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Abstract

Recent likelihood theory gives complete inference for scalar parameters in
continuous statistical models; the methodology involves conditioning at an
initial stage, and marginalization at a subsequent stage. Using three simple
examples we outline this general route from model with data to likelihood
and p-value function for assessing an arbitrary scalar parameter. In wide
generality the results are unique in the context of combining general com-
ponents, but not of course for combining normal components with their
multiple inherent symmetries. This gives an inference presentation, from
which standard tests, estimates and confidence intervals are immediately
available. Extensions for the vector parameter case are discussed.

1 Introduction

A simple example with an observed likelihood function and a special reparameteriza-
tion illustrates the route to accurate p-values; the needed general case formulas are
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then described: see Sections 2, 3, and 4. A second example in Section 5 then illus-
trates the elimination of nuisance parameter effect and the related theory is described
in Section 6. A third example in Section 7 then illustrates the elimination of data
information that pertains to known error patterns; the corresponding general case for-
mulas are then described in Section 8. These three examples with theory thus describe
a standardized route to p-values for arbitrary scalar parameters. Section 9 then indi-
cates how the methodology applies to the familiar Box & Cox (1964) problem, with
the related theory outlined in Section 10. Section 11 then gives a brief overview and
indicates the extension to the vector interest parameter case.

2 A simple example: the needed ingredients

Consider a scalar variable y providing measurement information on an unknown θ with
an extreme-value error distribution; and suppose there is a single observed value. The
model is

f(y; θ) = exp{−(y − θ)− e−(y−θ)}. (1)

and the observed data value is y0 = 21.5.
Our position is that the total inference information concerning θ is given by two

functions L(θ) and p(θ) which record probability AT the observed data point and
probability LEFT of the observed data point. For the first it is often convenient to
record it in logarithmic form `(θ). Thus for the example we have

`(θ) = a + θ − eθ−21.5,

p(θ) = exp(−eθ−21.5) (2)

where the constant a can be viewed as arbitrary. In Figure 1a we record the probability
L(θ) at the data point 21.5, scaled so the maximum value is 1; and in Figure 1b we
record the probability LEFT of the data point 21.5. We view the probability LEFT of
the data given by p(θ) as recording where the data point lies in the distribution with
parameter value θ, that is, as recording the PERCENTILE POSITION of the data
point in the θ distribution.

In general contexts `(θ) is typically available immediately while p(θ) is often an-
alytically intractable in various ways not evident in the example. Fortunately highly
accurate approximations to p(θ) are available in wide generality from recent likelihood
theory. The approximations are computationally routinely and mechanically avail-
able from the log-likelihood function `(θ) together with a typically easily accessible
canonical reparameterization ϕ(θ). For this example the reparameterization is

ϕ(θ) = exp(θ − 21.5)− 1. (3)

The corresponding exact p-value function p(θ) and the approximate p-value function
say p̃(θ) are plotted as the solid and dotted curves in Figure 1b. The high accuracy
of the approximation is the familiar and surprising result in applications.
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Figure 1: Data 21.5 from the extreme value model (1): (a) probability AT the data
point 21.5 scaled so the maximum value is 1; (b) probability LEFT of the data point
21.5 with exact value p(θ) as solid line and approximation p̃(θ) as dotted line (these
are essentially superimposed on each other).
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The reparameterization (3) in the case of a scalar variable is obtained as the gra-
dient of likelihood at the observed data:

ϕ(θ) =
∂

∂y
`(θ; y)

∣∣∣∣
y0

, (4)

and in the particular case of a full exponential model is given by any version of the
canonical parameter. We will see that the basic ingredients `(θ) and ϕ(θ) lead quite
generally to p-values for scalar interest parameter.

3 Familiar inference summaries

A model with data and an interest parameter say θ lead quite generally to the log-
likelihood `(θ) describing log-probability AT the data and to the p-value p(θ) describ-
ing probability LEFT of the data. We view these as recording the total inference
information concerning the interest parameter as provided by the model with data.
Conventionally however, simple inference summaries are wanted, and these are avail-
able immediately.

