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Abstract

Elliptically contoured distributions have densities with equiprobable sur-
faces constant on ellipsoids, a property possessed in particular by the mul-
tivariate normal and t distributions. Some authors have discussed the es-
timation of the location and scale parameters for the elliptically contoured
distributions, as well as, certain exact sampling distributional properties
of the estimators of these parameters. But, as we show in the paper, the
existing estimators for the scale and the kurtosis parameters of the ellip-
tically contoured distributions are not consistent, which limits their uses
in practice. As a remedial measure, we develop the consistent estimators
for the location, scale, and kurtosis parameters of the elliptically contoured
distributions, under a general cluster regression model.
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1 Introduction

Suppose that p-dimensional random variables Y1, . . . , Yj , . . . , Yn are regarded as being
distributed according to an np-dimensional elliptically contoured distribution (ECD).
Under the assumption that elliptically contoured distributions, which constitute a
generalization of the normal distribution, may be determined by the same parameters,
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many authors (Anderson et al, (1986)) have expressed the joint probability density
function (p.d.f.) of Y1, . . . , Yj , . . . , Yn in the form

|Λ|−n
2 g





n∑

j=1

(yj − µ)′Λ−1(uj − µ)



 , (1)

where µ is a p-dimensional location vector and Λ > 0 is a p×p scale matrix parameter.
For the ECD, the covariance matrix Σ (say) is a scalar constant multiple of Λ. Thus,
if n p-dimensional random vectors in (1) follow an elliptically contoured t distribution
with ν (> 2) degrees of freedom (d.f.), then Σ is c = ν/(ν − 2) multiple of Λ. In
general, ν may be referred to as the shape parameter, which is unknown in practice.
Note that as µ and Λ in (1) are free from the shape parameter, the ECDs determined
by these parameters do not contain any information about the shape or kurtosis of
the data. This observation motivates us (Sutradhar (1994)) to define the joint p.d.f.
of Y1, . . . , Yj , . . . , Yn in the form

|Λ|−n
2 gκ





n∑

j=1

(yj − µ)′Λ1(yj − µ)



 , (2)

where gκ(·) indicates that the density of the distribution depends on a kurtosis param-
eter κ which is a function of the shape parameter ν, as explained above. With regard
to the estimation of the mean vector µ and the scale matrix Λ, Anderson et al (1986)
maximized the likelihood function (1) and showed that the estimator of the mean vec-

tor is the estimator Ȳ =
n∑

j=1

Yj under normality and the estimator of the covariance

matrix Σ is a constant multiple of the estimator S =
n∑

j=1

(Yj−Ȳ )(Yj−Ȳ )′/n under nor-

mality. In the next section, we examine the consistency property of Anderson et al’s
estimators and show by a counter-example that their estimator of Σ is not consistent
even if the ECD family or ν or κ is known. This leads to a potential problem for the
inference about µ, as the covariance of Ȳ in this case cannot be consistently estimated.
In Section 3, we consider an ECD based clustered regression model and borrow the
strengths from the independent clusters in the spirit of Liang and Zeger (1986), among
others, to obtain consistent estimators for the regression, covariance matrix and the
shape parameters of the model. Note that in this approach, the cluster size n can be
as small as 1 but the number of clusters K (say) should be sufficiently large. We also
simplify these estimators for the heteroscedastic univariate (p = 1) case with general n
and K. This appears in Section 4. In this special case, the n univariate responses in a
cluster are dependent on each other following an ECD structure, and similar to Liang
and Zeger, one is mainly interested in the regression effects of covariates involved in
the model.
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2 Inconsistency of the Estimators of Covariance and Kur-
tosis Parameters

Recall that in our notations, for given ν or κ(ν), the maximum likelihood estimators
of µ and Σ derived by Anderson et al (1986, Theorem 1, p. 56) are given by

µ̂MLE = Ȳ , Σ̂MLE = (np/d∗)S (3)

where d∗ is a finite positive maximum of d
np
2 g∗κ(d), with g∗κ(d) as the spherical joint den-

sity of Y1, . . . , Yj , . . . , Yn. For example, under normality g∗κ(d) = (2π)−
np
2 exp(−d/2),

and under t model with ν d.f., g∗κ(d) =
[
ν

ν
2 Γ{(ν + np)/2}/π

np
2 Γ(ν/2)

]
{ν + d}− ν+np

2 .

