ISSN 1683-5603

International Journal of Statistical Sciences Vol. 3 (Special), 2004, pp 105–117 © 2004 Dept. of Statistics, Univ. of Rajshahi, Bangladesh

On a comparison of three estimators of binomial variance by multiple criteria decision making method

Satinee Lertprapai *

Department of Mathematics Faculty of Science, Mahidol University Bangkok, Thailand

Montip Tiensuwan[†] Department of Mathematics Faculty of Science, Mahidol University Bangkok, Thailand

Bimal K. Sinha[‡] Department of Mathematics and Statistics University of Maryland Baltimore County, USA

[Received March 1, 2004; Accepted July 2, 2004]

Abstract

In this paper we consider the problem of estimation of θ $(1 - \theta)$ based on $X \sim B(n, \theta)$, n being known and $0 < \theta < 1$, θ being unknown. We compare three standard estimators $T_1 = \frac{X}{n} \left(1 - \frac{X}{n}\right)$, $T_2 = \frac{X(n - X)}{n(n - 1)}$, and $T_3 = \frac{X(n - X) + n\sqrt{n/2} + n/4}{(n + \sqrt{n})^2}$ on the basis of Multiple Criteria Decision Making (MCDM) procedure. MCDM is a novel statistical procedure to compare several competing estimators of a parameter. It turns out that our preference is mostly for T_1 .

Keywords and Phrases: Binomial distribution, variance, minimax, multiple criteria decision making.

AMS Classification: Primary 62P12; Secondary 62H30.

^{*}Research supported by a scholarship under the Staff Development Project of the Commission on Higher Education, Thailand.

[†]Research supported by a grant from The Thailand Research Fund (TRF).

[‡]Research supported by UMBC's Presidential Research Professorship grant.

1 Introduction

We consider the problem of estimation of $\theta(1-\theta)$ based on $X \sim B(n,\theta)$. Here n is known and $0 < \theta < 1$, θ being unknown. It is well known that there are three standard estimators of $\theta(1-\theta)$, namely, $T_1 = \frac{X}{n}\left(1-\frac{X}{n}\right)$, the maximum likelihood estimate [1], $T_2 = \frac{X(n-X)}{n(n-1)}$, the minimum variance unbiased estimate, and $T_3 = \frac{X(n-X) + n\sqrt{n/2} + n/4}{(n+\sqrt{n})^2}$, based on the minimax estimate of θ . In this paper we compare T_1 , T_2 and T_3 on the basis of Multiple Criteria Decision Making (MCDM) method. This method is briefly described in Section 2 and Section 3 contains the main results of this paper. It turns out that most often T_1 is the preferred choice. For detailed discussions on MCDM, we refer to Zeleny [5].

2 A brief description of MCDM procedure

In the context of a 'discrete' data matrix $X = (x_{ij}) : K \times N$ where x_{ij} 's represent 'risk' of ith 'source' for jth 'category', and we need to compare the K rows simultaneously with respect to all the N columns, MCDM is a novel statistical procedure to integrate the multiple indicators (x_{i1}, \ldots, x_{iN}) for row i across all indicators into a single meaningful and overall index. This is done by defining an Ideal Row (IDR) with the smallest observed value for each column as

$$IDR = (\min_i x_{i1}, \ldots, \min_i x_{iN}) = (u_1, \ldots, u_N),$$
 say

and a Negative-ideal Row (NIDR) with the largest observed value for each column as

$$NIDR = (\max_{i} x_{i1}, \ldots, \max_{i} x_{iN}) = (v_1, \ldots, v_N), \text{ say.}$$

For any given row*i*, we now compute the distance of each row from Ideal row and from Negative Ideal row based on a suitably chosen norm. Under L_1 -norm, we compute

$$L_{1}(i, IDR) = \sum_{j=1}^{N} |x_{ij} - u_{j}| w_{j} = \sum_{j=1}^{N} [x_{ij} - u_{j}] w_{j}$$
$$L_{1}(i, NIDR) = \sum_{j=1}^{N} |x_{ij} - v_{j}| w_{j} = \sum_{j=1}^{N} [v_{j} - x_{ij}] w_{j}$$

where w_j 's are appropriate weights. The various rows are now compared based on an overall index computed as

$$L_1(Index_i) = \frac{L_1(i, IDR)}{L_1(i, IDR) + L_1(i, NIDR)}, \quad i = 1, \dots, K.$$
(1)

