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Abstract

The usual practice for testing homogeneity of several populations in terms of
means and variances is first to test for the equality of variances and once this
assumption is found to be tenable then to test the equality of means. Singh
(1986) proposes a very interesting procedure based on two likelihood ratio
statistics for testing homogeneity of several normal (µ, σ2) populations.
Singh uses a method by Fisher (1950) which is based on combining two
or more independent tests. Paul and Jiang (2004) generalized Fisher’s
method for testing homogeneity of several two-parameter populations based
on two asymptotically independent likelihood ratio and two asymptotically
independent score test statistics. They then obtained specific results to
test homogeneity of several normal, several negative binomial and several
beta-binomial populations. Based on simulations from these populations
they show that Fisher’s method of combining two statistics, even when
they are only asymptotically independent, does, in general, perform well
for testing homogeneity of several two-parameter populations. However, the
score test statistics have simple forms, easy to calculate, and have uniformly
good level properties. Therefore they recommend Fisher’s method based
on combining two score test statistics. Note that their conclusion is based
on simulation results for the normal and two discrete populations. The
purpose of this paper is to investigate the performance of Fisher’s method
for testing homogeneity of several Weibull populations.
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1 Introduction

In the usual one-way classification problem of testing the equality of means is based
on the assumption that the variances among different groups are homogeneous. But
in practice, we often get data which are different not only in means but also in vari-
ances. Snedecor and Cochran ( 1967, p 324) observe that an application of different
treatments to otherwise homogeneous experimental units often results in groups that
are different not only in means but also in variances. Thus, testing homogeneity of
several populations in terms of means and variances is of considerable interest. The
usual practice for testing homogeneity of several populations in terms of means and
variances is first to test for the equality of variances and once this assumption is found
to be tenable then to test the equality of means. Fisher (1950) suggested combining
several independent tests. We quote ( Fisher, 1950, p 99)

“When a number of quite independent tests of significance have been made, it
sometimes happens that although few or none can be claimed individually as signif-
icant, yet the aggregate gives an impression that the probabilities are on the whole
lower than would often have been obtained by chance. It is sometimes desired, taking
account only of these probabilities, and not of the detailed composition of the data
from which they are derived, which may be of very different kinds, to obtain a single
test of the significance of the aggregate, based on the product of the probabilities
individually observed.”

Assume that we wish to test a null hypothesis H0 : θ ∈ Θ0, where Θ0 is a subset
of a parameter space Θ. Suppose we have available p independent tests for testing
H0. We wish to combine these p tests into an overall test for H. Several methods
of combining independent tests, including a method by Fisher (1950), are available.
None of these procedures are uniformly the most powerful. However, Littell and Folks
(1971) have compared Fisher’s method with three other well-known methods via exact
Bahadur relative efficiency, and have found that Fisher’s method is always at least as
efficient as the other three methods, and Littell and Folks (1973) have shown that
Fisher’s method is the most efficient.

Let T (1), · · · , T (p) be p independent sequences of test statistics for testing H0.
Then, Fisher’s method of combining the independent tests T (1), · · · , T (p) is given by
T (F ) = −2 log

∏
i L

(i), where L(i) = 1 − F (i)
(
T (i)

)
and F (i)(t) = Pr{T (i) < t} is the

null cumulative distribution function of T (i), and its large values indicate evidence
against H0.

Singh (1986) uses Fisher’s method for testing simultaneously the equality of means
and the equality of variances of several normal populations. Singh uses a test statis-
tic which is the combination of two independent likelihood ratio statistics and shows
that the test statistic is asymptotically optimal in the sense of Bahadur (1967) effi-
ciency. Paul and Jiang (2004) apply Fisher’s method to test homogeneity of several
two-parameter populations in general. As examples of application they consider the
normal, the negative binomial and the beta-binomial distributions. They developed
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two test statistics, one of which is based on the combination of two asymptotically
independent likelihood ratio statistics and the other is based on the combination of
two asymptotically independent score test statistics. Thomas, Sinha and Zhou (1993)
also worked on combining independent tests in somewhat different contexts.