For example consider the total inference given by (2). A central 95% confidence
interval is given as

(θ̂L, θ̂U ) = {p−1(0.975), p−1(0.025)}
which has the value (17.824, 22.805). A median-type estimate is given as

θ̃ = p−1(0.5)

which has the value 21.133. If a particular parameter value θ = θ0 is to be assessed,
the corresponding p-value is given as

p(θ0);

if θ0 = 22 the percentile position of the data point is 19.2%. An upper 99% bound for
θ is given as

p−1(0.01),

which for the numerical example has the value 23.027.

4 From the basic ingredients to p-values

For the case of a scalar parameter θ with an available log likelihood `(θ) and an
available canonical parameter ϕ(θ), the p-value function p(θ) is obtained as

p(θ) = Φ(r) +
(

1
r
− 1

q

)
φ(r) (5)

= Φ(r − r−1 log
r

q
). (6)
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where r is the signed likelihood ratio quantity and q is the Wald quantity in the ϕ
parameterization,

r = sign(θ̂ − θ)[2{`(θ̂)− `(θ)}]1/2 (7)

q = sign(θ̂ − θ)|ϕ̂− ϕ|ĵ1/2
ϕϕ ; (8)

for this, θ̂ and ϕ̂, are maximum likelihood values for θ and ϕ(θ), and ĵϕϕ=(−∂2/∂ϕ2)`(θ)|θ̂
available as (−∂2/∂θ2)`(θ)|θ̂(∂ϕ/∂θ)−2|θ̂ is the observed information. Formulas (5)
and (6) are third order accurate and third order equivalent.

For an exponential family model, the reparameterization ϕ(θ) is just the regular
canonical parameter. The third order calculation of p(θ) by numerical integration
of a density is available from Daniels (1954) and the explicit formula (5) is given in
Lugannani and Rice (1980); the alternate formula (6) that avoids the risk of values
outside [0, 1] is given in Barndorff-Nielsen (1986, 1991). In this exponential model
context, these formulas correspond to saddlepoint approximations..

For much more general statistical models with asymptotic properties, the same
high accuracy is available widely extending the saddlepoint point type approximation
approach. This uses formula (4) for ϕ(θ) and is discussed in Fraser (1990) with various
examples of its application. Its use can be based on Taylor series expansions; see
Cakmak et al. (1998). And it can be derived also from Barndorff-Nielsen (1986); see
for example Fraser and Reid (1995).

5 A simple example with nuisance parameter

Consider the gamma model with mean µ and shape parameter β

f(y; β, µ) = Γ−1(β)
(

β

µ

)β

yβ−1 exp(−β

µ
y);

and suppose we have an extremely small sample n = 2 with data (y0
1, y

0
2) = (1, 4); see

Fraser, Reid and Wong (1997).
The observed log-likelihood and reparameterization are given in the following array:

`(β, µ) = 1.38629 log β − 5
β

µ
+ 2β log

β

µ
− 2 log Γ(β), (9)

ϕ′(β, µ) = (β, β/µ); (10)

the reparameterization is the canonical parameter of the model, which is exponential.
The two parameter functions `(θ) and ϕ(θ) lead quite generally to highly accurate
p-values for any parameter of interest.

For assessing a parameter say µ, the recent third order likelihood methods use
formula (5) or (6) together with modified versions of r and q that are recorded in
the next section. Exact values for the p-value function are available by numerical
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Table 1: Third order p̃(µ) and exact p(µ) from ` and ϕ in (9) and (10).

µ 1 3 5 7 9
p̃ .910 .466 .291 .230 .200
p .901 .464 .318 .256 .225

integration. Table 1 records the approximate and exact values for the following five
values 1,3, 5, 7 and 9 for µ.

The actual distributions underlying these p-values for this very small sample n = 2
example have a U or bathtub shaped density, as reported for various values of µ in
Fraser, Reid and Wong (1997). What is quite remarkable is that the use of the standard
normal distribution function with (5) or (6) can give the substantial accuracy indicated
in the table. The moderate departures are not particularly serious but we do note that
the exact values were obtained by numerical integration that was not fine-tuned to the
unusual bathtub density shape of the distribution for this VERY small sample case.
Experience with the third order procedures suggests that the third order values may be
more reliable here than the nominal exact values; and simulations with N = 100, 000
provide approximations to the exact with standard error less than .0016 and confirm
the accuracy.