Lertprapai, Tiensuwan and Sinha: On a comparison of three estimators 107

Similarly, under L_2 -norm, we compute

$$L_2(i, IDR) = [\sum_{j=1}^{N} (x_{ij} - u_j)^2 w_j]^{1/2}$$
$$L_2(i, NIDR) = [\sum_{j=1}^{N} (x_{ij} - v_j)^2 w_j]^{1/2}$$

and compare the rows based on

$$L_2(Index_i) = \frac{L_2(i, IDR)}{L_2(i, IDR) + L_2(i, NIDR)}, \quad i = 1, \dots, K.$$
(2)

A 'continuous' version of this setup would involve x_{ij} 's where the index j would vary 'continuously'. In the context of our problem of comparing T_1 , T_2 and T_3 for estimation of θ $(1 - \theta)$, obviously K = 3, x_{ij} 's are chosen to represent the mean squared errors of T_1 , T_2 and T_3 for various values of θ , and L_1 -norm and L_2 -norm would be redefined as

$$L_1(i, IDR) = \int_0^1 [x_i(\theta) - u(\theta)] w(\theta) d\theta$$
(3)

$$L_1(i, NIDR) = \int_0^1 \left[v(\theta) - x_i(\theta) \right] w(\theta) d\theta$$
(4)

$$L_2(i, IDR) = \sqrt{\int_0^1 (x_i(\theta) - u(\theta))^2 w(\theta) d\theta}$$
(5)

$$L_2(i, NIDR) = \sqrt{\int_0^1 (x_i(\theta) - v(\theta))^2 w(\theta) d\theta}$$
(6)

where $u(\theta) = \min_{i} \{x_i(\theta)\}$ and $v(\theta) = \max_{i} \{x_i(\theta)\}.$

3 Main Results

We first start with the mean squared errors of T_1 , T_2 and T_3 , given below. For details of derivation, we refer to Technical Report [3].

MSE
$$(T_1) = B_1(n) \theta + C_1(n) \theta^2 + D_1(n) \theta^3 + E_1(n) \theta^4$$
 (7)

where
$$B_1(n) = \frac{n(n-1)^2}{n^4}, C_1(n) = \frac{(5n-7)(n-n^2)+n^2}{n^4},$$

 $D_1(n) = \frac{(2n-3)(4n^2-4n)-2n^2}{n^4} \text{ and } E_1(n) = \frac{(2n-3)(2n-2n^2)+n^2}{n^4}.$
 $MSE(T_2) = B_2(n)\theta + C_2(n)\theta^2 + D_2(n)\theta^3 + E_2(n)\theta^4$ (8)

where
$$B_2(n) = \frac{1}{n}$$
, $C_2(n) = \frac{(7-5n)}{n(n-1)}$, $D_2(n) = \frac{4(2n-3)}{n(n-1)}$ and $E_2(n) = \frac{-2(2n-3)}{n(n-1)}$.
MSE $(T_3) = A_3(n) + B_3(n)\theta + C_3(n)\theta^2 + D_3(n)\theta^3 + E_3(n)\theta^4$ (9)

where
$$A_3(n) = \frac{(n\sqrt{n}/2 + n/4)^2}{(n + \sqrt{n})^4}$$
,
 $B_3(n) = \frac{-2(2n + 2n\sqrt{n})(n\sqrt{n}/2 + n/4) + n(n-1)^2}{(n + \sqrt{n})^4}$,
 $C_3(n) = \frac{2(2n + 2n\sqrt{n})(n\sqrt{n}/2 + n/4) + (2n + 2n\sqrt{n})^2 - n(5n - 7)(n - 1)}{(n + \sqrt{n})^4}$,
 $D_3(n) = \frac{-2(2n + 2n\sqrt{n})^2 + 4n(2n - 3)(n - 1)}{(n + \sqrt{n})^4}$
and $E_3(n) = \frac{(2n + 2n\sqrt{n})^2 - 2n(2n - 3)(n - 1)}{(n + \sqrt{n})^4}$.