The score test (Rao, 1947) is a special case of the more general C(α) test (Neyman,
1959) in which the nuisance parameters are replaced by maximum likelihood estimates
which are

√
N consistent estimates (N=number of observations used in estimating the

parameters). The score test is particularly appealing as we have only to study the
distribution of the test statistic under the null hypothesis which is that of the basic
model. Further, the score or the C(α) class of tests have the following advantages: (i) it
often maintains, at least approximately, a preassigned level of significance (Bartoo and
Puri, 1967), and (ii) it often produces a statistic which is simple to calculate. These
tests are robust in the sense that their optimality remains true whatever the form of
the distribution assumed for the data under the alternative hypothesis - a property
called robustness of optimality by Neyman and Scott (1966). For more discussion on
the choice of C(α) or score tests see Breslow (1990) and Paul and Banerjee (1998).
The C(α) test has been shown by many authors to be asymptotically equivalent to
the likelihood ratio test and to the Wald test (Moran, 1970; Cox and Hinkley, 1974).
Potential drawbacks to the use of the likelihood ratio and Wald tests include the fact
that both require estimates of the parameters under the alternative hypotheses and
often show liberal or conservative behaviour (See, for example, Barnwal and Paul,
1988, Paul, 1989, and Paul and Islam, 1995).

Based on extensive simulations from the normal, negative binomial and the beta-
binomial populations, Paul and Jiang (2004) show that Fisher’s method of combining
two statistics, even when they are only asymptotically independent, does, in general,
perform well for testing homogeneity of several two-parameter populations. However,
the score test statistics have simple forms, easy to calculate, and have uniformly good
level properties. Therefore they recommend Fisher’s method based on combining two
score test statistics. Their conclusion, however, is based on simulation results for the
normal and two discrete populations. In this paper we investigate the performance of
Fisher’s method for testing homogeneity of several Weibull populations.

In Section 2 we review the likelihood ratio and the score test procedures for testing
homogeneity of several two-parameter populations. Specific test statistics are devel-
oped in Section 3 for testing homogeneity of several Weibull populations. In Section
4 we report results of the simulation study.

2 Review of Fisher’s methods in a general two-Parameter
model

2.1 The Likelihood ratio tests

Consider a family of distributions f(x, ψ, φ), where ψ and φ are scalar parameters. We
assume that f(x, ψ, φ) satisfies the usual regularity conditions. Suppose we obtain data
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xi1, xi2, ..., xini from the ith, i = 1, ..., k, population with parameters ψi and φi. Then,
the log-likelihood can be written as l =

∑k
i=1 li, where li =

∑ni
j=1 log f(xij , ψi, φi).

Now, let Ψ = (ψ1, ..., ψk), Φ = (φ1, . . . , φk). Define the parameter spaces Ω0 =
{(Ψ,Φ) | ψi = ψ, φi = φ, i = 1, . . . , k, where ψ and φ are unspecified}, Ω1 = {(Ψ, Φ) |
φi = φ, i = 1, . . . k, where ψi, i = 1, ..., k, and φ are unspecified} and Ω2 = {(Ψ, Φ) | ψi

and φi, i = 1, . . . , k, are unspecified}.
Suppose we wish to test
H0 : ψi = ψ, φi = φ, i = 1, . . . , k, where ψ and φ are unspecified against H1 : at

least two ψ’s or two φ’s are not same.
Then the test by Fisher’s method is the combination of two independent tests

corresponding to the following hypotheses:
H ′

0: ψi = ψ, φi = φ, i = 1, . . . , k, where ψ and φ are unspecified against H ′
1: at

least two ψ’s are not same and φi = φ, i = 1, . . . , k, where φ are unspecified.
and
H ′′

0 : φi = φ, i = 1, . . . , k, where φ is unspecified against H ′′
1 : at least two φ’s are

not same. Under both H ′′
0 and H ′′

1 , the ψi’s, i = 1, ..., k, are unspecified.
Let l̂0 = l(Ω̂0), l̂1 = l(Ω̂1) and l̂2 = l(Ω̂2) be the maximized log-likelihood under

the parameter spaces Ω0, Ω1 and Ω2 respectively. Then, the likelihood ratio statistics
for testing H ′

0 against H ′
1 and H ′′

0 against H ′′
1 are

LR1 = 2(l̂1 − l̂0) (1)

and

LR2 = 2(l̂2 − l̂1) (2)

respectively.
Let L1(t1) = Pr(LR1 ≥ t1 | H ′

0) and L2(t2) = Pr(LR2 ≥ t2 | H ′′
0 ). Since

L1(LR1) and L2(LR2) are asymptotically independently distributed and they both
are asymptotically distributed as U(0, 1), then,

M1 = −2 log[L1(LR1)L2(LR2)] (3)

is approximately distributed as χ2
4 under H0. Thus, we reject H0 in favor of H1, if

M1 ≥ χ2
4(α), where χ2

4(α) is the upper 100α% point of the χ2 distribution with 4
degrees of freedom. For the proof of asymptotic independence of LR1 and LR2, see
Paul and Jiang (2004).