It is clear from (3) that µ̂MLE = Ȳ is a consistent estimator for µ. This is because, as
Y1, . . . , Yj , . . . , Yn are uncorrelated, var(Ȳ ) = Σ/n, which approaches zero as n →∞.
In the same token, Σ̂MLE in (3) will be consistent for Σ, provided the p2 × p2 covari-
ance matrix of Σ̂MLE approaches to zero as n → ∞. It does not, however, appear
to be the case under ECDs. We show this inconsistency by using a counter-example
based on the multivariate elliptic t contoured distribution. Consider following (2) that
Y1, . . . , Yj , . . . , Yn have the np-dimensional elliptic t-distribution given by

C(ν, n, p)|Λ|−n
2

{
ν + Σn

j=1(yj − µ)′Λ−1(yj − µ)
}− ν+np

2 , (4)

where C(ν, n, p) =
[
ν

ν
2 Γ{(ν + np)/2}/π

np
2 Γ(ν/2)

]
, ν being the d.f. of the t-distribution.

Although ν or κ(ν) is unknown in practice, for the time being we assume that ν is
known. To simplify Anderson et al’s (1986) estimators in (3), it is easy to compute
d∗ based on (4) which is np. Consequently, the consistency of Σ̂MLE depends on the

consistency of the normality based sample covariance matrix S =
n∑

j=1

(Yj − Ȳ )(Yj −

Ȳ )′/(n − 1). Sutradhar and Ali (1989) have derived the exact sampling distribution
of this sample covariance matrix under the general ECD (2). These authors have also
simplified the distribution of S for the elliptic t distribution (4) as a special case and
computed the variances and the pair-wise covariances of the elements of S matrix
under the elliptic t distribution. Let Suv be the (u, v)th element of the matrix S for
u, v = 1, . . . , p. Also, let Σ

1
2 = ((mh`)) be a symmetric matrix such that Σ

1
2 Σ

1
2 = Σ

for h, ` = 1, . . . , p, where Σ = νΛ/(ν − 2). It then follows from (3.6) in Sutradhar and
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Ali (1989) that the variances of the elements of S matrix are given by

var(Suv) = (n− 1)−2(ν − 2)/(ν − 4)


(n− 1)2

(
p∑

h=1

muhmvh

)2

+ 2(n− 1)
p∑

h=1

m2
uhm2

vh + (n− 1)
∑

h<`

(muhmv` + mu`mvh)2
]

−
(

p∑

h=1

muhmvh

)2

. (5)

It is clear from (5) that as n →∞, var(Suv) approaches to

Ltn→∞var(Suv) =

(
p∑

h=1

muhmvh

)2

{(ν − 2)/(ν − 4)− 1}

= {2/(ν − 4)}
(

p∑

h=1

muhmvh

)2

,

= [2ν2/{(ν − 2)2(ν − 4)}]
(

p∑

h=1

λuhλvh

)2

, (6)

where λuh is the (u, h)th element of the Λ
1
2 matrix. Following the equation (3.5) in

Sutradhar and Ali (1989), one may similarly compute the limiting pair-wise covariances
of the elements of the S matrix. It is, however, clear that these limiting variances and
covariances are free from n, and they approach to certain finite quantities based on the
elements of the Λ matrix and the d.f. of the t-distribution. Consequently, the Σ̂MLE
of Anderson et al (1986) is not consistent for Σ under the general elliptically contoured
distribution (2). Further, as the sample covariance matrix S is not consistent for Σ,
it then follows that the James-Stein and Stein’s orthogonally invariant estimators (of
Σ) constructed in Kubokawa and Srivastava (1997) are in fact the function of the
elements of the inconsistent sample covariance matrix. The inconsistency of S (for Σ)
also imply that there may not exist any consistent estimators for the shape parameter
ν or kurtosis parameter κ(ν) under the ECD set-up (2). This we verify below under
the elliptically contoured t distribution given in (4). To begin with, we, however,
first note that there does not exist any maximum likelihood estimator for ν. This is
because, for given µ and Λ, maximizing the joint p.d.f. (4) is equivalent to maximizing