Writing $x_1(\theta) = \text{MSE}(T_1)$, $x_2(\theta) = \text{MSE}(T_2)$ and $x_3(\theta) = \text{MSE}(T_3)$, we present in Figure 1 their graphical patterns for n = 5,10,15,20. It is interesting to note the bimodal nature of $x_1(\theta)$ and $x_2(\theta)$, and convex nature of $x_3(\theta)$.

Since $0 < \theta < 1$, the intersection of three graphs can separate the interval of θ into seven intervals $(0 < c_1(n) < c_2(n) < c_3(n) < c_4(n) < c_5(n) < c_6(n) < 1)$. Obviously, $MSE(T_1) = MSE(T_2)$ holds whenever $\theta = c_3(n)$, $c_4(n)$ where

$$c_3(n) = \frac{6 - 17n + 9n^2 - \sqrt{12 - 64n + 109n^2 - 62n^3 + 9n^4}}{2(6 - 17n + 9n^2)}$$

and

$$c_4(n) = \frac{6 - 17n + 9n^2 + \sqrt{12 - 64n + 109n^2 - 62n^3 + 9n^4}}{2(6 - 17n + 9n^2)}.$$

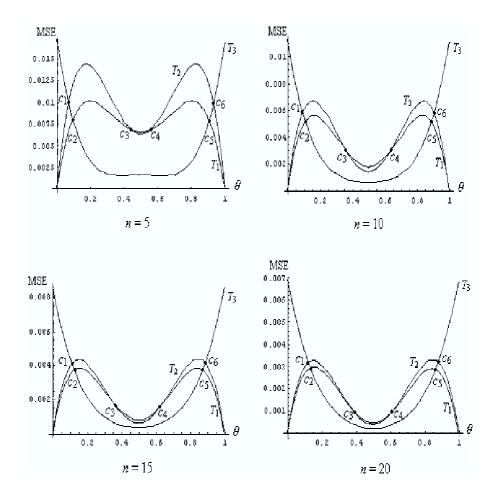


Figure 1: Graphical illustration of mean squared errors for n = 5,10,15, 20.

Likewise, $MSE(T_1) = MSE(T_3)$ holds whenever $\theta = c_2(n)$, $c_5(n)$ where

$$c_{2}(n) = 24 + 48\sqrt{n} + 4n - 88n^{3/2} - 72n^{2} + 32n^{5/2} + 44n^{3} + 8n^{7/2} - ((-24 - 48\sqrt{n} - 4n + 88n^{3/2} + 72n^{2} - 32n^{5/2} - 44n^{3} - 8n^{7/2})^{2} - 4(24 + 48\sqrt{n} + 4n - 88n^{3/2} - 72n^{2} + 32n^{5/2} + 44n^{3} + 8n^{7/2}) (2 + 4\sqrt{n} - 8n^{3/2} - 6n^{2} + 4n^{5/2} + 6n^{3} + 2n^{7/2} - (4 + 16\sqrt{n} + 16n - 32n^{3/2} - 88n^{2} - 32n^{5/2} + 114n^{3} + 128n^{7/2} - 37n^{4} - 124n^{9/2} - 26n^{5} + 52n^{11/2} + 25n^{6})^{-1/2}))^{1/2} / (2 (24 + 48\sqrt{n} + 4n - 88n^{3/2} - 72n^{2} + 32n^{5/2} + 44n^{3} + 8n^{7/2}))$$