The example has exponential model form. More generally with a variable and
parameter of dimension p and with asymptotic properties, we obtain the reparameter-
ization ϕ(θ) as the gradient of likelihood at the observed data

ϕ′(θ) = ∇`(θ; y)|y0 =
∂

∂y′
`(θ; y)|y0 . (11)

In particular for an exponential model this just recovers a version of the canonical
parameter, an affine function of the obvious version; either works equally well for
computations.

6 From `(θ) and ϕ(θ) to p-value; with nuisance parameter

For the vector parameter case with an available log-likelihood `(θ) and canonical pa-
rameter ψ(θ), the p-value function p(ψ) for assessing a scalar interest parameter ψ(θ)
can be obtained using (5) or (6) together with a signed likelihood ratio r and a modified
Wald type quantity q,

r(ψ) = sign(ψ̂ − ψ)[2{`(θ̂)− `(θ̂ψ)}]1/2 (12)

q(ψ) = sign(ψ̂ − ψ)|χ̂− χ̂ψ|
{

|ĵϕϕ|
|j(λλ)(θ̂ψ)|

}1/2

; (13)
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for this θ = (λ, ψ) has been written in terms of a nuisance parameter λ that comple-
ments the interest parameter ψ. The scalar parameter χ(θ) is a rotated coordinate
of ϕ(θ) that acts as a surrogate for ψ(θ) and has linearity in terms of ϕ(θ). Explicit
formulas for the components in (12) and (13) are recorded in the Appendix Sections
12.1 and 12.2.

The basis for the analysis just described derives from that for a full exponential
model

f(y; θ) = exp{ϕ′(θ)t(y)− k(θ)}h(y)

where ϕ and t are p-dimensional and ϕ(θ) and θ are assumed to be one-one equivalent.
Early analyses of this model considered the case where the interest parameter ψ(θ) was
a scalar coordinate of ϕ(θ); in this case the conditional distribution of the coordinate
of t(y) corresponding to ψ is examined conditional on the coordinates corresponding to
λ and this conditional distribution is free of λ and can be analyzed as in the example
in Section 2 using the results summarized in Section 3.

This conditional approach would seem however to require for implementation an
explicit form for the conditional distribution; however a third order approximation for
the corresponding likelihood is available as

`(ψ) = `p(ψ) +
1
2

log |jλλ(θ̂ψ)| (14)

which then permits the direct use of the theory in Section 3. It can also be adjusted to
handle the case where ψ(θ) is a ratio of canonical parameters, as is the case with the
gamma example in Section 5; we do not give details here for this pattern of analysis.

For quite general cases, where ψ(θ) does not have linearity in terms of ϕ(θ), a
marginal approach replaces the conditional approach. A p-value obtained from the
conditional approach when available is of course a marginal p-value and does agree
with that obtained from the marginal approach. More generally just the marginal
version is available.

For the case of an interest parameter ψ(θ) and a nuisance parameter λ(θ) of di-
mensions d and p − d, a marginal distribution for assessing ψ(θ) is available for an
appropriate variable of dimension d. This distribution is obtained in effect by integrat-
ing out a variable corresponding to the nuisance parameter. If the interest parameter
is scalar, then the needed r and the q are given by (12, 13); for details see Fraser and
Reid (1995, 2001).

7 Example with redundant variables

In the preceding examples we examined cases where the variable and the parameter
have the same dimension. Of course for the case of sampling from the gamma model
in Section 5 a sufficiency reduction could have provided the reduction to the two
dimensions of the gamma parameters. Now we consider the more typical case where
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each variable is giving information on more than one parameter coordinate but overall
with multiple variables there is redundancy, more variables than parameters.

For an example consider the regression model y = Xβ +σz where z = (z1, . . . , zn)′
is a sample from the Student(6) distribution, a longer tailed distribution often viewed
as providing a better pattern for the error as revealed by large data sets. We suppose
that the highest order regression coefficient βr is of interest.

For this example the parameter has dimension p = r +1 and the variable y has di-
mension n which we assume to be larger than p. This is an example of a transformation
model; see for example Fraser (1979) and references therein.

