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Abstract

In this paper we consider the problem of estimation of θ (1 − θ ) based
on X ∼ B(n, θ), n being known and 0 < θ < 1, θ being unknown. We

compare three standard estimators T1 =
X

n

(
1− X

n

)
, T2 =

X(n−X)
n (n− 1)

,

and T3 =
X(n−X ) + n

√
n/2 + n/4

(n +
√

n)2
on the basis of Multiple Criteria De-

cision Making (MCDM) procedure. MCDM is a novel statistical procedure
to compare several competing estimators of a parameter. It turns out that
our preference is mostly for T1.
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1 Introduction

We consider the problem of estimation of θ (1 − θ ) based on X ∼ B(n, θ). Here n
is known and 0 < θ < 1, θ being unknown. It is well known that there are three

standard estimators of θ (1 − θ ), namely, T1 =
X

n

(
1− X

n

)
, the maximum likeli-

hood estimate [1], T2 =
X(n−X)
n (n− 1)

, the minimum variance unbiased estimate, and

T3 =
X(n−X ) + n

√
n/2 + n/4

(n +
√

n)2
, based on the minimax estimate of θ. In this paper

we compare T1, T2 and T3 on the basis of Multiple Criteria Decision Making (MCDM)
method. This method is briefly described in Section 2 and Section 3 contains the
main results of this paper. It turns out that most often T1 is the preferred choice. For
detailed discussions on MCDM, we refer to Zeleny [5].

2 A brief description of MCDM procedure

In the context of a ‘discrete’ data matrix X = (xij) : K × N where xij
′s represent

‘risk ’ of ith ‘source’ for jth ‘category ’, and we need to compare the K rows simul-
taneously with respect to all the N columns, MCDM is a novel statistical procedure
to integrate the multiple indicators (xi1, . . . , xiN ) for row i across all indicators into
a single meaningful and overall index. This is done by defining an Ideal Row (IDR)
with the smallest observed value for each column as

IDR = (min
i

xi1, . . . , min
i

xiN ) = (u1 , . . . , uN ), say

and a Negative-ideal Row (NIDR) with the largest observed value for each column as

NIDR = (max
i

xi1, . . . , max
i

xiN ) = (v1 , . . . , vN ), say.

For any given rowi,we now compute the distance of each row from Ideal row and from
Negative Ideal row based on a suitably chosen norm. Under L1-norm, we compute

L1( i , IDR) =
N∑

j =1

|xij − uj |wj =
N∑

j =1

[xij − uj ] wj

L1( i , NIDR) =
N∑

j =1

|xij − vj | wj =
N∑

j =1

[ vj − xij ] wj

where wj
′s are appropriate weights. The various rows are now compared based on an

overall index computed as

L1(Indexi) =
L1(i , IDR)

L1(i , IDR) + L1(i , NIDR)
, i = 1 , . . . , K. (1)
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Similarly, under L2-norm, we compute

L2( i , IDR) = [
N∑

j =1

(xij − uj)2wj ]1/2

L2( i ,NIDR) = [
N∑

j = 1

(xij − vj)2wj ]1/2

and compare the rows based on

L2(Index i) =
L2(i , IDR)

L2(i , IDR) + L2(i , NIDR)
, i = 1 , . . . , K. (2)

A ‘continuous’ version of this setup would involve xij
′s where the index j would vary

‘continuously ’. In the context of our problem of comparing T1 , T2 and T3 for estimation
of θ (1−θ ), obviously K = 3, xij

′s are chosen to represent the mean squared errors of
T1 , T2 and T3 for various values of θ, and L1-norm and L2-norm would be redefined
as

L1( i , IDR) =

1∫

0

[xi(θ)− u(θ)] w (θ) dθ (3)

L1( i ,NIDR) =

1∫

0

[v (θ)− xi(θ)] w (θ) dθ (4)

L2( i , IDR) =

√√√√√
1∫

0

(xi(θ)− u(θ) )2w (θ) dθ (5)

L2( i ,NIDR) =

√√√√√
1∫

0

(xi(θ)− v (θ) )2w (θ) dθ (6)

where u(θ) = min
i
{xi(θ)} and v(θ) = max

i
{xi(θ)}.

3 Main Results

We first start with the mean squared errors of T1, T2and T3, given below. For details
of derivation, we refer to Technical Report [3].

MSE (T1) = B1(n) θ + C1(n) θ2 + D1(n) θ3 + E1(n) θ4 (7)
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where B1(n) =
n (n− 1)2

n4
, C1(n) =

(5n− 7) (n− n2) + n2

n4
,

D1(n) =
(2n− 3) (4n2 − 4n)− 2n2

n4
and E1(n) =

(2n− 3) (2n− 2n2) + n2

n4
.