and

$$c_{5}(n) = 24 + 48\sqrt{n} + 4n - 88n^{3/2} - 72n^{2} + 32n^{5/2} + 44n^{3} + 8n^{7/2} + \left((-24 - 48\sqrt{n} - 4n + 88n^{3/2} + 72n^{2} - 32n^{5/2} - 44n^{3} - 8n^{7/2})^{2} - 4(24 + 48\sqrt{n} + 4n - 88n^{3/2} - 72n^{2} + 32n^{5/2} + 44n^{3} + 8n^{7/2}) (2 + 4\sqrt{n} - 8n^{3/2} - 6n^{2} + 4n^{5/2} + 6n^{3} + 2n^{7/2} - \left(4 + 16\sqrt{n} + 16n - 32n^{3/2} - 88n^{2} - 32n^{5/2} + 114n^{3} + 128n^{7/2} - 37n^{4} - 124n^{9/2} - 26n^{5} + 52n^{11/2} + 25n^{6} \right)^{1/2} \right) \right)^{1/2} / (2 (24 + 48\sqrt{n} + 4n - 88n^{3/2} - 72n^{2} + 32n^{5/2} + 44n^{3} + 8n^{7/2})).$$

Lastly, $MSE(T_2) = MSE(T_3)$ holds whenever $\theta = c_1(n)$, $c_6(n)$ where

$$c_{1}(n) = -48 - 56\sqrt{n} + 24n + 40n^{3/2} + 8n^{2} - ((48 + 56\sqrt{n} - 24n - 40n^{3/2} - 8n^{2})^{2} - 4(-48 - 56\sqrt{n} + 24n + 40n^{3/2} + 8n^{2})(-4 - 5\sqrt{n} + 2n + 5n^{3/2} + 2n^{2} - \sqrt{16 + 34\sqrt{n} - 16n - 78n^{3/2} - 24n^{2} + 44n^{5/2} + 24n^{3}}))^{1/2} / (2(-48 - 56\sqrt{n} + 24n + 40n^{3/2} + 8n^{2}))$$

and

$$c_{6}(n) = -48 - 56\sqrt{n} + 24n + 40n^{3/2} + 8n^{2} + ((48 + 56\sqrt{n} - 24n - 40n^{3/2} - 8n^{2})^{2} - 4(-48 - 56\sqrt{n} + 24n + 40n^{3/2} + 8n^{2})(-4 - 5\sqrt{n} + 2n + 5n^{3/2} + 2n^{2} - \sqrt{16 + 34\sqrt{n} - 16n - 78n^{3/2} - 24n^{2} + 44n^{5/2} + 24n^{3}}))^{1/2} / (2(-48 - 56\sqrt{n} + 24n + 40n^{3/2} + 8n^{2})).$$

Moreover, the Ideal row and Negative-ideal row are as follows :

$$IDR : u(\theta) = \{ x_1(\theta) : \theta < c_2(n), x_3(\theta) : c_2(n) < \theta < c_5(n), x_1(\theta) : \theta > c_5(n) \}.$$
(10)

$$NIDR : v(\theta) = \{ x_{3}(\theta) : \theta < c_{1}(n), x_{2}(\theta) : c_{1}(n) < \theta < c_{3}(n), x_{1}(\theta) : c_{3}(n) < \theta < c_{4}(n), x_{2}(\theta) : c_{4}(n) < \theta < c_{6}(n), x_{3}(\theta) : \theta > c_{6}(n) \}.$$
(11)

Since we are dealing with a continuous parameter θ , $0 < \theta < 1$, a proper formulation of the MCDM procedure as described earlier in (3)-(6) can be given as follows.

Lertprapai, Tiensuwan and Sinha: On a comparison of three estimators 111

3.1 Analysis based on L₁-norm

For i = 1, applying equations (3) and (4), we get

$$L_{1}(1, IDR) = \int_{c_{2}(n)}^{c_{5}(n)} (x_{1}(\theta) - x_{3}(\theta)) w(\theta) d\theta,$$

$$L_{1}(1, NIDR) = \int_{\theta < c_{1}(n) \cup \theta > c_{6}(n)}^{c_{3}(n)} (x_{3}(\theta) - x_{1}(\theta)) w(\theta) d\theta + \int_{c_{4}(n)}^{c_{6}(n)} (x_{2}(\theta) - x_{1}(\theta)) w(\theta) d\theta.$$

