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Abstract

We consider the problem of testing the null hypothesis of no change against
the alternative of multiple change points in a series of independent observa-
tions. We consider the case of testing against the general multiple change
point alternative and the case when the changes are in the same direction.
We report the asymptotic null distribution of the considered tests. We also
give approximations for their limiting critical values.
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1 Preliminaries

Let X1, X2, · · · , Xn be independent random variables with continuous distribution
functions (DF’s), F1, F2, · · · , Fn, respectively. We consider here the problem of testing
the null hypothesis of no change

H◦ : F1 = F2 = · · · = Fn = F, (F is unknown) (1)

against the general multiple change points alternative

H1 : ∃ 0 < λ1 < λ2 < · · · < λk < 1 s.t.

F1 = · · · = F[nλ1]

P
6= F[nλ1]+1 =

· · · = F[nλ2]

P
6= · · ·

P
6= F[nλk]+1 = · · · = Fn, (2)
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or against the ordered multiple change points alternative

H11 : ∃ 0 < λ1 < λ2 < · · · < λk < 1 s.t.

F1 = · · · = F[nλ1]

P≺ F[nλ1]+1 =

· · · = F[nλ2]

P≺ · · · P≺ F[nλk]+1 = · · · = Fn, (3)

where [y] is the integer part of y and
P≺ is a partial ordering of the family of DF’s

under consideration. In H1 and H11 we may consider various types of restrictions on
the nature of the difference between F and G, parametric as well as nonparametric.
The following partial oderings are of interest in Reliability: Hazard Rate, Stochastic,
Dispersive, IFR, IFRA, NBU , NBU − t◦, DMRL, NBUE, HNBUE,· · ·

Consider first the problem of testing H◦ of (1) against the At Most One Change
(AMOC) point alternative

H1 : ∃ 0 < λ < 1 s.t.

F1 = · · · = F[nλ]

P≺ F[nλ]+1 = · · · = Fn. (4)

Assume that λ is known and [nλ] = r. In this case the above testing problem reduces to
a 2-sample problem based on the samples X1, · · · , Xr and Xr+1, · · · , Xn. Let Sr,n−r be
an appropriate test statistic for this 2-sample problem. Define the stochastic process
Sn(.) on [0, 1] by Sn(0) = Sn(1) = 0 and for l = 1, 2, · · · , n− 1,

Sn(
l

n
) = a(l, n)Sl,n−l,

where a(l, n) is an appropriate normalizing function (non-random). Tests for the
AMOC point problem are functionals of Sn(·). Examples are:

S1n = max
1≤l<n

Sn(
l

n
),

S2n = max
1≤l<n

∣∣∣∣Sn(
l

n
)
∣∣∣∣ ,

S3n =
1
n

n−1∑

1

S2
n(

l

n
).

In most situations we are able to prove that

Sn(.) d−→ B(·),
where B(·) is a Brownian Bridge. Hence, by the Continuous Mapping Theorem,

S1n
d→ sup

t
B(t) = S1,
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S2n
d→ sup

t
|B(t)| = S2

and

S3n
d→

∫
B2(t)dt = S3.

Critical values for S1, S2 and S3 are well known.
The tests presented in the sequel are extensions of appropriate k-sample tests

against multiple or ordered alternatives to the change point set-up.

2 Testing against ordered alternatives

In this section we present three families of tests for testing H◦ of (1) against H11 of
(3).

2.1 Jonckheere-Terpstra-type tests

We describ here the work of Aly et al (2003). Consider the case when the hypothesis
in (3) is expressed in terms of the stochastic ordering, i.e., the case of testing against
the hypothesis

H2 : ∃ 0 < λ1 < λ2 < · · · < λk < 1 s.t.

F1 = · · · = F[nλ1]

ST≺ F[nλ1]+1 =

· · · = F[nλ2]

ST≺ · · · ST≺ F[nλk]+1 = · · · = Fn. (5)

Let s = (0 < s1 < · · · < sk < 1). Define the processes {Ri,j,n(s)}, n ≥ 1, 1 ≤ i ≤ j ≤ n
by

Ri,j,n(s) =
[nsi]∑

r=[nsi−1]+1

[nsj+1]∑

l=[nsj ]+1

I (Xr < Xl) , (6)

where s◦ = 0, sk+1 = 1, I (A) is the indicator function of the event A and any sum
with no element is defined to be zero. Define

Vn(s) = n−
3
2

k∑

i=1

k∑

j=i

{
Ri,j,n(s)− 1

2
di,ndj+1,n

}
, (7)

where di,n = [nsi]−[nsi−1]. Based on {Vn(s)}Aly et al (2003) proposed the Jonckheere-
Terpstra-type test statistics

Tn1(k) := max
s

√
12Vn(s), (8)
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and
T ∗n1(k) :=

∫
· · ·

∫

s

√
12 Vn(s)ds. (9)

The asymptotic distributions of Tn1 and T ∗n1 follow from the following Theorem of
Aly et al (2003).