MSE (T2) = B2(n) θ + C2(n) θ2 + D2(n) θ3 + E2(n) θ4 (8)

where B2(n) =
1
n

, C2(n) =
(7− 5n)
n (n− 1)

, D2(n) =
4(2n− 3)
n (n− 1)

and E2(n) =
−2 (2n− 3)
n (n− 1)

.

MSE (T3) = A3(n) + B3(n) θ + C3(n) θ2 + D3(n) θ3 + E3(n) θ4 (9)

where A3(n) =
(n
√

n/2 + n/4)2

(n +
√

n)4
,

B3(n) =
−2(2n + 2n

√
n)(n

√
n/2 + n/4) + n (n− 1)2

(n +
√

n)4
,

C3(n) =
2(2n + 2n

√
n)(n

√
n/2 + n/4) + (2n + 2n

√
n)2 − n (5n− 7)(n− 1)

(n +
√

n)4
,

D3(n) =
−2 (2n + 2n

√
n)2 + 4n(2n− 3)(n− 1)
(n +

√
n)4

and E3(n) =
(2n + 2n

√
n)2 − 2n (2n− 3)(n− 1)

(n +
√

n)4
.

Writing x1(θ) = MSE(T1) , x2(θ) = MSE(T2) and x3(θ) = MSE(T3), we present
in Figure 1 their graphical patterns for n = 5,10,15,20. It is interesting to note the
bimodal nature of x1(θ)and x2(θ), and convex nature of x3(θ).

Since 0 < θ < 1, the intersection of three graphs can separate the interval of θ into
seven intervals (0 < c1(n) < c2(n) < c3(n) < c4(n) < c5(n) < c6(n) < 1). Obviously,
MSE(T1)= MSE(T2) holds whenever θ = c3(n), c4(n) where

c3(n) =
6− 17n + 9n2 −√12− 64n + 109n2 − 62n3 + 9n4

2 (6− 17n + 9n2)

and

c4(n) =
6− 17n + 9n2 +

√
12− 64n + 109n2 − 62n3 + 9n4

2 (6− 17n + 9n2)
.



Lertprapai, Tiensuwan and Sinha: On a comparison of three estimators 109

Figure 1: Graphical illustration of mean squared errors for n = 5,10,15, 20.

Likewise, MSE(T1)= MSE(T3) holds whenever θ = c2(n), c5(n) where

c2(n) = 24 + 48
√

n + 4n− 88n3/2 − 72n2 + 32n5/2 + 44n3 + 8n7/2 −(
(−24− 48

√
n− 4n + 88n3/2 + 72n2 − 32n5/2 − 44n3 − 8n7/2)2−

4(24 + 48
√

n + 4n− 88n3/2 − 72n2 + 32n5/2 + 44n3 + 8n7/2)

(2 + 4
√

n− 8n3/2 − 6n2 + 4n5/2 + 6n3 + 2n7/2 −(
4 + 16

√
n + 16n− 32n3/2 − 88n2 − 32n5/2 + 114n3+

128n7/2 − 37n4 − 124n9/2 − 26n5 + 52n11/2 + 25n6
)

1/2)
)1/2

/

( 2 (24 + 48
√

n + 4n− 88n3/2 − 72n2 + 32n5/2 + 44n3 + 8n7/2))
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and

c5(n) = 24 + 48
√

n + 4n− 88n3/2 − 72n2 + 32n5/2 + 44n3 + 8n7/2 +(
(−24− 48

√
n− 4n + 88n3/2 + 72n2 − 32n5/2 − 44n3 − 8n7/2)2−

4(24 + 48
√

n + 4n− 88n3/2 − 72n2 + 32n5/2 + 44n3 + 8n7/2)

(2 + 4
√

n− 8n3/2 − 6n2 + 4n5/2 + 6n3 + 2n7/2 −(
4 + 16

√
n + 16n− 32n3/2 − 88n2 − 32n5/2 + 114n3+

128n7/2 − 37n4 − 124n9/2 − 26n5 + 52n11/2 + 25n6
)

1/2)
)1/2

/

( 2 (24 + 48
√

n + 4n− 88n3/2 − 72n2 + 32n5/2 + 44n3 + 8n7/2)).

