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Abstract

In this paper, minimax estimators for the scale parameter of the gamma
distribution are considered for modified linear-exponential (MLINEX) and
quadratic loss functions. The results are then interpreted in the light of
two-person zero-sum game according to Wald [7]. Then these estimators
are compared with the classical maximum likelihood estimator.
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1 Introduction

The probability density function of the gamma distribution is given by

f (x|α, β) =
βα

Γα
e−βxxα−1; x ≥ 0, α, β > 0. (1)

= 0; otherwise.

where α and β are the parameters of the distribution. Bruce [1], Hill [2] and Karns [4]
considered the problem of estimation of the scale parameter of the gamma distribution
by the use of M-order, L-order and one order statistics respectively. Estimation of scale
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parameter from the order statistics of unequal gamma components was also studied
by Wilk et. al. [9] .

In here we shall estimate the scale parameter β of the gamma distribution by using
the technique of minimax approach, assuming that α is known. The minimax approach
is essentially a Bayesian approach. The most important element in the minimax
approach is the specification of a distribution function on the parameter space, which
is called prior distribution. In addition to the prior distribution, the minimax estimator
for a particular model depends strongly on the loss function assumed. In Lehmann
[3] it has been observed that in many cases, minimax approach is better than the
classical approach for small sample sizes. In most cases symmetric loss functions are
considered. But there are some real life situations where the use of the symmetrical
loss functions may be inappropriate. In some cases a given positive error may be more
serious than a given negative error and vice-versa.

In this paper, minimax estimators for the scale parameter β of the gamma distri-
bution are considered for modified linear-exponential (MLINEX) and quadratic loss
functions. The MLINEX loss function is asymmetric one and the quadratic loss func-
tion is symmetric. The results are then interpreted in the light of two-person zero-sum
game according to Wald [7]. Then these estimators are compared with maximum like-
lihood estimator. The derivation depends primarily on a theorem, due to Lehmann
[3] stated below.

Theorem 1.1: Let τ = {Fθ; θ ∈ Θ} be a family of distribution functions and D a
class of estimators of θ. Suppose that d? ∈ D is a Bayes estimator against a prior
distribution ξ?(θ) on the parameter space Θ, and the risk function R(d?, θ) = constant
on Θ; then d? is a minimax estimator of θ.

The main results of the paper are contained in Theorem 2.1 and Theorem 2.2 in
the next section.

2 Main Results

Theorem 2.1: Let X = (X1, X2, · · · , , Xn) be n independently and identically dis-
tributed random variables drawn from the density (1). Then

β̂MML =
(

Γ (nα)
Γ (nα− c)

) 1
c 1

n∑
i=1

Xi

,

is the minimax estimator for the scale parameter β of the gamma distribution under
MLINEX loss function of the form

L
(
β̂, β

)
= $

[(
β̂

β

)c

− c ln

(
β̂

β

)
− 1

]
; c 6= 0, $ > 0,
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where β̂ is the estimate of β, c and $ are two known parameters of the loss function.

Theorem 2.2: Let X = (X1, X2, · · · , Xn) be n independently and identically dis-
tributed random variables drawn from the density (1). Then

β̂MEQ =
nα− 2

n∑
i=1

Xi

,

is the minimax estimator for the scale parameter β of the gamma distribution under
quadratic loss function of the form

L
(
β̂, β

)
=

(
β̂ − β

β

)2

To prove Theorems we use Lehmann’s theorem, which was stated earlier. For this,
at first we have to find the Bayes’ estimator β̂ of β. Then if we can show that the risk
function of β̂ is a constant, then the theorem will be proved.

We start with the likelihood function

l (β|x) =
βnα

(Γα)n e
−β

n∑
i=1

xi
n∏

i=1

xα−1
i

=
βnα

(Γα)n exp

{
−β

n∑

i=1

xi + (α− 1)
n∑

i=1

log xi

}
, (2)

where T =
n∑

i=1
Xi is a complete sufficient statistic for β. Let us assume that β has

Jeffrey’s non-informative prior density defined as

π (β) ∝ 1
β

, β > 0. (3)

Combining the equations (2) and (3), and using the Bayes theorem the posterior
density of β for the given random sample X = (X1, X2, · · · , Xn) is

