data 

 
Figure 3.d. Index plot of conditional deletion diagnostics for artificial 10% outlier data 
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Table 4 shows the RSD values for different estimation techniques used to estimate
the true errors for the artificial data. It also contains the indices of the observa-
tions indicated as unusual by different methods and correlation coefficients between
the residuals and the errors. The LMS and RLS residuals were computed using the
PROGRESS program developed by Rousseeuw and Leroy (1987). Table 4 shows that
the RLS and LMS methods, which were not specifically devised for the purpose of out-
lier detection, fail to identify the correct cases as outliers and consequently produce
very high residuals for some inliers so that their corresponding RSD quantities are
large and much worse than OLS. The CD method is successful in identifying the cor-
rect outliers and Table 4 confirms that the estimation of residuals is markedly better
than OLS when cases 1 and 2 are omitted from the fit.

Table 4: RSD values for the artificial 10% outlier data

Estimation technique Observations omitted RSD Correlation
OLS ........... 1.73 0.872
LMS ........... 7.14 0.517
RLS 16, 17, 20 5.37 0.630
CD 1, 2 0.32 0.970

6 Simulation results

The merit of the CD-D diagnostic method is now further demonstrated by the results
of a Monte Carlo simulation. We re-use the model (24) for artificial three-predictor
data sets for sample sizes n =20, 40 and 100. The X variables which are distributed
independently of ∈, are drawn from a Uniform (0,1) distribution and are held constant
for experiments based upon a given sample size. In the simulation experiment 90%
of the true errors are generated as Normal (0,1) while the first 10% of error values
are fixed at 10. Hence the mixed distribution of true errors has mean 1 and standard
deviation 3.15 and use of the distribution can be alternatively viewed as equivalent to
a biased regression model. Four types of residual estimation, OLS, robust LMS and
RLS, and conditional deletion CD are considered.

Table 5 shows the effectiveness of the CD technique in the estimation of resid-
uals in the presence of outliers. The simulation experiment consisted of generating
10000 samples of size n for each of which the CD procedure was used and the mean
RSD values were calculated for the OLS, LMS, RLS and CD methods. This table
also shows the mean correlation coefficients between estimated residuals ∈̂∗ and true
errors ∈. Unsurprisingly, the performance of the OLS residuals is not at all satisfac-
tory. Throughout the simulation they produce high RSD values and the method’s
performance tends to deteriorate with the increase in sample size. The performances
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of the robust LMS and RLS are not very satisfactory though they perform better than
the OLS. Here the RLS performs marginally better than the LMS. The CD method
is very successful in improving the estimation of ∈ when the data set contains 10%
outliers. The RSD values clearly show that CD improves the estimation of residuals.
It is also interesting to note that the mean RSD values for OLS, LMS and RLS resid-
uals increase with sample size while they remain almost the same for CD residuals.
This suggests that irrespective of sample sizes, the CD method produces more robust
residuals in the presence of outliers. The CD method also give a higher correlation
with true errors than other methods.

Table 5: Simulated RSD and correlation values for 10% outlier data

Measures Estimation technique n = 20 n = 40 n = 100
RSD OLS 1.88 2.14 3.38

LMS 0.47 0.51 0.74
RLS 0.38 0.41 0.58
CD 0.12 0.11 0.10

Correlation OLS 0.854 0.943 0.984
LMS 0.943 0.948 0.989
RLS 0.954 0.961 0.996
CD 0.991 0.996 0.999

7 Conclusions

In this paper the main objective was to propose a criterion and method for obtaining a
better estimated set of residuals than provided by the least squares regression. Theory
established conditions under which, conditional on the omission of a single case in
estimation, it is possible to obtain a residual set that is close in the mean square
error sense to the true errors. The criterion was used to define a stepwise conditional
deletion rule for finding a good subset to use in estimation. The examples considered,
both real and artificially constructed, clearly showed how this method can be effective
not only to produce a more accurate set of residuals but consequently to identify
outliers. The simulation results of the CD procedures also support its effectiveness
as a tool in regression diagnostics. This paper has confined itself to ‘one case at a
time’ deletion rule. However, as shown in Imon (1996), the theory and method can be
readily extended to considering simultaneous deletion of subsets of cases.
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