2.2 The score tests

Reparameterize ψi, i = 1, ..., k, under H ′
1, by ψi = ψ + αi with αk = 0. Let α′ =

(α1, ..., αk−1) and ω′ = (ψ, φ). Now, define s1i = ∂li
∂ψ

∣∣∣
α=0

, v1i = E
(
−∂2li

∂ψ2

∣∣∣
α=0

)
,
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u1i = E
(
− ∂2li

∂ψ∂φ

∣∣∣
α=0

)
and w1i = E

(
−∂2li

∂φ2

∣∣∣
α=0

)
, i = 1, ..., k. Then, the score test

statistic for testing H ′
0 against H ′

1 can be written as

S1 =
k∑

i=1

ŝ2
1i

v̂1i
+

(∑k
i=1 ŝ1i

ûi1
v̂1i

)2

∑k
i=1

(
ŵ1i − û2

1i
v̂1i

) , (4)

where ŝ1i = s1i(ω̂), v̂1i = v1i(ω̂), û1i = u1i(ω̂) and ŵ1i = w1i(ω̂), i = 1, 2, ..., k, and
ω̂ = (ψ̂, φ̂)′ is the maximum likelihood estimate of the nuisance parameter ω under
H ′

0. For proof see Paul and Jiang (2004).
Now, reparameterize φi, i = 1, ..., k, by φi = φ + βi with βk = 0. Let β′ =

(β1, ..., βk−1). Define s2i = ∂li
∂φ

∣∣∣
β=0

, v2i = E

(
−∂2li

∂φ2

∣∣∣
β=0

)
, u2i = E

(
− ∂2li

∂ψi∂φ

∣∣∣
β=0

)

and w2i = E

(
− ∂2li

∂ψi∂ψi

∣∣∣
β=0

)
, i = 1, ..., k. Then, following similar steps as for S1, the

score test statistic S2 can be expressed as

S2 =
k∑

i=1

ŝ2
2i

v̂2i
+

k∑

i=1

(
ŝ2i

û2i
v̂2i

)2

(
ŵ2i − û2

2i
v̂2i

) , (5)

where ŝ2i, v̂2i, û2i and ŵ2i, i = 1, 2, ..., k, are the estimated values of s2i, v2i, u2i and
w2i, i = 1, 2, ..., k, with the nuisance parameter ξ being replaced by its the maximum
likelihood estimate ξ̂ under H ′′

0 .
Now, let L1(t1) = Pr(S1 ≥ t1 | H ′

0) and L2(t2) = Pr(S2 ≥ t2 | H ′′
0 ). Then it

follows that

M2 = −2 log[L1(S1)L2(S2)] (6)

is approximately distributed as χ2
4 under H0. For proof of asymptotic independence

of S1 and S2, see Paul and Jiang (2004).

3 Testing equality of means and variances of homogeneity
of several Weibull populations

3.1 Fisher’s procedure by combining two ratio likelihood statistics

Now let xi1, ..., xini be a sample from the Weibull distribution WB(ψi, φi), i = 1, ..., k,
with probability density function

Pr(X = x) =
(

ψ

φ

)(
x

φ

)ψ−1

exp

[
−

(
x

φ

)ψ
]

.
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Note that the mean and variance of X are φΓ
(
1 + 1

ψ

)
and φ2

[
Γ

(
1 + 2

ψ

)
−Γ2

(
1 + 1

ψ

)]

respectively. Thus, testing the equality of means and equality of variances of the
WB(ψi, φi) populations, i = 1, ..., k, is equivalent to testing ψi = ψ and φi = φ for all
i = 1, ..., k. By using same notation as in section 2.1, the log-likelihood function under
Ω is

l =
∑k

i=1 li,

where li = ni log
(

ψi
φi

)
+ (ψi − 1)

∑ni
j=1 log

(
xij

φi

)
−∑ni

j=1

(
xij

φi

)ψi

, i = 1, ..., k.