Lastly, MSE(T2)= MSE(T3) holds whenever θ = c1(n), c6(n) where

c1(n) = −48− 56
√

n + 24n + 40n3/2 + 8n2 − ((48 + 56
√

n− 24n− 40n3/2 − 8n2)2

−4(−48− 56
√

n + 24n + 40n3/2 + 8n2)(−4− 5
√

n + 2n + 5n3/2 + 2n2

−
√

16 + 34
√

n− 16n− 78n3/2 − 24n2 + 44n5/2 + 24n3 ))1/2 /

(2 (−48− 56
√

n + 24n + 40n3/2 + 8n2))

and

c6(n) = −48− 56
√

n + 24n + 40n3/2 + 8n2 + ((48 + 56
√

n− 24n− 40n3/2 − 8n2)2

−4(−48− 56
√

n + 24n + 40n3/2 + 8n2)(−4− 5
√

n + 2n + 5n3/2 + 2n2

−
√

16 + 34
√

n− 16n− 78n3/2 − 24n2 + 44n5/2 + 24n3 ))1/2 /

(2 (−48− 56
√

n + 24n + 40n3/2 + 8n2)).

Moreover, the Ideal row and Negative-ideal row are as follows :

IDR : u(θ ) = {x1(θ) : θ < c2(n) , x3(θ) : c2(n) < θ < c5(n), x1(θ) : θ > c5(n) } .
(10)

NIDR : v(θ ) = {x3(θ) : θ < c1( n), x2(θ) : c1(n) < θ < c3(n) ,

x1(θ) : c3(n) < θ < c4(n), x2(θ) : c4(n) < θ < c6(n) ,

x3(θ) : θ > c 6(n)} . (11)

Since we are dealing with a continuous parameter θ, 0 < θ < 1, a proper formulation
of the MCDM procedure as described earlier in (3)-(6) can be given as follows.
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3.1 Analysis based on L1-norm

For i = 1, applying equations (3) and (4), we get

L1(1, IDR) =

c5(n)∫

c2(n)

(x1(θ)− x3(θ)) w(θ) dθ ,

L1(1, NIDR) =
∫

θ<c1(n)∪θ>c6(n)

(x3(θ)− x1(θ)) w(θ) dθ +

c3(n)∫

c1(n)

(x2(θ)− x1(θ)) w(θ) dθ +

c6(n)∫

c4(n)

(x2(θ)− x1(θ)) w(θ) dθ .

For i = 2, applying equations (3) and (4), we obtain

L1(2, IDR) =
∫

θ <c2(n)∪θ>c5(n)

(x2(θ)− x1(θ)) w(θ) dθ +

c5(n)∫

c2(n)

(x2(θ)− x3(θ)) w(θ) dθ,

L1(2, NIDR) =
∫

θ<c1(n)∪θ>c6(n)

(x3(θ)− x2(θ))w(θ) dθ +

c4(n)∫

c3(n)

(x1(θ)− x2(θ))w(θ) dθ.

For i = 3, applying equations (3) and (4), we obtain

L1(3, IDR) =
∫

θ<c2(n)∪θ>c5(n)

(x3(θ)− x1(θ)) w(θ) dθ ,

L1(3, NIDR) =

c3(n)∫

c1(n)

(x2(θ)− x3(θ))w(θ) dθ +

c6(n)∫

c4(n)

(x2(θ)− x3(θ)) w(θ) dθ +

c4(n)∫

c3(n)

(x1(θ)− x3(θ)) w(θ) dθ.

The overall index can then be computed from equation (1). It is clear that for the
purpose of comparison of the three estimates, we can work with

L1(Indexi) =
L1(i , IDR)

L1(i , IDR) + L1(i , NIDR)
, i = 1 , 2, 3.
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3.2 Analysis based on L2-norm

For i = 1, applying equations (5) and (6), we get

L2(1, IDR) =

√√√√√√
c5(n)∫

c2(n)

(x1(θ)− x3(θ))
2 w(θ) dθ ,

L2(1, NIDR) =

√√√√√√√√√√√√√√√√√√

∫

θ<c1(n)∪ θ>c6(n)

(x3(θ)− x1(θ))
2 w(θ) dθ +

c3(n)∫

c1(n)

(x2(θ)− x1(θ))
2 w(θ) dθ +

c6(n)∫

c4(n)

(x2(θ)− x1(θ))
2 w(θ) dθ

.

For i = 2, applying equations (5) and (6), we obtain

L2(2, IDR) =

√√√√√√
∫

θ <c2(n)∪θ>c5(n)

(x2(θ)− x1(θ))
2 w(θ) dθ +

c5(n)∫

c2(n)

(x2(θ)− x3(θ))
2w(θ) dθ,

L2(2, NIDR) =

√√√√√√
∫

θ<c1(n)∪ θ>c6(n)

(x3(θ)− x2(θ))
2 w(θ) dθ +

c4(n)∫

c3(n)

(x1(θ)− x2(θ))
2 w(θ) dθ.