π (β|x) =

(
n∑

i=1
xi

)nα

Γ (nα)
e
−β

n∑
i=1

xi

βnα−1; β ≥ 0, α > 0, (4)

which is distributed as gamma distribution with parameters nα and
n∑

i=1
xi i.e., β ∼

Γ
(

nα,
n∑

i=1
xi

)
. The mean of the posterior distribution function is nα/

n∑
i=1

xi.
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Since each Xi is distributed as gamma variate with parameters α and β, therefore

the statistic T =
n∑

i=1
Xi is distributed as gamma distribution with parameters nα and

β i. e., T ∼ G (nα, β). Hence the probability density function of T is given by

h (t) =
βnα

Γ (nα)
e−β ttnα−1 t ≥ 0, n, α, β > 0.

Here, E
(

1
T

)
= β

(nα−1) and E
(

1
T 2

)
= β2

(nα−1)(nα−2) . Now under the MLINEX loss
function the Bayes estimator of β , using Wahed and Uddin [8], is given by

β̂BML =
[
Eβ

(
β−c

)]− 1
c ,

where

Eβ

(
β−c

)
=

∝∫

0

β−cπ (β|x)dβ =

(
n∑

i=1
xi

)nα

Γ (nα)

∝∫

0

e
−β

n∑
i=1

xi

βnα−c−1dβ

=
Γ (nα− c)

Γ (nα)

(
n∑

i=1

xi

)c

and hence β̂BML = K
T is the Bayes estimator of β where K =

[(
Γ(nα)

Γ(nα−c)

)] 1
c and

T =
n∑

i=1
Xi is a complete sufficient statistic for β.

The risk function for the estimator β̂BML under the MLINEX loss function is

R
(
β̂BML

)
= E

[
L

(
β̂BML, β

)]
= $

[
β−cE

(
β̂c

BML

)
− cE

(
ln β̂BML

)
+ c ln β − 1

]

Here, E (βc
BML) = E

(
K
T

)c = KcE (T−c) = Kc
∝∫
0

t−ch (t)dt = Γ(nα−c)
Γ(nα) (Kβ)c, and

E
(
ln β̂BML

)
= E

[
ln

(
K
T

)]
= lnK −E (lnT ).

E (lnT ) =

∝∫

0

ln t h (t)dt =
βnα

Γ (nα)

∝∫

0

ln t e−β ttnα−1dt

Let β t = y ⇒ t = y
β ∴ dt = 1

β dy.
Therefore,

E (lnT ) =
βnα

Γ (nα)

∝∫

0

ln
(

y

β

)
e−y

(
y

β

)nα−1 1
β

dy

= − lnβ +
1

Γ (nα)

∝∫

0

ln ye−yynα−1dy = − ln β +
Γ′ (nα)
Γ (nα)

;
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where Γ′ (nα) is the first derivative of Γ (nα) with respect to nα.
Therefore, E

(
ln β̂BML

)
= ln K +ln β− Γ′(nα)

Γ(nα) . Using the results, the risk function
for the estimator under MLINEX loss function is

R
(
β̂BML

)
= $

[
cΓ′ (nα)
Γ (nα)

− ln
(

Γ (nα)
Γ (nα− c)

)]
; c 6= 0, $ > 0,

which is constant with respect to β, as nα and c are known and independent of β.
Therefore, according to the Lehmann’s theorem

β̂BML =
(

Γ (nα)
Γ (nα− c)

) 1
c 1

n∑
i=1

Xi

= β̂MML

is the minimax estimator for the scale parameter β of the gamma distribution under
MLINEX loss function and the Jefferey’s non-informative prior density π(β) ∝ 1

β is
the least favourable prior density of β.

Now we are going to prove the Theorem 2.2. To prove the theorem we have to
use Lehman’s theorem 1.1 again. By using the posterior distribution (4), the Bayes
estimator for the scale parameter β under the quadratic loss function is given by

β̂BEQ = (nα−2)
T , where T =

n∑
i=1

Xi.

The risk function for the estimator β̂BEQ under quadratic loss function is

R
(
β̂BEQ

)
= E

[
L

(
β̂BEQ, β

)]
=

1
β2

E

[(
β̂BEQ − β

)2
]

=
1
β2

E

[
(nα− 2)

T
− β

]2

=
1
β2

[
(nα− 2)2 E

(
1
T 2

)
− 2 (nα− 2) βE

(
1
T

)
+ β2

]
=

1
(nα− 1)

;

which is constant with respect to β as n and α are known.