Theorem 2.1. Let B(·) be a Brownian bridge and assume that H◦ of (1) holds.
Then, as n →∞, √

12Vn(s) d→ Ψ(s), (10)

where

Ψ(s) d=
k∑

j=1

(sj+1 − sj−1) B(sj). (11)

Corollary 2.1. By the Continuous Mapping Theorem,

Tn1(k) d→ sup
s

Ψ(s) = T (k) (12)

and
T ∗n1(k) d→

∫
· · ·

∫

s

Ψ(s)ds = T ∗(k). (13)

Let Lk be the DF of T (k) of (12). By (12) the test

Rejet H◦ ⇐⇒ Tn1(k) > cα (14)

is an asymptotic level-α test. The DF Lk is analytically not known in the literature.
Aly et al (2003) used a Monte Carlo method to approximate cα of (14) when k = 2.
It can be proved that for k ≥ 2,

T ∗(k) =
∫ 1

0
ϕk(t)B(t)dt,

where for k = 2, 4, · · ·

ϕk(x) =
1
k!

(
1− 2xk

)
+

k−2
2∑

j=1

(−1)j+1
(
xj + xk−j

)

j!(k − j)!

and for k = 3, 5, · · ·

ϕk(x) =
1
k!

+

k−1
2∑

j=1

(−1)j+1
(
xj − xk−j

)

j!(k − j)!
.
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Hence, for k = 2, 3, · · ·

T ∗(k) d= N(0, σ2
k),

where

σ2
k = 2

∫ 1

0
(1− y)ϕk(y)

∫ y

0
xϕk(x)dxdy. (15)

For example, σ2
2 = 4.0873× 10−2, σ2

3 = 5.9359× 10−3 and σ2
4 = 4.2594× 10−4.

Remark 2.1. The change points 0 < λ1 < λ2 < · · · < λk < 1 may be estimated by
the estimates 0 < λ̂1 < λ̂2 < · · · < λ̂k < 1, where

Vn(λ̂1, λ̂2, · · · , λ̂k) = max
s

Vn(s).

2.2 Tests based on 2-sample U-statistics

Let Ũi,j,n be a 2-sample U-statistic based on a skew-symmetric kernel φ of degree
(m,m) and the two samples X[nsi−1]+1, · · · , X[nsi] and X[nsj ]+1, · · ·X[nsj+1]. The kernel
φ is selected such that large values of Ũi,j,n are significant. Define di,n = [nsi]− [nsi−1],

Ui,j,n =
di,ndj+1,n

mn2
Ũi,j,n

and

Wn(s) =
k∑

i=1

k∑

j=i

Ui,j,n.

Assume that H◦ of (1) holds. Define

φ1(y) = Eφ(y,X2, · · · , Xm; Xm+1, · · · , X2m). (16)

and

σ2 = Eφ2
1(X1).

Assume that
Eφ2(X1, X2, · · · , Xm; Xm+1, · · · , X2m) < ∞. (17)

Based on {Wn(s)} we propose the test statistics

Tn2(k) :=
√

n

σ
max

s
Wn(s), (18)
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and

T ∗n2(k) :=
√

n

σ

∫
· · ·

∫

s

Wn(s)ds. (19)

The asymptotic distributions of Tn2 and T ∗n2 follow from the following Theorem.

Theorem 3.1. Let Ψ(s) be as in (11). Assume that H◦ of (1) and condition (17)
hold. Then, as n →∞, √

n

σ
Wn(s) d→ Ψ(s). (20)

Corollary 3.1. By the Continuous Mapping Theorem,

Tn2(k) d→ sup
s

Ψ(s) = T (k) (21)

and
T ∗n2(k) d→

∫
· · ·

∫

s

Ψ(s)ds = T ∗(k), (22)

where T (k) and T ∗(k) are, respectively, as in (12) and (13).

Example 1. (Alternatives expressed in terms of hazard rate ordering)

Assume that we wish to test H◦ of (1) against H1 of (3) when the ordering
P≺ is the

hazard rate ordering
hr≺, where F

hr≺ G if and only if, rF (.) ≥ rG(.). Here we use the
kernel of Kochar (1979):

φ (x1, x2; y1, y2) =




−1 if xxyy or yxxy
0 if xyxy or yxyx
1 if yyxx or xyyx,

where, for example, yyxx represents y1 ≤ y2 ≤ x1 ≤ x2, y2 ≤ y1 ≤ x2 ≤ x1, y2 ≤ y1 ≤
x1 ≤ x2 or y1 ≤ y2 ≤ x2 ≤ x1. Under H◦ and condition (17) we obtain the results of
Theorem 3.1 with σ2 = 8

105 .

2.3 Tests based on L-Statistics

Let J(·) be a score (weight) function such that
∫ 1
0 J(u)du = 0. Define

Zi = −
∫ 1

0
{I(F (Xi) ≤ u)− u} J(u)dF−1(u), (23)

Di:n = Xi+1:n −Xi:n, i = 1, 2, · · · , n− 1,
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and

γ̂2 = n−2
n−1∑

i=1

i∑

j=1

j(n− i)aijDi:nDj:n, (24)

where

aij =

{
J( i

n+1)J( j
n+1), if i = j

2J( i
n+1)J( j

n+1), if i 6= j
.