The likelihood function can be written as a sum `(θ) = Σn
1 `i(θ) where

`i(θ) = − log σ + `{(yi −Xiβ)σ−1}, (15)

`(z) = log f6(z) is the logarithm of the Student(6) density function, and Xi is the ith
row of the design matrix X. The canonical parameter can also be written as a sum
ϕ(θ) = Σn

1ϕi(θ) where

ϕ′i(θ) = σ−1s{(yi −Xiβ)σ−1}(Xi, ẑi) (16)

where ẑi is the ith coordinate of the standardized residual ẑ = (y − Xβ̂)σ̂−1 and
s(z) = d`(z)/dz. The analysis then proceeds as discussed in Sections 5 and 6. For
some discussion see Fraser, Wong and Wu (1999).

Simulations have been used to assess this p-value procedure (Fraser, Wong and
Wu, ibid). In one case an extremely small data size was examined with n = 2
and X = (1), and thus with a single regression coefficient which is the mean µ.
In each instance a p-value was calculated for assessing the true µ. This was then
repeated a total of N = 100, 000 times and the distribution of the p-values was ex-
amined for uniformity on the interval (0, 1). The proportions in the intervals formed
by (0, 0.005, 0.025, 0.5, 0.975, 0.999, 1.0) were then examined relative to the nominal
target values of 0.5%, 2.0%, 47.5%, 47.5%, 2.0%, 0.5%. See Table 2 which also records
the proportions for the familiar first order signed likelihood ratio (slr) p-value Φ(r(µ)).
In each case the two standard error limit for the N = 100, 000 simulations is recorded
relative to the target probability.

The likelihood ratio values clearly differ substantially from the target values. The
third order likelihood values are adequate for practical purposes and are of course
calculated here for an EXTREMELY small data size n = 2.

8 With redundant variables

The regression model example is a special case of a transformation model which has
an exact ancillary say a. Correspondingly the model then has the form f(y; θ) =
g(s|a; θ)h(a) where s and a have dimensions p and n − p. Now consider the more
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Table 2: Proportions of p-values in 6 intervals on (0, 1) using the signed likelihood
ratio (slr), and the third order (3rd) procedures.

Interval (0, .005) (.005, .025) (.025, .500) (.500, .975) (.975, .995) (.995, 1)
slr .05583 .05919 .38677 .38266 .05831 .05724
3rd .00707 .02463 .47018 .46502 .02522 .00788
2SE .0004 .0009 .003 .003 .0009 .0004

Nominal .005 .02 .475 .475 .02 .005

general case where a is an approximate ancillary and f(y; θ) = g(s|a; θ)h(a) holds to
the appropriate order.

For the same dimension case discussed in Sections 5 and 6 we saw that the canonical
parameter ϕ(θ) was obtained (11) as the gradient of likelihood; we also noted that it
could be replaced by an affine equivalent without altering the calculations of a p-value.
For the present case if we accept the use of a conditional model given the ancillary a
we would then have

ϕ′(θ) =
∂

∂s′
`(θ; s|a)|y0 .

For this let V = (v1, . . . , vp) be p linearly independent vectors tangent to a(y) = a(y0)
at the data point y = y0. If we then take directional derivatives

ϕ′(θ) =
d

dV
log f(y; θ) =

d

ds
log g(s|a; θ)

we obtain the canonical parameter, or at least an affine equivalent of the obvious
canonical parameter. It is then convenient to write

ϕ′(θ) = `;V (θ; y0) (17)

where the subscript denotes directional derivatives taken in the directions given by V .
For the regression model in Section 7 the ancillary has level surfaces, which cor-

respond to the linear spaces L(X, ẑ) or L(X, y), and these have tangent vectors
V = (X, ẑ) at the data point. Thus (16) gives the gradient of the likelihood taken for
fixed ancillary.

9 An example with approximate conditioning

Box and Cox (1964) examine the use of transformations of some initial variable y to
obtain a new variable ỹ = h(y, λ) that conforms more closely to the familiar linear
model ỹ = Xβ + σz in regard to linearity of the model, constant error variance, and
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error normality. They focused on the power transformation ỹ = yλ and thus assumed
in effect that the statistical model is defined on the positive real axis. The power
transformations are sometimes given in the standardized form ỹ = (yλ − 1)/λ but the
distinction can be absorbed into the linear model structure provided the design matrix
X contains the 1-vector, either explicitly or implicitly. We thus examine the model

y = (Xβ + σz)1/λ

where the power transformation is applied coordinate by coordinate to the n-vector of
response values yi. For simplicity we consider the case of standard normal errors but
other error forms are treated easily as indicated in Section 7. And we give formulas
for the case where a single independent variable is involved.