For i = 3, applying equations (5) and (6), we obtain

L2(3, IDR) =

√√√√
∫

θ<c2(n) ∪ θ>c5(n)

(x3(θ)− x1(θ))
2 w(θ) dθ ,

L2(3, NIDR) =

√√√√√√√√√√√√√

c3(n)∫

c1(n)

(x2(θ)− x3(θ))
2 w(θ) dθ +

c6(n)∫

c4(n)

(x2(θ)− x3(θ))
2 w(θ) dθ+

c4(n)∫

c3(n)

(x1(θ)− x3(θ))
2 w(θ) dθ

.
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Under L2-norm also, the overall index can be computed from equation (2) for each
value of n.

3.3 Choice of weight functions

Our first weight function w1(θ) is defined by w1(θ) =
θα−1(1− θ)β−1

B(α, β)
for some α, β >

0, which is a conjugate prior for the binomial parameter θ. Following Filar et al. [2], we
also consider two additional choices of w (θ). The first one, denoted by w2(θ), is based
on the notion of entropy among x1(θ), x2(θ) and x3(θ) for various values of θ, and the
second one, denoted by w3(θ), is based on the coefficient of variation of x1(θ), x2(θ)
and x3(θ) for various values of θ (Vide [4]). It turns out that

w2(θ) =
1− φ(θ)

θ̄∫
θ

[ 1− φ(θ) ] dθ

(12)

where φ(θ) = − 1
log 3

3∑

i=1





xi(θ)
3∑

i=1
xi(θ)

. log




xi(θ)
3∑

i=1
xi(θ)








,

and

w3(θ) =

√
2 ( x2

1(θ) + x2
2(θ) + x2

3(θ) − x1(θ)x2(θ)− x1(θ)x3(θ)− x2(θ)x3(θ) )
x1(θ) + x2(θ) + x3(θ)

.

(13)
For details of above derivation, we refer to Technical Report [3]. These expressions can
be readily computed using the functions x1(θ), x2(θ) and x3(θ) given in (3.1)-(3.3).

3.4 Comparison of estimators

We report in Table 1 the ranks of the three estimators when compared on the basis of
the weight function w1(θ). In Table 2, we provide the ranks for the two other weight
functions w2(θ) and w3(θ).
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Table 1: Rank of three estimators using weight w1(θ)∗

L1 L2

rank rank rank rank
(α = β = 1) (α = β =

√
n/2) (α = β = 1) (α = β =

√
n/2)

n =5 T 1 2 2 2 2
T 2 3 3 3 3
T 3 1 1 1 1

n=10 T 1 2 2 1 2
T 2 3 3 2 3
T 3 1 1 3 1

n=15 T 1 1 2 1 2
T 2 3 3 3 3
T 3 2 1 2 1

n=20 T 1 1 2 1 2
T 2 2 3 2 3
T 3 3 1 3 1

* Rank 1 = best, Rank 3 = worst

Table 2: Rank of three estimators using weights w2(θ)and w3(θ)*

L1 L2

w2(θ) w3(θ) w2(θ) w3(θ)
n=5 T 1 1 2 1 2

T 2 2 3 2 3
T 3 3 1 3 1

n=10 T 1 1 1 1 1
T 2 2 3 2 2
T 3 3 2 3 3

n=15 T 1 1 1 1 1
T 2 2 2 2 2
T 3 3 3 3 3

n=20 T 1 1 1 1 1
T 2 2 2 2 2
T 3 3 3 3 3

* Rank 1 = best, Rank 3 = worst
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4 Conclusion

Based on the above analysis under L1- and L2- norms, we conclude that, for small
values of n, our preference is uniformly for T1. Under the weight function w1(θ), T3

also has some advantages. Of the three estimators studied in this paper, it turns out

that T2 is improper since T2(x) >
1
4

whenever
n−√n

2
< x <

n +
√

n

2
. On the other

hand, both T1 and T3 are seen to be proper estimators. Therefore, one should use the
truncated version T ∗2 of T2 and compute its mse and then compare it with the other
two. This will improve the performance of T2 and possibly make it preferable over T1

and T3. We propose to undertake this study in future.
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Appendix

Derivation of equations (3.1)-(3.3).
Recall that

T1 =
X

n

(
1− X

n

)
, T2 =

X(n−X)
n (n− 1)