C(ν, n, p)|Λ|−n
2



1 +

n∑

j=1

(yj − µ)′Λ−1(yj − µ)/ν





− ν+np
2

, (7)
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with respect to ν. For convenience, we consider µ = 0 and Λ = I without any loss of
generality, and maximize the function

C(ν, n, p)



1 +

n∑

j=1

y′jyj/ν





− ν+np
2

, (8)

with respect to ν. Note that in (8) C(ν, n, p) =
[
ν

ν
2 Γ{(ν + np)/2}/π

np
2 Γ(ν/2)

]
, which

is an increasing function of ν for fixed n and p. Furthermore, as
n∑

j=1

y′jyj and np

are fixed for a given data set, it also follows that the spherical function in (8) is an
increasing function of ν. Thus, it is intuitively clear that the joint density function
in (8) is maximized at ν = ∞. Consequently, there does not exist any maximum
likelihood estimator of ν, as ν = ∞ is the normal case. We have also verified the non-
existence of the maximum likelihood estimator of ν numerically but do not include the
numerical verification in the paper. Next, we show that even if a moment estimator for
ν or κ(ν) exists, the estimator is not consistent under the general ECD set-up (2). To
verify this, it is enough to show that the moment estimator ν̂M (say) is not consistent
for ν for the elliptically contoured t distribution (4). Following Mardia (1970), a
multivariate measure of kurtosis of the elliptical t-distribution may be written as

β2 =
∫

[(yj − µ)′Σ−1(yj − µ)]2dL, (9)

where

L = C1(ν, n, p)|Σ|−n
2



(ν − 2) +

n∑

j=1

(yj − µ)′Σ−1(yj − µ)





− ν+np
2

,

by (4). By direct integration, one may simplify (9) as

β2 =
(

ν − 2
ν − 4

)
f(n, σ), (10)

where

f(n, σ) = n

[
3

p∑

h=1

(σhh)2(σhh)2

+
p∑

h6=h′
(σh′h′)2{σhhσh′h′ + (σhh′)2}


 ,
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and σhh′ and σhh′ are the (h, h′)th element of Σ−1 and Σ, respectively. It then follows
that a moment estimator ν̂M of ν is given by

ν̂M = 2[2β̂2,M − f(n, s)]/[β̂2,M − f(n, s)], (11)

where f(n, s) is computed by (10) after replacing Σ by the sample covariance matrix
S, and β̂2,M is the sample counter-part of β2, given by

β̂2,M =
1
n

n∑

j=1

[(yj − ȳ)′S−1(yj − ȳ)]2.

It is now easy to see that as S is not a consistent estimator for Σ, β̂2,M and f(n, s)
in (11) cannot be consistent for their counterparts, β2 and f(n, σ), respectively. This
leads to the conclusion that ν̂M in (11) is not a consistent estimator of ν. This, in turn,
shows that the moment estimator of the shape parameter ν or the kurtosis parameter
κ(ν) is not a consistent estimator under the general ECD set-up (2). In the next
section, we consider a cluster regression set-up under the general ECD set-up (2) and
construct suitable consistent estimators for all regression, covariance matrix and the
shape or the kurtosis parameters of the ECD. In particular, the emphasis is given on
the regression analysis with elliptically distributed errors.

3 ECD based Cluster Regression Model

Cluster correlated (or dependent) data constitute a set of independent multivariate
responses yi = (y′i1, . . . , y

′
ij , . . . , y

′
ini

)′, for i = 1, . . . ,K, together with an nip × pc

matrix Xi = (x′i1, . . . , x
′
ij , . . . , x

′
ini

)′ where

xij =




x′ij1 0′ · · · 0′

0′ x′ij2 · · · 0′
...

...
...