Chen, Lockhart and Stephens (2002) give background on the Box and Cox prob-
lem and discuss the choice of parameter to estimate, emphasizing the stability of the
corresponding estimation procedure; they then give preference to a ratio β/σ of re-
gression parameter to error standard deviation. They also consider tests for normality
and develop asymptotic approximations to the distribution of estimators of natural
parameters. Yang (2002) investigates confidence intervals for the median response for
a particular choice of input variable. Fraser, Wong and Wu (2004) consider the use
of recent likelihood theory for the analysis of an appropriate interest parameter of the
model.

The likelihood function can be written as a sum `(θ) = Σn
1 `i(θ) where

`i(θ) = − log σ − 1
2σ2

(yλ
i − α− βxi)2 + log |λ|+ (λ− 1) log yi

for each yi. The canonical parameterization is also obtained as a sum of contributions

ϕi(θ) = {−λyλ−1
i

σ2
(yλ

i − α− βxi) + (λ− 1)y−1
i }(vi1, vi2, vi3, vi4)

from each yi where the row vector Vi = (v1i, v2i, v3i, v4i) is given as

Vi =
yi

λ̂yλ̂
i

(1, xi, ẑi,−yλ̂
i log yi) (18)

and ẑi = σ̂−1(yλ̂
i − α̂− β̂xi).

Chen, Lockhart and Stephens (2002) consider a large data set with n = 107.
For illustration suppost we take x = 32 litres as a key input value and consider the
kilometers per litre or how distance changes with input gasoline at that fuel level:

ψ(θ) =
d

dx
(α + βx)1/λ|x=32

= βλ−1(α + 32β)(1/λ)−1.

The likelihood function L∗(ψ) and p-value function p(ψ) are then available routinely
as we have descibed and give the essential information concerning the kilometers per
litre ψ at the input level x = 32 litres.
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10 Method for approximate conditioning

A familiar idea in elementary probability and statistics involves probability as unit
mass that gets mapped or moved when the distribution of some new variable is wanted.
For example with the regression model of Section 7 we can write y = Xβ + σz giving
the distribution of the response vector y from that for the error vector, or we can
use the pivotal form z = (y − Xβ)σ−1 to consider the reverse mapping. It is then
straightforward to think of how parameter change alters the mapping of the error z to
the response space. In particular if we calculate (∂2y/∂β′∂σ)|y for fixed z, we obtain

V =
∂y

∂β′σ
= (X, z)

as indicated in Section 8.
This idea of movement of probability was used in Fraser and Reid (2001) to develop

approximate ancillaries in a general context. Let z = z(y, θ) be a full n-dimensional an-
cillary that typically respects properties such as continuity and independence between
observations. We can calculate how parameter change affects a possible response value
for fixed pivotal. This is straightforward at the observed data y0 with corresponding
maximum likelihood value θ̂0 and gives the directions V = (v1, . . . , vp)

V = −z−1
y z;θ|(y0,θ̂0) (19)

where the subscripts denote partial differentiation; the formula (19) is obtained from
the total derivative of the pivot z(y; θ). Theory shows that in some reasonable gen-
erality this gives vectors tangent to a second order ancillary and that this suffices for
third order inference.

For the regression example we have

zy = σ−1I z;θ = σ−1(−X,−(y −Xβ)σ−1)

which gives V = (X, ẑ) at the point (y0, θ̂0) as discussed in Section 7.
For the Box and Cox example in Section 9 it is easier to work coordinate by

coordinate. For the ith coordinate we have the pivotal

zi = (yλ
i − α− βxi)σ−1

which can be solved giving

yi = (α + βxi + σzi)1/λ.

The differentiation can then be done directly rather than through the total derivative
and we obtain the ith row of V

Vi =
yi

λ̂yλ̂
i

(1, xi, ẑi,−yλ̂
i log yi)

as recorded at (18).
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11 Discussion

For the inference analysis of a statistical model with data, various methods have been
proposed for effectively reducing the dimension from that of the original variable to
the dimension of the parameter, for then obtaining a pivotal quantity for assessing a
parameter of interest, for then obtaining reliable approximations for the distribution
of the pivotal quantity, and for then obtaining the observed p-value function for as-
sessing the parameter of interest. The examination of the general asymptotic model
and its structure identifies the general route through this process and determines its
uniqueness in quite general contexts. Other routes that apply the conditioning and
marginalization in a different pattern require specialized model structure but in most
cases agree with the general method to high accuracy.