For i = 2, applying equations (3) and (4), we obtain

$$L_1(2, IDR) = \int_{\substack{\theta < c_2(n) \cup \theta > c_5(n) \\ \int_{c_2(n)}^{c_5(n)} (x_2(\theta) - x_3(\theta)) w(\theta) d\theta,}$$

$$L_1(2, NIDR) = \int_{\theta < c_1(n) \cup \theta > c_6(n)} (x_3(\theta) - x_2(\theta)) w(\theta) \, d\theta + \int_{c_3(n)}^{c_4(n)} (x_1(\theta) - x_2(\theta)) w(\theta) \, d\theta.$$

For i = 3, applying equations (3) and (4), we obtain

$$L_{1}(3, IDR) = \int_{\theta < c_{2}(n) \cup \theta > c_{5}(n)} (x_{3}(\theta) - x_{1}(\theta)) w(\theta) d\theta ,$$

$$L_{1}(3, NIDR) = \int_{c_{1}(n)}^{c_{3}(n)} (x_{2}(\theta) - x_{3}(\theta)) w(\theta) d\theta + \int_{c_{4}(n)}^{c_{6}(n)} (x_{2}(\theta) - x_{3}(\theta)) w(\theta) d\theta + \int_{c_{4}(n)}^{c_{6}(n)} (x_{1}(\theta) - x_{3}(\theta)) w(\theta) d\theta .$$

The overall index can then be computed from equation (1). It is clear that for the purpose of comparison of the three estimates, we can work with

$$L_1(Index_i) = \frac{L_1(i, IDR)}{L_1(i, IDR) + L_1(i, NIDR)}, \quad i = 1, 2, 3.$$

3.2 Analysis based on L₂-norm

For i = 1, applying equations (5) and (6), we get

$$L_{2}(1, IDR) = \sqrt{\int_{c_{2}(n)}^{c_{5}(n)} (x_{1}(\theta) - x_{3}(\theta))^{2} w(\theta) d\theta},$$

$$L_{2}(1, NIDR) = \sqrt{\int_{c_{2}(n)}^{c_{5}(n)} (x_{2}(\theta) - x_{1}(\theta))^{2} w(\theta) d\theta} + \sqrt{\int_{c_{6}(n)}^{c_{5}(n)} (x_{2}(\theta) - x_{1}(\theta))^{2} w(\theta) d\theta} + \sqrt{\int_{c_{4}(n)}^{c_{6}(n)} (x_{2}(\theta) - x_{1}(\theta))^{2} w(\theta) d\theta}$$

For i = 2, applying equations (5) and (6), we obtain

$$L_2(2, IDR) = \sqrt{\int_{\theta < c_2(n) \cup \theta > c_5(n)} \int_{\theta < c_2(n) \cup \theta > c_5(n)} (x_2(\theta) - x_1(\theta))^2 w(\theta) \, d\theta} + \int_{c_2(n)}^{c_5(n)} (x_2(\theta) - x_3(\theta))^2 w(\theta) \, d\theta,$$

$$L_2(2,NIDR) = \sqrt{\int_{\theta < c_1(n) \cup \theta > c_6(n)} \int_{\theta < c_1(n) \cup \theta > c_6(n)} (x_3(\theta) - x_2(\theta))^2 w(\theta) \, d\theta} + \int_{c_3(n)}^{c_4(n)} (x_1(\theta) - x_2(\theta))^2 w(\theta) \, d\theta.$$

For i = 3, applying equations (5) and (6), we obtain

$$L_{2}(3, IDR) = \sqrt{\int_{\theta < c_{2}(n) \ \cup \theta > c_{5}(n)} (x_{3}(\theta) - x_{1}(\theta))^{2} w(\theta) \ d\theta},$$

$$L_{2}(3, NIDR) = \sqrt{\int_{c_{1}(n)}^{c_{3}(n)} (x_{2}(\theta) - x_{3}(\theta))^{2} w(\theta) \ d\theta} + \int_{c_{4}(n)}^{c_{6}(n)} (x_{2}(\theta) - x_{3}(\theta))^{2} w(\theta) \ d\theta}.$$

Lertprapai, Tiensuwan and Sinha: On a comparison of three estimators 113

Under L_2 -norm also, the overall index can be computed from equation (2) for each value of n.

