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Abstract

In this paper, we consider the point and interval estimation of P (Y < X) in
two-parameter exponential distribution when the scale parameter is either
known or unknown including a test of hypothesis.
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1 Introduction

A two-parameter exponential distribution is given by

f(x;µ, σ) =
1
σ

e−(x−µ)/σ, x > µ, σ > 0, µ ∈ R. (1)
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The problem of estimating and of drawing inferences about the probability that a
random variable Y is less than an independent random variable X arises in reliability
studies. When Y represents the random value of a stress that a device will be sub-
jected to in-service and X represents the strength that varies from item to item in
the population of devices, then the reliability R, i.e., the probability that a randomly
selected device functions successfully is equal to P (Y < X). The same problem also
arises in the context of statistical tolerence where Y represents, say, the diameter of
a shaft and X the diameter of a bearing that is to be mounted on the shaft. The
probability that the bearing fits without interference is then P (Y < X).

In biometry, Y represents a patient’s remaining years of life if treated with drug A
and X represents the patient’s remaining years when treated with drug B. If the choice
of drug is left to the patient, person’s deliberations will center on whether P (Y < X)
is less than or greater than 1/2.

The probability that a Weibull random variable Y is less than another independent
Weibull random variable X was considered by McCool (1991). Many other authors
have considered the problem for a number of other distributions.

In this paper, we consider the inference problem on P (Y < X) in two-parameter
exponential distribution when the scale parameters are known or not known, which
includes point and interval estimation and a test of hypothesis.

2 Inference on P (Y < X)

Let X and Y be independent two-parameter exponential random variables with pa-
rameters (µx, σx) and (µy, σy), respectively. Then

P (Y < X) =
∫ ∫

µy<y<x
fY (y;µy, σy)fX(x;µx, σx)dydx

=

{
ρ

ρ+1e−δ/σx , δ ≥ 0,

1− 1
ρ+1eδ/σy , δ < 0,

(2)

where ρ = σx/σy, δ = µy − µx, and fX(x) and fY (y) are the pdf’s of X and Y ,
respectively.

To consider inference on P (Y < X), assume X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be
two independent random samples from two-parameter exponential distributions with
parameters (µx, σx) and (µy, σy), respectively. Then the MLE δ̂ of δ is

δ̂ = µ̂y − µ̂x = Y(1) −X(1) ≡ D, (3)

where X(1) and Y(1) are the first order statistics of Xi’s and Yi’s, respectively.
By the results in Johnson et al (1970), we have the following Fact 1.

Fact 1: (a) X(1) follows an exponential distribution with a location parameter µx and
scale parameter σx/m.
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(b) If X1, X2, . . . , Xm are iid exponential distributions with a scale parameter σx and
a location parameter µx, then

∑m
i=1(Xi −X(1)) follows a gamma distribution with a

shape m− 1 and scale σx.
(c) If a random variable X follows a gamma distribution with a shape α and a scale
σ, then E

(
1

Xk

)
= Γ(α−k)

Γ(α)σk , for α > k.

From Fact 1(a), we can obtain the expectation and variance of δ̂ ≡ D:

E(D) = δ +
σy

n
− σx

m

V ar(D) =
σ2

x

m2
+

σ2
y

n2
. (4)

Then we can obtain the pdf of D as follows.

fD(d) =

{
mn

nσx+mσy
e
− n

σy
(d−δ)

, if d ≥ δ
mn

nσx+mσy
e−

m
σx

(δ−d), if d < δ
(5)

2.1 When the scale parameters σx = σy = σ0 is known

From the result (2),

R ≡ P (Y < X) =
{

1
2e−δ/σ0 , δ ≥ 0
1− 1

2eδ/σ0 , δ < 0.

Then the probability depends on δ only. Because R is a monotone function in δ,
inference on δ is equivalent to inference on R. We hereafter confine attention to the
parameter δ (see McCool (1991)).