0′ 0′ · · · x′ijp




is the p× pc covariate matrix for the jth (j = 1, . . . , ni) individual in the ith cluster,
and 0′ is the 1 × c null vector. In this set-up, a p-dimensional response vector yij

and the p × pc matrix of covariates are observed for the jth individual in the ith
cluster / family / group. The data of this type may be modelled as

yi = Xiβ + εi, (12)

where β = (β1, . . . , βh, . . . , βp)′ with βh = (βh1, . . . , βhc)′ and εi = (εi1, . . . , εij , . . . , εin)′
with εij = (εij1, . . . , εijk, . . . , εijp)′. As opposed to Liang and Zeger’s (1986) generalized
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linear model based cluster regression problem, the present model is linear but with
a special error structure having general elliptically contoured distribution (2) for εi.
More specifically, it is assumed that the nip observations in yi, follow the ECD given
by

|Λ|−ni
2 gκ((yi −Xiβ)′(Ini ⊗ Λ−1)(yi −Xiβ)), (13)

where Ini is the ni × ni identity matrix. Note that because of the form gκ(·), the
p-dimensional observations yi1, . . . , yij , . . . , yini are pairwise uncorrelated but not nec-
essarily independent. Further note that the ECD in (13) also may be written as

|Λ|−ni
2 gκ




ni∑

j=1

(yij − xijβ)′Λ−1(yij − xijβ)


 . (14)

The main purpose of this section is to obtain a consistent estimator β̂GLS (say) of β,
as well as to estimate the covariance matrix of β̂GLS, consistently. Under the present
set-up, the well known generalized least square equations for β may be written as

K∑

i=1

XT
i (Ini ⊗ Σ̂−1)(yi −Xiβ) = 0, (15)

yielding

β̂GLS =

[
K∑

i=1

XT
i (Ini ⊗ Σ̂−1)Xi

]−1 K∑

i=1

XT
i (Ini ⊗ Σ̂−1)yi. (16)

As (15) is an unbiased estimating equation, it then follows under some mild regularity
conditions on Xi that β̂GLS is a consistent estimator for β and its covariance matrix
can be consistently estimated by

V̂ (β̂GLS) =

[
K∑

i=1

XT
i (Ini ⊗ Σ̂−1)Xi

]−1

, (17)

provided Σ̂ is a consistent estimator for Σ.

3.1 Consistent estimate of Σ

3.1.1 A pooled estimate

For known β, define a sample covariance matrix Si =
ni∑

j=1

(yij − xijβ)(yij − xijβ)′/ni

based on ni p-dimensional observation under the ith cluster. As for simplicity, it was
shown in the last section in the context of elliptic t distribution that this Si matrix
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is not a consistent estimator for Σ, we now pool the information from K independent
clusters and estimate Σ as

Σ̂ =
1
K

K∑

i=1

Si, (18)

and examine its consistency under the general ECD set-up (2). Since the p2 × p2

covariance matrix of Si does not depend on any cluster, we compute the covariance
matrix for S1 without any loss of generality. For u, v, h, ` = 1, . . . , p, let S1,uv and S1,h`

be two general elements of the S1 =
n1∑

j=1

(y1j − x1jβ)(y1j − x1jβ)′/n1 matrix. More

specifically,

S1,uv =
n1∑

j=1

(y1ju − x′1juβu)(y1jv − x′1jvβv)/n1,

and

S2,h` =
n1∑

j=1

(y1jh − x′1jhβh)(y1j` − x′1j`β`)/n1. (19)

Recall from (2) that κ is the kurtosis parameter for every component of Yij . For
example, for multivariate elliptic t distribution, κ = 2/(ν − 4), where ν is the shape
parameter or degrees of freedom of the t-distribution. Note that this ν or κ is unknown
too in practice. It then follows from (19) [Muirhead (1982, p. 40-49)] that

cov(S1,uv, S1,h`) =
1
n2

1

[n1(κ + 1)(σuvσh` + σuvσv` + σu`σvh)

+n1(n1 − 1)(κ + 1)σuvσh`]− σuvσh`,

which may be simplified as

cov(S1,uv, S1,h`) = κσuvσh` + (κ + 1)(σuhσv` + σu`σvh)/n1, (20)

where σuv, for example, is the (u, v)th element of the Σ matrix. Note that even if the
cluster size ni approaches to ∞, this covariance in (20) does not reduce to zero. But,
as S1, . . . , Si, . . . , SK are sample covariance matrices from independent clusters, it is
clear from (18) that the p2 × p2 covariance matrix of Σ̂ approaches zero as number of
clusters K approaches ∞. This covariance matrix estimate, therefore, may be used
in (16) and (17) to estimate β and its confidence intervals. Note that in the present
approach β and Σ are estimated iteratively by using (16) and (18).
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3.1.2 Independent clusters based direct estimate for the case ni = n