, T3 =
X(n−X ) + n

√
n/2 + n/4

(n +
√

n)2
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Let δθ = θ(1 − θ). It is easy to verify that E(X) = nθ, E(X2) = nθ(1 + nθ − θ)
E(X3) = nθ(1 + 3nθ + n2θ2 − 3nθ2 − 3θ + 2θ2), and
E(X4) = nθ(1− 7θ + 7nθ + 12θ2 − 18nθ2 + 6n2θ2 − 6θ3 + 11nθ3 − 6n2θ3 + n3θ3).
Moreover, V (X) = nθ(1− θ), and one can easily show
V (X2) = nθ(1 − 7θ + 6nθ + 12θ2 − 16nθ2 + 4n2θ2 − 6θ3 + 10nθ3 − 4n2θ3), and
Cov(X, X2) = nθ (1 + 2nθ − 2nθ2 + 2θ2 − 3θ).

Note that E(T1) =
θ(1− θ)(n− 1)

n
, E(T2) = θ(1− θ), and

E(T3) =
{

θ(1− θ)(n− 1) +
√

n

2
+

1
4

}
· n

(n +
√

n)2
.

Hence, (E(T1)− δθ)2 =
1
n4

(n2θ4 − 2n2θ3 + n2θ2), (E(T2)− δθ)2 = 0, and

(E(T3)− δθ)2 =
1

(n +
√

n)4

((
n
√

n

2
+

n

4

)
− 2 θ (1− θ) n (1 +

√
n)

)2

.

Furthermore,

V (T1) = V

(
X(n−X)

n2

)
=

1
n4

(
n2 V (X) + V (X2)− 2n Cov(X, X2)

)

=
1
n4

(
n (n− 1)2θ + (5n− 7)(n− n2) θ2 + (2n− 3)(4n2 − 4n) θ3

)
+

1
n4

(
(2n− 3)(2n− 2n2) θ4

)
,

V (T2) = V

(
X(n−X)
n (n− 1)

)
=

1
n2(n− 1)2

(
n2 V (X) + V (X2)− 2nCov(X, X2)

)

=
1

n2(n− 1)2
(
n(n− 1)2θ + (5n− 7)(n− n2)θ2 + (2n− 3)(4n2 − 4n)θ3

)
+

1
n2(n− 1)2

(
(2n− 3)(2n− 2n2)θ4

)
,

V (T3) = V

(
X(n−X) + n

√
n/2 + n/4

(n +
√

n)2

)

=
1

(n +
√

n)4
(
n2V (X) + V (X2)− 2nCov(X, X2)

)

=
1

(n +
√

n)4
(
n(n− 1)2θ + (5n− 7)(n− n2)θ2 + (2n− 3)(4n2 − 4n)θ3

)
+

1
(n +

√
n)4

(
(2n− 3)(2n− 2n2)θ4

)
.
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We are now in a position to compute the mean squared errors of the three estimators.
1. MSE(T1) = E( T1 − δθ)2 = V (T1) + (E(T1)− δθ)2

=
1
n4

{
n(n− 1)2θ +

(
(5n− 7)(n− n2) + n2

)
θ2 +

(
(2n− 3)(4n2 − 4n)− 2n2

)
θ3

+
(
(2n− 3)(2n− 2n2) + n2

)
θ4

}
.

2. MSE(T2) = E( T2 − δθ)2 = V (T2)

=
1

n2(n− 1)2
{n(n− 1)2θ − n(5n− 7)(n− 1)θ2 + 4n(2n− 3)(n− 1)θ3 −

2n(2n− 3)(n− 1)θ4}.

3. MSE(T3) = E( T3 − δθ)2 = V (T3) + (E(T3)− δθ)2

=
1

(n +
√

n)4
{[(2n + 2n

√
n)2 − 2n(2n− 3)(n− 1)]θ4

+[−2(2n + 2n
√

n)2 + 4n(2n− 3)(n− 1)]θ3

+[2(2n + 2n
√

n)(n
√

n/2 + n/4) + (2n + 2n
√

n)2 − n(5n− 7)(n− 1)]θ2

+[−2(2n + 2n
√

n)(n
√

n/2 + n/4) + n(n− 1)2]θ + (n
√

n/2 + n/4)2}.

Finally, a justification of (13) follows from the following observation. Referring to [2]
and [4], note that

w3(θ) =
s

x̄
=

√
1
3

3∑
i=1

( xi(θ)− x̄(θ) )2

1
3

3∑
i=1

xi(θ)
.

Since
3∑

i=1

(xi(θ)− x̄(θ))2 =
2
3

[
x2

1(θ) + x2
2(θ) + x2

3(θ)− x1(θ)x2(θ)− x1(θ)x3(θ)− x2(θ)x3(θ)
]
,

(13) follows.
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