When the scale parameters σx = σy = σ0 and σ0 is known, let T = D − δ. Then
from the pdf (5) of D, we have the following pdf of T .

fT (t) =

{
m

m+n · n
σ0

e
− n

σ0
t
, if t ≥ 0

n
m+n · m

σ0
e

m
σ0

t
, if t < 0.

(6)

Based on a pivotal quantity T , we shall consider an (1− p1 − p2)100% confidence
interval of δ. For a given p1, there exists a b1 such that

p1 =
∫ b1

−∞

n

m + n
· m

σ0
e

m
σ0

t
dt

and hence
b1 =

σ0

m
ln[(m + n)p1/n]. (7)
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For another 0 < p2 < 1, there exists a b2 such that

p2 =
∫ ∞

b2

m

m + n
· n

σ0
e
− n

σ0
t
dt

and hence
b2 = −σ0

n
ln[(m + n)p2/m]. (8)

Next we wish to test the null hypothesis H0 : µx = µy against H1 : µx 6=
µy. Let Θ = {(µx, µy)|µx ∈ R, µy ∈ R} and θ = (µx, µy). Then the joint pdf of
(X1, X2, . . . , Xm, Y1, Y2, . . . , Yn) is

L(θ) = fθ(x, y) =
m∏

i=1

1
σ0

e−(xi−µx)/σ0

n∏

i=1

1
σ0

e−(yi−µy)/σ0 , for all xi > µx, yi > µy.

From the likelihood function, we can obtain the MLE’s of µx and µy as

µ̂x = X(1) and µ̂y = Y(1).

If µx = µy = µ, then the MLE of µ is

µ̂ = min(X(1), Y(1)) = (Y(1) + X(1) − |Y(1) −X(1)|)/2.

From definition of likelihood ratio test (Rohatgi (1976)), the likelihood ratio test
function can be obtained as

Λ(x, y) = exp(−|D|( m

2σ0
+

n

2σ0
) + D(

m

2σ0
− n

2σ0
)), where D = Y(1) −X(1).

Therefore,

Λ(x, y) < λ ⇔ D < b1 or D > b2. (9)

Under H0 : µx = µy, i.e., δ = 0, T = D − δ = D, and hence, for given 0 < α < 1, we
can find b1 and b2 of (9) through the results (7) and (8) by substituting p1 = p2 = α/2.
This yields b1 = σ0

m ln[(m + n)α/2n] and b2 = −σ0
n ln[(m + n)α/2m].

2.2 When the scale parameters σx and σy are unknown

We first develop a test for the null hypothesis H0 : σx = σy = σ, σ unknown
against the alternative hypothesis H1 : σx 6= σy, µx ∈ R, µy ∈ R. Let Θ =
{(σx, σy, µx, µy)|σx > 0, σy > 0, µx ∈ R, µy ∈ R} and θ = (σx, σy, µx, µy).
Then the joint pdf of (X1, X2, . . . , Xm, Y1, Y2, . . . , Yn) is

L(θ) = fθ(x, y) =
m∏

i=1

1
σx

e−(xi−µx)/σx

n∏

i=1

1
σy

e−(yi−µy)/σy , for all xi > µx, yi > µy.
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Differentiating the likelihood function with respect to σx and σy, we obtain the
MLE’s as

σ̂x =
1
m

m∑

i=1

(Xi −X(1)), σ̂y =
1
n

n∑

i=1

(Yi − Y(1)), and µ̂x = X(1), µ̂y = Y(1).

If σx = σy = σ, then the MLE of σ is

σ̂ =
1

n + m

(
m∑

i=1

(Xi −X(1)) +
n∑

i=1

(Yi − Y(1))

)
. (10)

From the definition of likelihood ratio test, the likelihood ratio test function can be
obtained as

Λ(x, y) =
(

σ̂x

σ̂

)m

·
(

σ̂y

σ̂

)n

=
(

m + n

m

)m

·
(

m + n

n

)n

·
(

1
1 + 1/U

)m

·
(

1
1 + U

)n

,

where U ≡
∑m

i=1(Xi−X(1))∑n
i=1(Yi−Y(1))

. Therefore,

Λ(x, y) < c ⇔ U < u1 or U > u2. (11)

From Fact 1(b) and Rohatgi (1976), we have the following Fact 2.
Fact 2: (a) Z ≡ 2

∑m
i=1(Xi−X(1))

σx
and W ≡ 2

∑n
i=1(Yi−Y(1))

σy
follow chi-square distributions

with 2(m−1) and 2(n−1) degrees of freedom, respectively. (b) The random variables
Z and W are independent.