Unlike in the last section, this approach requires ni = n for all clusters i = 1, . . . , K.
For ni = n, y1, . . . , yi, . . . , yK are independently distributed np × 1 random elliptic
vectors with mean and covariance matrix given by

E(Yi) = Xiβ, and cov(Yi) = In ⊗ Σ

respectively, for all i = 1, . . . , K. Further it is assumed that every component of Yi

has the same kurtosis κ. Next, let

S∗(K − pc) =
K∑

i=1

(Yi −Xiβ̂GLS)(Yi −Xiβ̂GLS)′/(K − pc)

be the sample covariance matrix constructed based on K np-dimensional independent
vectors Y1, . . . , Yi,. . . , YK . It then follows that (Muirhead (1982, p. 42)) the asymptotic
(K →∞) distribution of

Z(K − pc) = (K − pc)
1
2 [S∗(K − pc)− In ⊗ Σ] (21)

is normal with mean zero. The covariance, expressed in terms of the kurtosis and
elements of Σ∗ = In ⊗ Σ = (σ∗uv) are given by

cov(Zuv, Zh`) = κ[(σ∗uvσ
∗
h` + σ∗uhσ∗v` + σ∗u`σ

∗
vh)]

+(σ∗uhσ∗v` + σ∗u`σ
∗
vh). (22)

It then follows from (21) that

cov(S∗uv, S
∗
h`) = (K − pc)−1[κ(σ∗uvσ

∗
h` + σ∗uhσ∗v` + σ∗u`σ

∗
vh)

+(σ∗uhσ∗v` + σ∗u`σ
∗
vh)], (23)

showing that S∗ is a consistent estimator for In ⊗ Σ. Note that for the elliptic t
distribution κ = 2/(ν − 4) and for normal distribution κ = 0. One of the drawbacks
of the ‘independent cluster based approach’ to estimate Σ is that all the off-diagonal
null matrices in In ⊗Σ are estimated by corresponding off-diagonal non-null matrices
of S∗. Furthermore, Σ matrix itself are estimated by n different diagonal matrices of
S∗, leading to non-unique estimates for the same Σ. Consequently, the GLS estimate
of β computed by

β̂∗GLS =

[
K∑

i=1

XT
i S∗

−1
Xi

]−1 K∑

i=1

XT
i S∗

−1
yi (24)

will be less efficient as compared to β̂GLS computed by (16). This problem of non-
unique estimates for Σ does not, however, arise for n = 1.
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3.2 Consistent estimate for the kurtosis parameter

Note that the inferences about β do not require the knowledge of the kurtosis pa-
rameter of the ECD, rather they require the consistent estimate of Σ, which we have
already discussed in the previous sections. It, however, becomes a different situation
when one would like to infer about the covariance matrix Σ. This is clear from (20)
and (23) where it was shown that the covariance matrix of Σ̂ is a function of the kur-
tosis parameter of the general ECD (2). In order to estimate the kurtosis parameter
κ, we follow Mardia (1970) and define a measure of kurtosis of ECD given by

β2i = E[Yi −Xiβ)′(Ini ⊗ Σ−1)(Yi −Xβ)]2. (25)

Note that the same measure β2 was used in Section 2 in order to examine the con-
sistency of the estimator of the shape parameter ν of the elliptic t-distribution. It
was shown there that ν̂M is not consistent for ν. We are, however, dealing with a
slightly different situation here, as in the present set-up, we have nip-dimensional el-
liptic observations from the ith cluster and we have altogether K independent clusters
to exploit to obtain a consistent estimator of the shape parameter or kurtosis param-
eter. Writing

(
Ini ⊗ Σ−

1
2

)
(Yi −Xβ) = Zi, one can compute the expectation in (25)

as

β2i = E[Z ′iZi]2

= E

[
nip∑

h=1

Z2
ih

]2

= E




nip∑

h=1

Z4
ih +

nip∑

h6=`

Z2
ihZ2

i`


 , (26)

where Zi has a nip-dimensional unit spherical distribution. As we have assumed
that each component of Yi has the same kurtosis parameter κ, it then follows that
(cf. Muirhead (1982, p. 41))