The reduction of the dimension of the variable to that of the parameter is in effect
implicit in the extraction of the canonical or exponential reparameterization ϕ(θ) and
its availability with the full loglikelihood `(θ).

The reduction to the dimension of the interest parameter, in the scalar interest
case, is obtained in effect by the calculation of the specialized Wald quantity q(ψ)
given as (13). The calcualtion of the p-value function p(ψ) is then available from (5)
or (6) as if the model was a full exponential model with canonical parameter ϕ and
and cumulant generating function `(ϕ̂)− `(ϕ) where implicitly it is assumed that the
original θ has been reexpressed in terms of ϕ.

With the general availability of the canonical parameterization ϕ, using (17) and
(19) this indicates the direct availability of p-value functions for scalar interest param-
eters.

For a vector interest parameters ψ(θ) of dimension say d a third order likelihood
`∗(ψ) is availble from (22) using (23). A corresponding ϕ type reparameterization of
ψ has been developed and is in preliminary form: this will enable the direct analysis of
the likelihood and ϕ-type reparameterization exactly in the pattern discusssed above
for an initial likelihood and ϕ parameterization. However for the calculation of the
p-value for testing a vector parameter it now seems clear that third order accuracy is
unavailable without details of model structure beyond that implicitly available with
the likelihood and canonical reparameterization.

12 Appendix

12.1 The surrogate for ψ(θ)

χ(θ) =
ψϕ′(θ̂ψ)

|ψϕ′(θ̂ψ)|ϕ(θ); (20)

The row vector multiplying ϕ(θ) is the unit vector version of the gradient ψϕ′(θ̂ψ) and
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is obtained by evaluating

ψϕ′(θ) =
∂ψ(θ)
∂ϕ′

=
∂ψ(θ)
∂θ′

(
∂ϕ(θ)
∂θ′

)−1

= ψϕ′(θ)ϕ−1
θ′ (θ)

at θ̂ψ; this gives a unit vector perpendicular to ψ{θ(ϕ)} at ϕ̂ψ.

12.2 Information determinants

The information determinants are recalibrated to the ϕ parameterization

|ĵϕϕ| = |ĵθθ||ϕθ(θ̂)|−2

|j(λλ)(θ̂ψ)| = |jλλ(θ̂ψ)||ϕλ′(θ̂ψ)|−2 = |jλλ(θ̂ψ)||X|−2 (21)

where the right hand p× (p− 1) determinant |X| = |X ′X|1/2 uses X = ϕλ′(θ̂ψ) which
in the regression context records the volume on the regression surface as a proportion
of volume for the regression coefficients.

12.3 Likelihood for a component ψ(θ)

Consider a component parameter ψ(θ) of dimension d. A third order determinant of
likelihood for ψ is obtained from an asymptotic analysis (Fraser, 2003)

`∗(ψ) = `p(ψ) +
1
2

log |j(λλ)(θ̂ψ)| (22)

where `p(ψ) = `(θ̂ψ) is the profile and j(λλ)(θ̂ψ) is a special version of the nuisance
information calculated with a canonical parameter ϕ(θ) that has been rescaled to
give an identity information at the observed data, ĵ0 = I; the needed information
determinant can be calculated directly as

|j(λλ)(θ̂ψ)| = |jλλ(θ̂ψ)||ϕ′λ(θ̂ψ)ĵϕϕϕλ′(θ̂ψ)|−1 (23)

without the prescribed rescaling.
For the scalar case a corresponding canonical parameter is available; we designate

it as ϕ̃(ψ). We do need the rescaling of the original ϕ(θ) and assume thus that ϕ̂ = I.
Then

ϕ̃(ψ) = χ(λ̂ψ, ψ)− χ(λ̂, ψ̂)

For certain uses as indicated by formulas (12) and (13) the ϕ̃ values do need to be re-
centered. This allows the analysis of a component parameter ψ using a likelihood `∗(ψ)
with canonical parameter ϕ̃(ψ) by direct calculation from `∗(ψ), ϕ̃(ψ) as described in
Section 4.
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