The maximum likelihood estimate ψ̂i of ψi, i = 1, ..., k, is obtained by solving the
maximum likelihood estimating equation

ni

ψ̂i

+
ni∑

j=1

log xij −
ni

∑ni
j=1 xψ̂i

ij log xij

∑ni
j=1 xψ̂i

ij

= 0. (7)

Then φ̂i, i = 1, ..., k, is obtained by

φ̂i =




∑ni
j=1 xψ̂i

ij

ni




1/ψ̂i

. (8)

Similarly, the maximum likelihood estimators ψ̂i, i = 1, ..., k, and φ̂ of the parameters
ψi, i = 1, ..., k and the common parameter φ under Ω1 are obtained by solving the
maximum likelihood estimating equations

ni

ψ̂i

+
ni∑

j=1

log
(

xij

φ̂

)
−

ni∑

j=1

(
xij

φ̂

)ψ̂i

log
(

xij

φ̂

)
= 0, i = 1, ..., k, (9)

and
∑k

i=1 niψi

φ
+

k∑

i=1

ni∑

j=1

ψix
ψi
ij φ−(ψi+1) = 0 (10)

simultaneously.
The maximum likelihood estimators ψ̂ and φ̂ of the common parameters ψ and φ

under Ω0 are obtained as

n

ψ̂
+

k∑

i=1

ni∑

j=1

log xij −
n

∑k
i=1

∑ni
j=1 xψ̂i

ij log xij

∑k
i=1

∑ni
j=1 xψ̂i

ij

= 0 (11)

and

φ̂ =




∑k
i=1

∑ni
j=1 xψ̂

ij

n




1/ψ̂

. (12)
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Now, following (1), (2) and (3), we obtain statistic WBM1, which is approximately
distributed as χ2

4 under H0.

3.2 Fisher’s procedure by combining two score test statistics

Now, by using the same notation of the general results (4), we obtain the score test
statistic WBS1 for testing H ′

0 against H ′
1 with

s1i = ni

ψ̂
+

∑ni
j=1 log

(
xij

φ̂

)
−∑ni

j=1

(
xij

φ̂

)ψ̂
log

(
xij

φ̂

)
,

v1i = ni[π
2/6+(1−γ)2]

ψ̂2
, u1i = −ni(1−γ)

φ̂
, and w1i = ni

(
ψ̂

φ̂

)2

, where γ is Euler’s constant, and ψ̂ and φ̂ are the maximum likelihood estimates (mle)
of ψ and φ under H ′

0 . The mles of ψ and φ are those given in equations (11) and (12).
Similarly, the score test statistic for testing H ′′

0 against H ′′
1 is WBS2 in equation

(5) with

s2i = niψ̂i

φ̂
+

∑ni
j=1 ψ̂ix

ψ̂i
ij φ̂−(ψ̂i+1),

v2i = ni

(
ψ̂i

φ̂

)2
, u2i = −ni(1−γ)

φ̂
and w2i = ni[π

2/6+(1−γ)2]

ψ̂2
i

,

where ψ̂i, i = 1, ..., k and φ̂ are the maximum likelihood estimates of ψi, i = 1, ..., k
and φ under H ′′

0 , obtained by solving the maximum likelihood estimating equations
(9) and (10) simultaneously.

Again, following (6), we obtain the statistics WBM2, which is approximately dis-
tributed as χ2

4 under H0.

4 Simulations

In this section we present results of a simulation study to examine level and power
properties of the of the two statistics WBM1 and WBM2. In the simulation study we
considered K=2, 3, two nominal levels α = 0.05 and α = 0.10 and equal sample sizes
from each population. Each simulation experiment was based on 10,000 samples.

For calculating empirical size, we generated samples from WB (ψ,φ) populations
with equal ψ’s and equal φ’s. Unequal ψ’s and unequal φ’s were considered for power
calculations. Results of the simulations for k=2, α = 0.05 and α = 0.10 are presented
in Table 1 and Table 2. Those for k=3, α = 0.05 and α = 0.10 presented in Table 3
and Table 4.