Therefore, according to the Lehmann theorem, β̂BEQ = (nα− 2)/
n∑

i=1
Xi = βMEQ

is also a minimax estimator for the scale parameter β of the gamma distribution
under quadratic loss function and the Jefferey’s non-informative prior π (β) ∝ 1

β is
the least favourable prior density of β. The maximum likelihood estimator for the

scale parameter β of the gamma distribution when α is known, is β̂MLE = nα/
n∑

i=1
Xi.

For α = 1, the estimators are the minimax estimators for the parameter β of the
exponential distribution under MLINEX and quadratic loss functions respectively.

According to Wald [7] the following statistical problem is equivalent to some two-
person zero-sum game between the Statistician (Player-II) and Nature (Player-I). Here
the pure strategies of Nature are the different values of β in the interval (0,∞) and
the mixed strategies of Nature are the prior densities of β in the interval (0,∞). The
pure strategies of Statistician are all possible decision functions in the interval (0,∞).
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Expectation of the loss function L(β, d) is the risk function R(β, d) = E[L(β, d)]
which is the “gain” of player-I. R(ξ, d) is the value of

∫
β R(β, d)dξ(β), where ξ(β) is

the prior density of β. If the loss function is continuous in both d and β, and convex in
d for each β, then there exist measures ξ? and d? for all β and d so that the following
relation holds good

R (ξ, d∗) ≤ R (ξ∗, d∗) ≤ R (ξ∗, d)

. The number R (ξ∗, d∗) is known to be the value of the game, ξ∗ and d∗ are the
corresponding optimum strategies of Player-I and Player-II. In statistical terms ξ∗ is
the least favourable prior density of β and d∗ is a minimax estimator of β. In fact, the
value of the game is the loss of the Statistician.

Here it has been shown that, (i) d∗ = β̂MML =
(

Γ(nα)
Γ(nα−c)

) 1
c 1

n∑
i=1

Xi

is the optimum

strategy of Player-II for the MLINEX loss function and the value of the game is

RM (ξ∗, d∗) = $

[
cΓ′ (nα)
Γ (nα)

− ln
(

Γ (nα)
Γ (nα− c)

)]
; c 6= 0, $ > 0.

Again (ii) d∗ = β̂MEQ = (nα−2)
n∑

i=1
Xi

is the optimum strategy of Player-II for the quadratic

loss function and the value of the game is RQ(ξ∗, d∗1) = 1
(nα−1) . In both the cases,

ξ∗ = g (β) ∝ 1
β ; β > 0, is the optimum strategy for Player-I.

3 Empirical Study

Mean squared-errors (MSEs) are considered to compare the different estimators for
the scale parameter β of the gamma distribution under MLINEX and quadratic loss
functions, and the method of maximum likelihood. The MSE of an estimator β̂ is
defined as

MSE
(
β̂
)

= E
(
β̂ − β

)2
= V ar

(
β̂
)

+
[
Bias

(
β̂
)]2

(5)

It has been seen that for small sample size (n < 25), minimax estimator for quadratic
loss function is the best among the three. Minimax estimators for MLINEX loss
function are better than the maximum likelihood estimator. But for large sample
sizes n > 25, all the three estimators have approximately the same mean-squared
errors. The obtained results are demonstrated in Tables 1 to 6 and presented also in
Figures 1 to 6.
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Table 1: Estimated values and MSEs of different estimators for the scale parameter β
of the gamma distribution when α = 1, β = 2 and c = 2

Sample Size Criteria β̂MML β̂MEQ β̂MLE

5
Estimated value 0.298 0.258 0.431
MSE 1.072 1.000 2.333

10
Estimated value 0.731 0.689 0.861
MSE 0.458 0.444 0.667

15
Estimated value 1.162 1.120 1.292
MSE 0.291 0.286 0.374

20
Estimated value 1.593 1.551 1.723
MSE 0.213 0.211 0.257

25
Estimated value 2.024 1.981 2.154
MSE 0.168 0.167 0.196

30
Estimated value 2.455 2.412 2.584
MSE 0.139 0.138 0.158

Table 2: Estimated values and MSEs of different estimators for the scale parameter β
of the gamma distribution when α = 1, β = 2 and c = 3