3.3 Choice of weight functions

Our first weight function $w_1(\theta)$ is defined by $w_1(\theta) = \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha,\beta)}$ for some $\alpha, \beta > 0$, which is a conjugate prior for the binomial parameter θ . Following Filar et al. [2], we also consider two additional choices of $w(\theta)$. The first one, denoted by $w_2(\theta)$, is based on the notion of entropy among $x_1(\theta), x_2(\theta)$ and $x_3(\theta)$ for various values of θ , and the second one, denoted by $w_3(\theta)$, is based on the coefficient of variation of $x_1(\theta), x_2(\theta)$ and $x_3(\theta)$ for various values of θ (Vide [4]). It turns out that

$$w_2(\theta) = \frac{1 - \phi(\theta)}{\int\limits_{\underline{\theta}}^{\overline{\theta}} [1 - \phi(\theta)] d\theta}$$
(12)

where
$$\phi(\theta) = -\frac{1}{\log 3} \sum_{i=1}^{3} \left\{ \frac{x_i(\theta)}{\sum\limits_{i=1}^{3} x_i(\theta)} \cdot \log \left[\frac{x_i(\theta)}{\sum\limits_{i=1}^{3} x_i(\theta)} \right] \right\},$$

and

$$w_{3}(\theta) = \frac{\sqrt{2(x_{1}^{2}(\theta) + x_{2}^{2}(\theta) + x_{3}^{2}(\theta) - x_{1}(\theta)x_{2}(\theta) - x_{1}(\theta)x_{3}(\theta) - x_{2}(\theta)x_{3}(\theta))}{x_{1}(\theta) + x_{2}(\theta) + x_{3}(\theta)}.$$
(13)

For details of above derivation, we refer to Technical Report [3]. These expressions can be readily computed using the functions $x_1(\theta)$, $x_2(\theta)$ and $x_3(\theta)$ given in (3.1)-(3.3).

3.4 Comparison of estimators

We report in Table 1 the ranks of the three estimators when compared on the basis of the weight function $w_1(\theta)$. In Table 2, we provide the ranks for the two other weight functions $w_2(\theta)$ and $w_3(\theta)$.

			Т		Т	
			L_1	L_2		
		rank	rank	rank	rank	
		$(\alpha = \beta = 1)$	$(\alpha=\beta=\!\sqrt{n}/2)$	$(\alpha=\beta=1)$	$(\alpha=\beta=\sqrt{n}/2)$	
n=5	T_1	2	2	2	2	
	T_2	3	3	3	3	
	T_3	1	1	1	1	
n=10	T_1	2	2	1	2	
	T_2	3	3	2	3	
	T_3	1	1	3	1	
n=15	T_1	1	2	1	2	
	T_2	3	3	3	3	
	T_3	2	1	2	1	
n=20	T_1	1	2	1	2	
	T_2	2	3	2	3	
	T_3	3	1	3	1	

Table 1: Rank of three estimators using weight $w_1(\theta)^*$

* Rank 1 = best, Rank 3 = worst

		L_1		L_2	
		$w_2(\theta)$	$w_3(heta)$	$w_2(\theta)$	$w_3(heta)$
n=5	T_1	1	2	1	2
	T_2	2	3	2	3
	T_3	3	1	3	1
n=10	T_1	1	1	1	1
	T_2	2	3	2	2
	T_3	3	2	3	3
n=15	T_1	1	1	1	1
	T_2	2	2	2	2
	T_3	3	3	3	3
n=20	T_1	1	1	1	1
	T_2	2	2	2	2
	T_3	3	3	3	3

Table 2: Rank of three estimators using weights $w_2(\theta)$ and $w_3(\theta)^*$