E(Z4
ih) = 3(κ + 1) and E(Z2

ih) = 1,

yielding β2i as

β2i = 3nip(κ + 1) + nip(nip− 1)

= nip{3κ + nip + 2}. (27)

Next, as y1, . . . , yi, . . . , yK are independent observations each having an ECD, it is
easy to see that

β̂2 =
1
K

K∑

i=1

[(yi −Xiβ̂GLS)′(Ini ⊗ Σ̂−1)(yi −Xiβ̂GLS)]2
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approaches in probability to

3pκ
K∑

i=1

ni/K + p2
K∑

i=1

n2
i /K + 2p

K∑

i=1

ni/K.

One may then obtain a consistent estimator for the kurtosis parameter given by

κ̂ =
K

3p
∑K

i=1 ni

[
β̂2 − p2

K∑

i=1

n2
i /K − 2p

K∑

i=1

ni/K

]
. (28)

4 Univariate Heteroscedastic Models: A Special Case

4.1 Single cluster based inference

Suppose that the ith cluster contains ni individuals and each of the individuals provides
a univariate response. Let yij be the response of the jth (j = 1, . . . , ni) individual in
the ith cluster, and xij = (xij1, . . . , xijc)′ be a c×1 vector of covariates associated with
yij . Further suppose that the ni responses in the ith cluster follow an ni-dimensional
elliptically contoured distribution (2) with

E(Yi) = Xiβ, var(Yi) = Σ = diag(σ2
1, . . . , σ

2
ni

) (29)

and each component of yi has the same kurtosis parameter κ. Here Xi is the ni × c
matrix of covariates and β is the c × 1 regression vector. This is a linear model case
but the joint p.d.f. of yi1, . . . , yini is given by

C(κ)Πni
j=1(σ

2
j )
− 1

2 gκ




ni∑

j=1

{(yij − x′ijβ)2/σ2
j }


 . (30)

Inferences about β require the estimation of σ2
1, . . . , σ

2
ni

. Note, however, that one
cannot estimate these variance components from a single cluster, namely, from the
ith cluster. This is because, as the cluster size gets larger, the number of variance
parameters increases too. Much more serious situation than this is that even if σ2

1 =
. . . , σ2

ni
= σ2, say, unlike in the normal case, this single variance component σ2 cannot

be consistently estimated by the sample variance defined based on the ni elements of
the ith cluster. To verify this, for known β, define the sample variance from the ith
cluster as

s2
i = n−1

i

ni∑

j=1

(yij − x′ijβ)2. (31)

Now, as it was discussed in Sections 2 and 3, this estimator has the variance given by
(20) as

v(s2
i ) = κσ4 + (κ + 1)(2σ4/ni)
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under general ECD (1.2) and the variance

v(s2
i ) = {2/(ν − 4)}σ4 + {(ν − 2)/(ν − 4)}2σ4/ni

under the elliptic t distribution with ν degrees of freedom. Thus, it is clear that even
if ni is sufficiently large, σ2 cannot be estimated consistently. This, in turn, affects
the inference about β, in particular, the construction of its confidence interval.

4.2 Inference from combined clusters

As discussed in Section 3.1, the above problem of estimation of σ2 can, however, be
removed by pooling the information from all K independent clusters. Thus

σ̂2 =
1
K

K∑

i=1

ni∑

j=1

(yij − x′ijβ)2/ni (32)

is a consistent estimate of σ2 (as K → ∞). Note, however, that the exact sampling

distribution theory for σ̂2 =
K∑

i=1

s2
i /K is extremely complicated under general ECD. If

β is unknown, which is usually the case, it is replaced by β̂ =

(
K∑

i=1

X ′
iXi

)−1 K∑

i=1

X ′
iyi

and σ̂2 in (32) reduces to

σ̂2 =
1
K

K∑

i=1

ni∑

j=1

(yij − x′ij β̂)2/(ni − c). (33)

It may be remarked that in the cluster regression set-up, even if the variance com-
ponents are different, for the special case ni = n, they can be consistently estimated,
in the spirit of Liang and Zeger (1986), by using

σ̂2
j =

1
K

K∑

i=1

(yij − x′ij β̂)2, (34)

for all j = 1, . . . , n, as K clusters then work as K independent repeated samples.
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