According to the results in Table 1 to Table 4, for small sample size (n < 30), the
statistic WBM1 shows liberal behaviour, whereas the statistic WBM2 shows some
conservative behaviour. Both statistics show reasonable level properties for large sam-
ple size (n > 50) The power of the statistic WBM1 is in general larger than that of
the statistic WBM2. This is because the statistic WBM1 is liberal and the statis-
tic WBM2 is conservative. Further, we have extended the simulation experiment to
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study size adjusted power properties of these two statistics. The empirical 95% quan-
tiles derived from the corresponding size simulation have been used to ensure that each
test had approximately the nominal size of 0.05. Empirical quantiles were calculated
based on 100,000 replications and empirical power calculations were based on 10,000
replications. In Table 5, we provide empirical power values for k = 2, ψ1 = ψ2 = 1.2,
φ1 = φ2 = 0.32, sample sizes are 10, 15, 20, 30, 40, 50 and for different combinations of
the unequal ψ’s and unequal φ’s. Results in Table 5 show that both the size adjusted
statistics WBM1 and WBM2 have similar power. It seems then that a size correction
to either of the two statistics would provide a correct methodology to test equality of
means and variances of several Weibull populations.

TABLE 1: Empirical power(%) of different statistics for testing homogeneity of K=2 Weibull
populations when data are simulated from WB(ψi, φi), i = 1, 2; based on 10,000 replications;

α = 0.05

Sample Test (ψ1, ψ2)
size Statistic (φ1, φ2)

(1.2,1.2) (1.2,1.4) (1.2,1.6) (1.2,1.8) (1.2,2.0) (1.2,2.2)

(3.2,3.2) (3.2,3.4) (3.2,3.6) (3.2,3.8) (3.2,4.0) (3.2,4.2)

10 WBM1 7.35 9.14 13.11 19.20 26.88 35.20
WBM2 1.79 2.19 3.70 6.19 10.07 15.46

15 WBM1 6.75 9.05 15.60 24.75 36.67 49.91
WBM2 3.22 4.52 8.55 15.47 24.93 36.60

20 WBM1 6.65 9.84 17.84 30.79 46.27 61.73
WBM2 3.92 6.23 12.48 23.10 37.35 52.98

30 WBM1 5.92 10.74 24.01 43.03 62.76 78.66
WBM2 4.19 8.15 19.69 37.11 57.55 74.34

40 WBM1 5.27 11.79 29.71 54.51 76.53 90.33
WBM2 4.17 9.58 26.08 49.84 73.51 88.31

50 WBM1 5.82 13.58 35.80 63.84 84.68 95.36
WBM2 4.56 11.71 32.48 60.70 82.40 94.42
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TABLE 2: Empirical power(%) of different statistics for testing homogeneity of K=2 Weibull
populations when data are simulated from WB(ψi, φi), i = 1, 2; based on 10,000 replications;

α = 0.10

Sample Test (ψ1, ψ2)
size Statistic (φ1, φ2)

(1.2,1.2) (1.2,1.4) (1.2,1.6) (1.2,1.8) (1.2,2.0) (1.2,2.2)

(3.2,3.2) (3.2,3.4) (3.2,3.6) (3.2,3.8) (3.2,4.0) (3.2,4.2)

10 WBM1 13.61 15.94 21.35 29.02 38.15 48.02
WBM2 6.40 8.13 11.99 17.77 24.98 33.39

15 WBM1 12.60 16.05 24.77 36.07 49.63 62.38
WBM2 8.41 10.94 18.07 28.49 40.91 54.16

20 WBM1 12.27 16.69 27.67 43.04 59.15 73.32
WBM2 9.20 12.99 22.72 36.99 53.06 67.83

30 WBM1 11.59 18.32 35.14 55.97 73.95 86.95
WBM2 9.31 15.54 31.18 51.83 70.39 84.51

40 WBM1 10.18 19.81 41.55 66.85 85.30 94.53
WBM2 8.70 17.61 38.59 64.24 83.69 93.75

50 WBM1 11.05 22.17 48.09 74.92 91.12 97.80
WBM2 9.87 20.48 45.58 72.96 90.04 97.43

TABLE 3: Empirical power(%) of different statistics for testing homogeneity of K=3 Weibull
populations when data are simulated from WB(ψi, φi), i = 1, 2, 3; based on 10,000

replications; α = 0.05

Sample Test (ψ1, ψ2, ψ3)
size Statistic (φ1, φ2, φ3)

(0.12,0.12,0.12)(0.12,0.13,0.14)(0.12,0.14,0.16)(0.12,0.15,0.18)(0.12,0.16,0.20)(0.12,0.17,0.22)