* Rank 1 = best, Rank 3 = worst

4 Conclusion

Based on the above analysis under L_1 - and L_2 - norms, we conclude that, for small values of n, our preference is uniformly for T_1 . Under the weight function $w_1(\theta)$, T_3 also has some advantages. Of the three estimators studied in this paper, it turns out that T_2 is improper since $T_2(x) > \frac{1}{4}$ whenever $\frac{n - \sqrt{n}}{2} < x < \frac{n + \sqrt{n}}{2}$. On the other hand, both T_1 and T_3 are seen to be proper estimators. Therefore, one should use the truncated version T_2^* of T_2 and compute its mse and then compare it with the other two. This will improve the performance of T_2 and possibly make it preferable over T_1 and T_3 . We propose to undertake this study in future.

Acknowledgement

We thank an anonymous referee for suggestions leading to an improvement in the presentation of our ideas.

References

- Casella, G., and Berger, R.L. (1990). *Statistical Inference*. Wadsworth Inc, California, USA.
- [2] Filar, J.A., Ross, N.P., and Wu, M.L. (1999). Environmental Assessment Based on Multiple Indicators. Technical Report, Department of Applied Mathematics, University of South Australia.
- [3] Lertprapai, S., Tiensuwan, M., and Sinha Bimal, K. (2003). Comparison of three estimates of binomial variance by MCDM method. Technical Report, Department of Mathematics and Statistics, UMBC and Department of Mathematics, Mahidol University, Thailand.
- [4] Maitra, R., Ross, N.P., and Sinha Bimal K. (2002). On Some Aspects of Data Integration Techniques with Applications. Technical Report, Department of Mathematics and Statistics, UMBC, USA.
- [5] Zeleny, M. (1982). Multiple Criteria Decision Making. McGraw-Hill, New York, USA.

Appendix

Derivation of equations (3.1)-(3.3). Becall that

$$T_{1} = \frac{X}{n} \left(1 - \frac{X}{n} \right), \ T_{2} = \frac{X(n-X)}{n(n-1)}, \ T_{3} = \frac{X(n-X) + n\sqrt{n}/2 + n/4}{(n+\sqrt{n})^{2}}$$

Let $\delta_{\theta} = \theta(1-\theta)$. It is easy to verify that $E(X) = n\theta$, $E(X^2) = n\theta(1+n\theta-\theta)$ $E(X^3) = n\theta(1+3n\theta+n^2\theta^2-3n\theta^2-3\theta+2\theta^2)$, and $E(X^4) = n\theta(1-7\theta+7n\theta+12\theta^2-18n\theta^2+6n^2\theta^2-6\theta^3+11n\theta^3-6n^2\theta^3+n^3\theta^3)$. Moreover, $V(X) = n\theta(1-\theta)$, and one can easily show $V(X^2) = n\theta(1-7\theta+6n\theta+12\theta^2-16n\theta^2+4n^2\theta^2-6\theta^3+10n\theta^3-4n^2\theta^3)$, and $Cov(X,X^2) = n\theta(1+2n\theta-2n\theta^2+2\theta^2-3\theta)$. Note that $E(T_1) = \frac{\theta(1-\theta)(n-1)}{n}$, $E(T_2) = \theta(1-\theta)$, and $E(T_3) = \left\{\theta(1-\theta)(n-1) + \frac{\sqrt{n}}{2} + \frac{1}{4}\right\} \cdot \frac{n}{(n+\sqrt{n})^2}$. Hence, $(E(T_1)-\delta_{\theta})^2 = \frac{1}{n^4}(n^2\theta^4-2n^2\theta^3+n^2\theta^2)$, $(E(T_2)-\delta_{\theta})^2 = 0$, and $(E(T_3)-\delta_{\theta})^2 = \frac{1}{(n+\sqrt{n})^4}\left(\left(\frac{n\sqrt{n}}{2}+\frac{n}{4}\right)-2\theta(1-\theta)n(1+\sqrt{n})\right)^2$. Furthermore,

$$V(T_1) = V\left(\frac{X(n-X)}{n^2}\right) = \frac{1}{n^4} \left(n^2 V(X) + V(X^2) - 2n \operatorname{Cov}(X, X^2)\right)$$