Sample Size Criteria β̂MML β̂MEQ β̂MLE

5
Estimated value 0.207 0.215 0.359
MSE 1.004 1.000 2.333

10
Estimated value 0.571 0.574 0.718
MSE 0.445 0.444 0.667

15
Estimated value 0.931 0.933 1.077
MSE 0.286 0.286 0.374

20
Estimated value 1.291 1.292 1.436
MSE 0.211 0.211 0.257

25
Estimated value 1.650 1.651 1.795
MSE 0.167 0.167 0.196

30
Estimated value 2.009 2.010 2.154
MSE 0.138 0.138 0.158
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Table 3: Estimated values and MSEs of different estimators for the scale parameter β
of the gamma distribution when α = 1 , β = 3 and c = 2

Sample Size Criteria β̂MML β̂MEQ β̂MLE

5
Estimated value 0.414 0.358 0.597
MSE 2.412 2.250 5.250

10
Estimated value 1.014 0.956 1.195
MSE 1.029 1.000 1.500

15
Estimated value 1.612 1.553 1.792
MSE 0.655 0.643 0.841

20
Estimated value 2.209 2.150 2.389
MSE 0.480 0.474 0.579

25
Estimated value 2.806 2.747 2.986
MSE 0.379 0.375 0.440

30
Estimated value 3.404 3.345 3.584
MSE 0.313 0.310 0.355

Table 4: Estimated values and MSEs of different estimators for the scale parameter β
of the gamma distribution when α = 1, β = 3 and c = 3

Sample Size Criteria β̂MML β̂MEQ β̂MLE

5
Estimated value 0.246 0.256 0.426
MSE 2.260 2.250 5.250

10
Estimated value 0.676 0.682 0.853
MSE 1.000 1.000 1.500

15
Estimated value 1.106 1.108 1.279
MSE 0.643 0.643 0.841

20
Estimated value 1.533 1.535 1.705
MSE 0.474 0.474 0.579

25
Estimated value 1.960 1.961 2.131
MSE 0.375 0.375 0.440

30
Estimated value 2.386 2.387 2.558
MSE 0.310 0.310 0.355
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Table 5: Estimated values and MSEs of different estimators for the scale parameter β
of the gamma distribution when α = 2, β = 2 and c = 3

Sample Size Criteria β̂MML β̂MEQ β̂MLE

5
Estimated value 0.604 0.607 0.379
MSE 0.445 0.444 0.667

10
Estimated value 1.364 1.366 0.759
MSE 0.211 0.211 0.257

15
Estimated value 2.123 2.124 1.138
MSE 0.138 0.138 0.158

20
Estimated value 2.882 2.883 1.517
MSE 0.103 0.103 0.113

25
Estimated value 3.641 3.641 1.897
MSE 0.082 0.082 0.088

30
Estimated value 4.400 4.400 2.276
MSE 0.068 0.068 0.073

Table 6: Estimated values and MSEs of different estimators for the scale parameter β
of the gamma distribution when α = 2, β = 3 and c = 2

Sample Size Criteria β̂MML β̂MEQ β̂MLE

5
Estimated value 1.053 0.993 0.621
MSE 1.029 1.000 1.500

10
Estimated value 2.296 2.235 1.242
MSE 0.480 0.474 0.579

15
Estimated value 3.538 3.476 1.862
MSE 0.313 0.310 0.355

20
Estimated value 4.779 4.713 2.483
MSE 0.232 0.231 0.255

25
Estimated value 6.021 5.959 3.104
MSE 0.185 0.184 0.199

30
Estimated value 7.262 7.201 3.725
MSE 0.153 0.153 0.163
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Figure 1: MSEs of different estimators for the 
scale parameter of the gamma distribution when  

alpha=1, beta=2 and c=2.
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Figure 2: MSEs of different estimators for the 
scale parameter of the gamma distribution when  

alpha=1, beta=2 and c=3.
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Figure 3: MSEs of different estimators for the scale 
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Figure 4: MSEs of different estimators for the scale 
parameter of the gamma distribution when alpha=1, 

beta=3 and c=3.
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Figure 5: MSEs of different estimators for the 
scale parameter of the gamma distribution 

when alpha=2, beta=2 and c=3.
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Figure 6: MSEs of different estimators for the 
scale parameter of the gamma distribution 

when alpha=2, beta=3 and c=2.
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