(0.32,0.32,0.32)(0.32,0.33,0.34)(0.32,0.34,0.36)(0.32,0.35,0.38)(0.32,0.36,0.40)(0.32,0.37,0.42)

10 WBM1 7.87 9.41 12.19 16.8 22.91 30.66
WBM2 2.53 3.08 4.46 6.99 10.32 15.10

15 WBM1 7.42 8.95 13.38 20.35 29.81 40.05
WBM2 3.38 4.37 7.52 12.51 20.29 29.55

20 WBM1 6.67 8.77 14.39 24.3 37.09 51.84
WBM2 4.04 5.10 9.93 17.84 29.05 42.99

30 WBM1 6.26 9.30 18.89 34.41 52.90 70.16
WBM2 4.52 7.14 15.10 29.73 47.47 65.80

40 WBM1 5.44 9.52 23.34 44.08 66.14 83.22
WBM2 4.24 7.82 20.25 39.89 62.76 80.77

50 WBM1 5.70 11.74 28.96 54.58 77.04 91.31
WBM2 4.68 9.70 26.00 51.42 75.00 90.02
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TABLE 4: Empirical power(%) of different statistics for testing homogeneity of K=3 Weibull
populations when data are simulated from WB(ψi, φi), i = 1, 2, 3; based on 10,000

replications; α = 0.10

Sample Test (ψ1, ψ2, ψ3)
size Statistic (φ1, φ2, φ3)

(0.12,0.12,0.12)(0.12,0.13,0.14)(0.12,0.14,0.16)(0.12,0.15,0.18)(0.12,0.16,0.20)(0.12,0.17,0.22)

(0.32,0.32,0.32)(0.32,0.33,0.34)(0.32,0.34,0.36)(0.32,0.35,0.38)(0.32,0.36,0.40)(0.32,0.37,0.42)

10 WBM1 14.61 16.13 20.41 26.67 34.57 43.09
WBM2 6.60 7.65 10.35 14.51 20.63 27.53

15 WBM1 13.31 15.81 21.65 31.01 41.35 53.40
WBM2 7.99 10.10 15.01 22.80 32.76 43.81

20 WBM1 12.52 15.66 23.76 35.76 50.17 64.48
WBM2 8.84 11.26 18.21 29.11 43.08 57.87

30 WBM1 11.65 16.55 29.12 46.73 65.48 80.11
WBM2 9.37 13.53 25.29 42.46 61.58 76.88

40 WBM1 10.61 16.72 34.35 56.69 77.21 89.69
WBM2 8.96 14.59 31.21 53.37 74.85 88.41

50 WBM1 11.00 19.39 40.66 66.26 85.42 95.26
WBM2 9.68 17.34 38.12 64.04 84.02 94.77

TABLE 5: Size adjusted empirical power(%) of the statistics WBM1 and WBM2 for testing
homogeneity of K=2 Weibull populations when data are simulated from WB(ψi, φi), i = 1, 2;
empirical quantiles based on 100,000 replications; empirical size based on 10,000 replications;

α = 0.05

Sample Test (ψ1, ψ2)
size Statistic (φ1, φ2)

(1.2,1.2) (1.2,1.4) (1.2,1.6) (1.2,1.8) (1.2,2.0) (1.2,2.2)

(3.2,3.2) (3.2,3.4) (3.2,3.6) (3.2,3.8) (3.2,4.0) (3.2,4.2)

10 WBM1 4.46 5.85 9.45 14.19 20.56 28.44
WBM2 4.80 6.42 10.38 16.40 24.37 33.03

15 WBM1 4.99 6.93 12.47 21.05 31.61 44.39
WBM2 5.11 7.53 13.92 23.94 36.04 49.43

20 WBM1 5.39 8.25 15.39 27.33 42.27 57.93
WBM2 5.39 8.11 17.04 30.79 47.01 63.15

30 WBM1 5.08 9.42 21.90 40.48 60.13 76.62
WBM2 5.11 10.33 24.27 44.35 65.10 80.76

40 WBM1 4.77 10.90 28.10 52.51 75.17 89.40
WBM2 4.55 11.47 30.55 56.67 78.72 91.47

50 WBM1 5.16 12.83 34.33 62.31 83.73 95.02
WBM2 5.05 13.93 37.57 66.32 86.54 96.13
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