= $\frac{1}{n^4} \left(n (n-1)^2 \theta + (5n-7)(n-n^2) \theta^2 + (2n-3)(4n^2-4n) \theta^3\right) + \frac{1}{n^4} \left((2n-3)(2n-2n^2) \theta^4\right),$

$$V(T_2) = V\left(\frac{X(n-X)}{n(n-1)}\right) = \frac{1}{n^2(n-1)^2} \left(n^2 V(X) + V(X^2) - 2n \operatorname{Cov}(X, X^2)\right)$$

= $\frac{1}{n^2(n-1)^2} \left(n(n-1)^2\theta + (5n-7)(n-n^2)\theta^2 + (2n-3)(4n^2-4n)\theta^3\right) + \frac{1}{n^2(n-1)^2} \left((2n-3)(2n-2n^2)\theta^4\right),$

$$V(T_3) = V\left(\frac{X(n-X) + n\sqrt{n}/2 + n/4}{(n+\sqrt{n})^2}\right)$$

= $\frac{1}{(n+\sqrt{n})^4} \left(n^2 V(X) + V(X^2) - 2nCov(X, X^2)\right)$
= $\frac{1}{(n+\sqrt{n})^4} \left(n(n-1)^2\theta + (5n-7)(n-n^2)\theta^2 + (2n-3)(4n^2-4n)\theta^3\right) + \frac{1}{(n+\sqrt{n})^4} \left((2n-3)(2n-2n^2)\theta^4\right).$

We are now in a position to compute the mean squared errors of the three estimators. 1. MSE $(T_1) = \hat{E}(T_1 - \delta_{\theta})^2 = \hat{V}(T_1) + (E(T_1) - \delta_{\theta})^2$

$$= \frac{1}{n^4} \left\{ n(n-1)^2 \theta + \left((5n-7)(n-n^2) + n^2 \right) \theta^2 + \left((2n-3)(4n^2-4n) - 2n^2 \right) \theta^3 + \left((2n-3)(2n-2n^2) + n^2 \right) \theta^4 \right\}.$$

2. MSE $(T_2) = E(T_2 - \delta_\theta)^2 = V(T_2)$

$$= \frac{1}{n^2(n-1)^2} \{n(n-1)^2\theta - n(5n-7)(n-1)\theta^2 + 4n(2n-3)(n-1)\theta^3 - 2n(2n-3)(n-1)\theta^4\}.$$

3. MSE(T₃) =
$$E(T_3 - \delta_{\theta})^2 = V(T_3) + (E(T_3) - \delta_{\theta})^2$$

= $\frac{1}{(n + \sqrt{n})^4} \{ [(2n + 2n\sqrt{n})^2 - 2n(2n - 3)(n - 1)]\theta^4 + [-2(2n + 2n\sqrt{n})^2 + 4n(2n - 3)(n - 1)]\theta^3 + [2(2n + 2n\sqrt{n})(n\sqrt{n}/2 + n/4) + (2n + 2n\sqrt{n})^2 - n(5n - 7)(n - 1)]\theta^2 + [-2(2n + 2n\sqrt{n})(n\sqrt{n}/2 + n/4) + n(n - 1)^2]\theta + (n\sqrt{n}/2 + n/4)^2 \}.$

Finally, a justification of (13) follows from the following observation. Referring to [2] and [4], note that

$$w_{3}(\theta) = \frac{s}{\bar{x}} = \frac{\sqrt{\frac{1}{3}\sum_{i=1}^{3} (x_{i}(\theta) - \bar{x}(\theta))^{2}}}{\frac{1}{3}\sum_{i=1}^{3} x_{i}(\theta)}.$$

Since

 $\sum_{\substack{i=1\\(12)}}^{3} (x_i(\theta) - \bar{x}(\theta))^2 = \frac{2}{3} \left[x_1^2(\theta) + x_2^2(\theta) + x_3^2(\theta) - x_1(\theta)x_2(\theta) - x_1(\theta)x_3(\theta) - x_2(\theta)x_3(\theta) \right],$ (13) follows.

BLANK PAGE