Note that under H◦, γ̂2 is a consistent estimator of γ2 = V ar(Zi). Let Li be the L-
Statistic based on the observations X[nsi−1]+1, · · · , X[nsi] and the score function J(·).
Define

Li,j,n = Ui,j,n =
di,ndj+1,n

n2
(Lj+1 − Li))

and

ηn(s) =
k∑

i=1

k∑

j=i

Li,j,n.

Based on {ηn(s)} we propose the test statistics

Tn3(k) :=
√

n

γ̂
max

s
ηn(s), (25)

and

T ∗n3(k) :=
√

n

γ̂

∫
· · ·

∫

s

ηn(s)ds. (26)

The asymptotic distributions of Tn3 and T ∗n3 follow from the following Theorem.

Theorem 4.1. Let Ψ(s) be as in (11). Assume that H◦ of (1) holds true and
E

{
|Z1|2

}
< ∞. Then, as n →∞,

√
n

γ
ηn(s) d→ Ψ(s). (27)

Corollary 4.1. By the Continuous Mapping Theorem and Slutsky Theorem

Tn3(k) d→ sup
s

Ψ(s) = T (k) (28)

and
T ∗n3(k) d→

∫
· · ·

∫

s

Ψ(s)ds = T ∗(k), (29)
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where T (k) and T ∗(k) are, respectively, as in (12) and (13)

Example 2. (Alternatives expressed in terms of dispersive ordering)

Assume that we wish to test H◦ of (1) against H1 of (3) when the ordering
P≺ is the

dispersive ordering
disp≺ , where F

disp≺ G if and only if, G−1(F (x))− x is nondecreasing
in x, 0 < F (x) < 1. Here we use the tests of Aly (2004) in which J(u) = 2u− 1.

3 Testing against general multiple alternatives

In this section we consider the problem of testing H◦ of (1) against H11of (2).

3.1 Rank tests

Let h(·) be a score function which is real-valued and differentiable on (0, 1) and let h′

be its derivative. Assume that µ =
∫ 1
0 h(t)dt and σ2 = 2

∫ 1
0

∫ y
0 h′(x)h′(y)x(1− y)dxdy.

Let ri be the rank of Xi among the X ′s and define Rj =
∑j

i=1 h( ri
n ), j = 1, 2, · · ·, n.

The m tests of Lombard (1987) are given by

mn(k) = n−k

∫
· · ·

∫

s

ξn(s)ds,

where

ξn(s) = n−1σ−2
k+1∑

j=1

(
R∗

[nsj ]
−R∗

[nsj−1]

)2

and R∗
l = Rl − lµ. Lombard (1987) proved that under H◦ of (1)

ξn(s) D−→ ξ(s) =
k+1∑

j=1

(B(sj)−B(sj−1))
2 . (30)

By (30) we have

mn(k) D−→ m(k),

where

m(k) =
∫
· · ·

∫

s

ξ(s)ds =
k+1∑

j=1

∫
· · ·

∫

s

(B(sj)−B(sj−1))
2 ds.

Lombard (1987) gave asymptotic critical values for m(2) and m(3).
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Aly and Buhamra (1996) proposed the test statistics

tn(k) =
∫
· · ·

∫

s

ζn(s)ds,

where

ζn(s) = n−k−1σ−2

(
k+1∏

i=1

di,n

)



k+1∑

j=1

(
R∗

[nsj ]
−R∗

[nsj−1]

)2

dj,n
− nµ2





.

Aly and Buhamra (1996) argued that under H◦ of (1),

ζn(s) D−→ ζ(s),

where

ζ(s) =

(
k+1∏

i=1

(si − si−1)

)
k+1∑

j=1

(B(sj)−B(sj−1))
2

sj − sj−1
. (31)

Consequently,

tn(k) D−→ t(k),

where

t(k) =
∫
· · ·

∫

s

(
k+1∏

i=1

(si − si−1)

)
k+1∑

j=1

(B(sj)−B(sj−1))
2

sj − sj−1
ds. (32)

Aly and Buhamra (1996) obtained asymptotic critical values for t(2) by simulation.

3.2 Likelihood ratio tests

Let f(·; θi) be the density (or probability density) function of Xi and let g(·; θ) =
ln f(·; θ). The maximum likelihood estimators θ̂i,j satisfy the equations

j∑

l=i

g′(Xl; θ̂i,j) = 0.

The likelihood tests of Aly and Bouzar (1994) are given by

Sn(k) =
∫
· · ·

∫

s

λn(s)ds,
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where

λn(s) = 2n−k

(
k+1∏

i=1

di,n

)

ln

k+1∏

j=1

A[nsj−1]+1,[nsj ] − lnA1,n



 ,

where

Ai,j =
j∏

r=i

f(Xr; θ̂i, j).

Aly and Bouzar (1993) proved that

λn(s) D−→ ζ(s),

where ζ(s) is as in (31). Consequently,

Sn(k) D−→ t(k),

where t(k)is as in (32).
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