Under H0 : σx = σy = σ, From Fact 2, U =
∑m

i=1(Xi−X(1))/(m−1)∑n
i=1(Yi−Y(1))/(n−1)

follows an
F-distribution with 2(m − 1) and 2(n − 1) degrees of freedom. Hence for a given
0 < α < 1, from (11),

u2 = Fα/2(2(m− 1), 2(n− 1)) and u1 = 1/Fα/2(2(n− 1), 2(m− 1)).

If the null hypothesis is accepted, then R = P (Y < X) is a monotone function of
β ≡ δ/σ and is given by the following.

R ≡ P (Y < X) =
{

1
2e−δ/σ, δ ≥ 0
1− 1

2eδ/σ, δ < 0.

Then the plug-in estimator of β, using results in (3) and (10) is obtained as

β̂ = D/σ̂ =
(m + n)(Y(1) −X(1))∑m

i=1(Xi −X(1)) +
∑n

i=1(Yi − Y(1))
.

From the results (4) and Fact 1(c), we obtain the following.

E(β̂) = β +
3

m + n− 3
β +

m2 − n2

mn(m + n− 3)
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and

V ar(β̂) =
(m + n)2(m2 + n2)

m2n2(m + n− 3)2(m + n− 4)
β2.

Hence, a large sample test for R can be suggested in terms of β in a routine manner.

2.3 When µx = µy = µ0 and µ0 is known

From the result (2), R = P (Y < X) = ρ/(1 + ρ) is a monotone functione of ρ. Hence,
inference on ρ is equivalent to the inference on R (see, McCool (1991)).

The MLE of ρ is given by

ρ̂ =
n

m

∑m
i=1(Xi − µ0)∑n
i=1(Yi − µ0)

.

From Fact 1, we can obtain the expectation and variance of ρ̂ as

E(ρ̂) =
n

n− 1
ρ and V ar(ρ̂) =

n

m(n− 1)2(n− 2)
ρ2, n > 2.

Define

ρ̃ =
n− 1

m

∑m
i=1(Xi − µ0)∑n
i=1(Yi − µ0)

.

Then ρ̃ is an unbiased estimator of ρ and V ar(ρ̃) = 1
mn(n−2)ρ

2, n > 2.
Then we have the following Fact 3.

Fact 3: An unbiased estimator ρ̃ has less MSE than the MLE ρ̂ for n > 2.
Next, we wish to test the following hypothesis H0 : σx = σy(= σ) against the

alternative H1 : σx 6= σy. As in the preceding section, the MLE’s of σx and σy are
σ̂x = 1

m

∑m
i=1(Xi − µ0) and σ̂y = 1

n

∑n
i=1(Yi − µ0), respectively. If the null hypothesis

is true, then the MLE of σ is given by σ̂ = 1
m+n(

∑m
i=1(Xi − µ0) +

∑n
i=1(Yi − µ0)).

From the likelihood ratio test and using the same argument of the preceding section,
the critical region for the test is given by Λ(x, y) < c ⇔ W < w1, or W > w2, where
W =

∑m
i=1(Xi − µ0)/

∑n
i=1(Yi − µ0). If the null hypothesis is true, then the test

statistic W follows an F -distribution with (2m, 2n) degrees of freedom. Therefore,
for a given 0 < α < 1, the critical points are given by w1 = 1/Fα/2(2n, 2m) and
w2 = Fα/2(2m, 2n).

3 Concluding Remarks

In this article, we have developed inference procedures for R without explicitly deriving
the form of UMVUE for R. We propose to undertake this and other related studies
in a forthcoming article.
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